
HALOS ÄND DISK STABILITY 

Agris J. Kalnajs 
Mount Stromlo and Siding Spring Observatories 
Research School of Physical Sciences 
Australian National University 

ABSTRACT. The need for halos on stability grounds is not at all compel-
ling. Compared to a bulge, a halo is not very efficient in stabilising a 
disk. Because the effect of a modest halo is small, it is difficult to 
infer its presence or absence from stability arguments. 

1. INTRODUCTION 

Historically the instabilities of disks have added much fuel to the 
argument for the existence of massive haloes around galaxies. We happen 
to live in that part of the Galaxy where the circular motion is much 
larger than the random motions of stars. Until fairly recently, we were 
ignorant about the velocity dispersion elsewhere in the Galaxy, and it 
was therefore quite reasonable to assume that the rest of the Galaxy, as 
well as other disk galaxies, would be mainly rotationally supported. 
Toomre's pioneering stability analysis (Toomre 1964) seemed to provide a 
reason for the small velocity dispersion: it was just enough to make the 
solar neighbourhood stable against axisymmetric instabilities. There was 
another, less worthy reason for wanting to think about cool disks: the 
dynamics could be worked out fairly simply if epicycles were to be good 
approximations to stellar orbits. 

The first inkling that all was not well with this concept of a disk 
galaxy came with the advent of numerical simulations (Miller, Quirk, and 
Prendergast 1970; Hohl 1970). Disks with just enough velocity disp-
persion to make them stable against axisymmetric instabilities, evolved 
quite rapidly, chiefly through bar-making instabilities. These instabi-
lities warmed up the disks to the extent that in the ensuing equilibri-
um the pressure fron randan motions became as important as rotation. The 
demonstration by Ostriker and Peebles (1973) that the random part of the 
kinetic energy should exceed the rotational part by about a factor of 
three in order to avoid the bar-making instabilities, seemed to rule out 
the idea that the Galaxy (where the local value of that energy ratio is 
two orders of magnitude less) could be a self-gravitating disk. One so-
lution of the stablity problem is to assume that the disk is surrounded 
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by a rigid halo. In view of the virial mass discrepancies in clusters of 
galaxies, the idea of unseen matter surrounding galaxies is very appeal-
ing. It becomes even more appealing if the halos are needed to keep the 
galactic disks cool. 

In this review I will attempt to convince you that the stability 
problems are associated with the inner parts of disk galaxies. They can 
be overcome by hot centers or small bulges. Halos will do it as well, if 
they provide a significant part to the equilibrium force field in the 
central regions. A halo with a scale length larger than the disk, and a 
comparable mass within a Holmberg radius, will not contribute signifi-
cantly to the stability. 

2. NUMERICAL EXPERIMENTS WITH DISKS 

The problem faced by numerical simulations is the lack of knowledge 
about the orbital eccentricities of the stars within the disk. There is 
only a lower bound for the radial velocity dispersion, which is needed 
to insure axisymmetric stability (Toomre 1964). The earlier experiments 
all started out with just enough random velocities to satisfy this cri-
terion. 

The actual value of the radial dispersion measured in the units of 
the minimum Toomre denoted by Q. One can write Q as 

1/Q = 2irqp(r)*(0.5345)/(Kre) (1) 

if we express the radial velocity dispersion as (Kre), where e is the 
mean eccentricity, κ the epicyclic frequency, and r the radius. In the 
denominator, jj is the surface density, and G the gravitational constant. 
The value of Q at the sun, which at first seemed to be tantalisingly 
close to 1.0, now appears to be in the range 1.2 - 2.0 (Toomre 1973). 
The corresponding eccentricity is around 0.1b, which is a reasonably 
small number. 

The Q = 1.0+ disks were quite lively in the non-axisymmetric sense, 
with the result that Q quickly rose to values in the range of 2 - 6, the 
highest values obtaining in the outer parts. Attempts to cool these hot 
disks were only moderately succesful (Hohl 1971). The value of Q could 
be reduced to about two, but then the bar reappeared and the subsequent 
stirring kept the value of Q in the range 2 - 3 . Actually the measured 
velocity dispersions were annular averages, and as such they included 
any systematic motions due to the bar and spiral arms. Thus it is quite 
conceivable that the true dispersion may yet be a factor of 1.4 lower, 
implying final Q's in the range 1.4 - 2.1, which are not that discrepant 
with the solar value. 

The cooling experiments probably deserve to be re-examined, in view 
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of the fact that the bar is a negative energy creature, and hence can be 
provoked by indiscriminate cooling. 

3. HALOS AND BULGES 

If we start fron the premise that disks are rotationally supported, 
we can already see that the central parts will have to contain stars in 
fairly eccentric orbits just to satisfy the axisymmetric stability cri-
terion. Equation (1) can be rearranged slightly. 

by bringing in the circular velocity v, the azimuthal frequency Λ, and 
recalling that ν = A*r. The ratio of the squares of the frequencies is a 
slowly changing function, which goes from 0.25 at the center, to 0.5 at 
the maximum of the rotation curve, and approaches 1.0 at large radii. 
This variation is much slower than that of the left-most bracket, and 
fron now on we will pay most of our attention to the latter. 

The denominator is the square of the rotation curve, produced by 
the combination of surface density and radius appearing in the numera-
tor. Figure 1 shows the two quantities for an exponential disk. The 
ordinate is ln(r), because the relation between these two functions is 
independent of the radial scale. The relation is also linear, and hence 
they are related by a convolution on the ln(r) scale. 

1/Q = [2lTG>i(r)*r/vz]*t0.535*JlV< ]/e 

0 

1 
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ln(r) 

Figure 1. The radius-weighted surface density and the square of the cir-
cular velocity for an exponential disk of unit scale length. 
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The similarity in shapes and the relative displacement of the two 
curves is typical, provided the surface densities are as wide and smooth 
as the exponential. 

The reciprocal Q has another interpretation: it is the maximum lo-
cal response of the disk at zero temporal frequency. At a fixed radius 
and eccentricity the response is proportional to the surface density, 
and inversely proportional to the square of κ, which is a measure of the 
restoring force against radial displacement. Thus the surface density in 
the numerator promotes instability, while the frequency dependent terms 
in the denominator are stabilising. The two curves in Figure 1 play 
similar roles in the stability of the disk. 

Axisymmetric stability requires a minimum eccentricity of 0.1b at 
the peak of the rotation curve in Figure 1. We can see from the ratio of 
the two curves that this value is more than adequate for stability at 
larger radii, but as we move towards the center the eccentricity has to 
increase to quite large values. While the quantitative aspect of this 
analysis becomes suspect for large eccentricities, the conclusion that 
the center must be hot remains. 

If we want to keep the center of the disk cool, we must raise the 
rotational velocities there. This can be accomplished by introducing 
external masses in the form of a rigid bulge or halo. For example, by 
adding another rotation curve of the same shape, but shifted two units 
to the left, we obtain the curves shown in Figure 2a. 

The additional component could be produced by an exponential disk 
whose mass and scale length is reduced by exp(2) = 7.39, which we would 

Figures 2a and 2b. The effect of adding a bulge (left) or a halo carpo-
nent (right) to the rotation curve shown in Figure 1.
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call a bulge. This is to be contrasted with what we obtain if we add a 
similar velocity component, but now shifted to the right by two units. 
Figure 2b shows that such a halo-like component helps in the outer parts 
where help is not needed, but does nothing to the center. It is similar 
to the halos inferred from flat rotation curves. The mass of this 
component is 7.39 times that of the disk, or 55 times that of the bulge. 
It would have to be much heavier still to have any effect on the central 
part of the disk. 

Figure 3 shows the contribution of the bulge to the rotation curve 
in the more conventional way. The halo version has the same shape, but a 
different radial scaling. 

Figure 3. The rotation curve produced by a sum of two exponential disks 
with scale lengths and masses in the ratio of exp(-2) to one. 

Real bulges and halos are not flat. However the same modifications 
to the rotation curves can be produced by spherical distributions, with 
very similar projected surface densities, provided the amplitudes are 
increased by about 50% . The mass ratio of halo to bulge remains the 
same. 

The importance of Figure 1 lies in the relative displacement of the 
two curves: it shows that the outer regions benefit from the stabilising 
effect of the equilibrium mass distribution, to the detriment of the 
center. 

The above discussion of stability is based on the axisymmetric cri-
terion Q. There does not appear to be any simple stability criterion for 
the non-axisyinnetric case, where new complications such as shear and re-
sonances arise. Nevertheless the simple notion of keeping the disk stiff 
by means of external masses, is still correct. The stabilising effect of 
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freezing a fraction of the disk, with the frozen part acting the role of 
the halo, has been illustrated by Toomre (1981). If the eccentricity in 
equation (2) is replaced by the reciprocal of the azimuthal wave number, 
the right side becomes proportional 1/X. X is an important parameter for 
the swing amplifier: large values of X will turn it off (Toomre 1981), 
which is in line with the above reasoning. 

Of the many numerical experiments examining the stabilising effect 
of external masses, the recent study of the stability of the BSS model 
of our Galaxy (Bahcall, Schmidt, and Soneira 1982) by Sellwood (1985) is 
perhaps the most relevant. Much of the credit for the stability of this 
model goes to the combination of velocity dispersion and a central bulge 
component. The effect of the halo is minimal: removing it makes the disk 
lop-sided. The possibility exists that the lop-sidedness may have resul-
ted from keeping the central œmponent fixed during the simulation. The 
BSS model undoubtedly has some slack, which could be utilised to make it 
even more robust. 

4 . DISKS WITHOUT BULGES 

The above discussion suggests that pure disk systems need massive 
halos if they are to remain cool. Lacking these, they must be quite hot, 
at least in the central parts. Surprisingly little work has been done on 
disks with hot centers, the notable exception being that by Athanassoula 
and Sellwood (1986). One reason for this is the lack of nice and simple 
equilibrium models, for there is little observational or theoretic basis 
for choosing the velocity structure. 

The lack of specifications for a real disk galaxy is a big handicap 
in a talk of this nature. My own choice would be a stable differentially 
rotating disk which became cooler with increasing radius, and resembled 
the solar vicinity close to the peak of the rotation curve. It would be 
nice if I could produce such an example, for then I could quantify such 
phrases as "hot center", and provide the incentive for an observer to go 
out and prove me wrong. 

The best I can offer at the moment is a model I will call JW , an 
abbreviation for "Jacobi waterbag". My purpose is to give you an idea of 
what the notion of a hot center may inply. JW is the coolest member of a 
family obtained by adapting Lynden-Bell's violent relaxation argument to 
disks (Lynden-Bell 1969). The phase space distribution is a function of 
Jacobins integral, and has a constant value. It is truncated so that the 
disk is finite, and the mean and circular velocities become equal at the 
edge. The claim of stability rests on a 500-body numerical simulation. 

Figure 4a summarises the kinematical data, and 4b shows the run of 
Q. The stellar disk rotates uniformly in the mean. The central velocity 
dispersion is about 66% of the maximum circular velocity. The velocity 
dispersion of the planetary nebulae and OH masers at the center of our 
Galaxy is 150 lory's, which is a similar fraction of the circular velocity 
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of 220 km/s at the sun. The ratio of random to rotational kinetic energy 
is 3.6 - 20% higher than that implied by the Ostriker-Peebles criterion. 
The vanishing of Q reflects the vanishing of the epicyclic frequency, 
caused by a rapid decrease of the surface density near the edge. This is 
a blemish, for it means that the outermost circular orbits are unstable. 

Figures 4a and 4b. Left: the rotation curve (V), mean velocity (<V>), 
and velocity dispersion (<r) of the JW model. Right: the axisymmetric 
stability parameter Q. 

The JW model could conceivably be the first step in building a more 
realistic disk galaxy. Starting from somewhere close to the peak of the 
rotation curve, one would try adding a tapered ring, which should remain 
cool enough to match the solar neighbourhood. 

The JW model is one example of a stable disk, undoubtedly there are 
many more, and nicer examples. 

5. CONCLUSIONS 

The need for halos on stability grounds is not very compelling. The 
fact that we have not come up with a decent halo-less Galactic model is 
not an argument for the existence of halos. Small halos cannot be ruled 
out, and might even be useful. At the other extreme, very massive halos 
can be ruled out since they would make the disk dynamically dead. That 
would eliminate such things as spiral structure, tidally induced spiral 
structure, bars, lop-sidedness, and dynamical evolution. 
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DISCUSSION 

DEKEL: How would you explain long-lived warps without massive halos? 

KALNAJS: I probably would not. But the sort of halo needed to disturb 
the outer fringes of a galaxy will not contribute significantly to the 
force field in the central parts, and therefore is only of marginal 
interest to disk stability. 

J. BAHCALL: Could you comment on Sellwood's numerical simulations of 
the Galaxy and how they affected your discussions? 

KALNAJS: Sorry. I failed to mention the work by Sellwood, who 
simulated the BSS model for the Galaxy and got reasonable results. The 
model certainly doesnft have any of the obvious instabilities. At the 
moment, the rotation curve near the center is a bit high, but a little 
bit of tweaking will probably result in a fairly respectable dynamical 
model for our Galaxy. It is certainly a promising start. 

OSTRIKER: You gave our T/W criterion much more credit than we ever 
intended. I have been surprised by how well this rule of thumb has 
worked for a variety of different stellar systems. 

Most models of the Galaxy have moderate halos, i.e., within several 
scale lengths a third to a half of the mass is in a hot component. This 
amount is quite adequate for removing gross instabilities, as Sellwood 
and others have found. You can throw away that component if you don't 
want the disks to be stable, and in any case you probably don't want to 
stabilize galaxies against all m = 2 modes. We suggested that galaxies 
are in fact moderately unstable and do_ produce bars. M31 has a bar, our 
Galaxy has a bar, and it may be that most ordinary spirals have a 
significant m = 2 component because they are not entirely stable. 

KALNAJS: I agree with everything you say. At the time you did your 
work, chaps like me were thinking in terms of epicycles and rotationally 
supported disks, and your T/W criterion had a shattering impact on us, 
from which we have just about recovered. 

TREMAINE: As a result of a great deal of work in recent years, we now 
have for a lot of disk galaxies good rotation curves, photometry, and a 
few measurements of velocity dispersions. It wasn't completely clear 
from your talk whether or not we should worry about the stability of 
those disks. 

KALNAJS: They certainly should be stable on a timescale of a rotation 
or two. Halos can help, but are probably not necessary. You can have 
them, but not too much. 

TREMAINE: The rotation curves say that you have to have them. 

KALNAJS: Yes, but the mass required to explain the large rotation 
velocities in the outer regions of galaxies does not help with the 
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stability of disks. It is the inner parts you have to stabilize some 
way if you want to have a cool disk. Otherwise the disk has to be very 
hot in the center. 

FABER: I'd like to ask about hot disks. The fact that edge-on spirals 
have constant linear scale height as a function of distance from the 
center must imply that at least the ζ dispersion σ ζ is increasing toward 
the center. Can you give us a rough estimate of σ ζ and the scale height 
in the inner part of the disk of our Galaxy? If someone measures a 
velocity dispersion of 100 km s"1 for stars in Baadefs window, does that 
necessarily mean that they are measuring the spheroid or could they be 
measuring a hot disk in the middle of the Galaxy? 

KALNAJS: There is very little I can tell you about ζ motions; in this 
business one ignores them. But if you do have a large velocity 
dispersion in the plane, the disk will not remain thin. It will buckle 
to such a height that the ζ velocity dispersion becomes 1/3 of that in 
the plane. So that implies a minimum thickness for the disk. Presumably 
you could have any additional amount of σ ζ for other reasons. 

SANDERS: Sellwood and I did a simulation of a model galaxy which 
exactly resembled NGC 3198, discussed earlier by Sancisi. The model had 
a maximum disk, the right amount of halo to give a flat rotation curve 
and an initial Q of 1.5. It was violently unstable; it made a strong 
bar within a few dynamical times. This is a practically bulgeless 
galaxy, so if you want to stabilize the disk, it must have a hot 
center. 

GUNN: I would like to describe a set of simulations that Jens Villumsen 
has just finished. This is a galaxy which at the end of the 
calculations is cooked up to resemble our own, except that it doesn't 
have a bulge. The simulations are designed to look at the effect of the 
infall of cold matter. Apart from the fact that they are 
three-dimensional, they are very much like the models that Carlberg and 
Sellwood have made. The models evolve with essentially a constant value 
of Q over the whole disk, and are never violently unstable. At the end, 
the models have essentially a constant value of Q and a constant scale 
height over the whole disk. The disk is thus quite hot at the center, 
with the velocity dispersion rising like 1/r. I think that is more or 
less in accord with the observations that Ken Freeman showed us. And 
certainly this is what one expects σ ζ to do, since the scale heights of 
galactic disks are constant with radius. 

VAN DER KRUIT: I would like to draw attention to a measurement by 
Freeman and myself of the stellar velocity dispersion in NGC 7184. The 
dispersions are determined from the measured asymmetric drift between 
about one and two scale lengths from the center (the system has only a 
minor bulge), and are increasing toward the center. The extrapolated 
central value is over 100 km s" 1, hot enough to be significant in 
contributing towards stability (van der Kruit and Freeman, Ap.J., in 
press). 
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KORMENDY: I have measured stellar velocity dispersions in the disks of 
two SO galaxies, NGC 1553 and NGC 936 (Ap.J., 286, 116 and 132, 1984). 
Both disks are very hot in their central parts. In fact, in NGC 1553, 
the line-of-sight velocity dispersion rises from < 100 km s" 1 at r > 4 
kpc to 179 ί 4 km s" 1 at r = 1 kpc in the disk. This is the sort of 
behavior inferred from the constant scale heights, but the magnitude of 
the dispersion at small radii is remarkably large for a disk. The 
density increases inward, too, and so Q * 2.5 varies little with radius. 
Unlike NGC 1553, NGC 936 is barred. It has an even larger value of Q, 
rising from ~4 at r = 8 kpc to ~7 at r = 2.5 kpc. Not surprisingly, 
neither galaxy has any spiral structure. Since the inner parts of both 
disks locally satisfy the Ostriker-Peebles criterion, it is tempting to 
think that the dispersion is large enough to contribute to global 
stability. However, the fact that NGC 936 is barred shows that even if 
this argument is correct, it is not safe to use the present value of the 
velocity dispersion to decide whether a disk was stable in the past. 
The disk could have been cold, made a bar, and then used it to heat 
itself up after the fact. 

SANCISI: There is least one case in which we can rule out the 
possibility that the halo is dominant in the inner parts of a galaxy. 
This is NGC 2403, a normal spiral which I showed in my talk. If we try 
to make a model with an insignificant disk, we find that M/L * 0.3 for 
the disk. The maximum disk gives M/L = 1. Now unless you are willing 
to believe that M/L < 1, you are forced to conclude that inside 2 or 3 
scale lengths the dark matter cannot be dominant. 

RUBIN: There is not very much difference in what we are all saying. A 
variety of approaches suggest M (j a r^/Mi u m ~ 1 within the optical parts of 
galaxies. No one claims that there are enormous amounts of dark matter 
at these small radii. I have suggested that dark matter contributes, 
but not that it is dominant there. 

KALNAJS: I am not questioning that dark halos exist. I am only saying 
that for stability arguments they are not necessary. 
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