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SOME RESULTS ON TEST ELEMENTS

by IAN M. ABERBACH* and BRIAN MACCRIMMON
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Let (R, m) be a Noetherian local reduced ring of positive prime characteristic. We show that if R is Q-
Gorenstein then the test ideal of R localizes, which extends a result of K.. E. Smith. We also show that if Rc
is weakly F-regular and Q-Gorenstein, then c has a power which is a completely stable test element. This
extends results of Hochster and Huneke.

1991 Mathematics subject classification: 13A35.

1. Introduction

Throughout this paper all rings are commutative Noetherian of prime characteristic.
Perhaps the most central notion in tight closure theory is that of test elements. The

existence of uniform annihilation plays a key role in several important commutative
algebra theorems and so understanding test elements, which uniformly annihilate tight
closure, is of fundamental importance. Questions about test elements can be divided
into two types, localization and existence, but ultimately these are facets of each other.
At present, the best theorems that are available exist under a Gorenstein hypothesis.
The goal of this paper is to demonstrate that the Gorenstein condition in these
theorems can be weakened; in particular we show that it is sufficient that some
symbolic power of the canonical module be one-generated.

What makes the theory difficult is the localization problem for tight closure: it is
unknown whether I'RP — (IRP)*. Nevertheless, if the ideal / is generated by a regular
sequence this statement is true. The reason that matters are so well understood in the
Gorenstein case is that to prove theorems for all ideals it is frequently sufficient to prove
them for irreducible ideals primary to a maximal ideal and thus, in Gorenstein rings, for
ideals generated by a regular sequence. In an arbitrary Cohen-Macaulay ring these
irreducible ideals can get quite complicated. If R is a normal Cohen-Macaulay domain
with canonical ideal J, then the typical irreducible ideal is (J, x2 , . . . , xn) with x2 xn

parameters on R/J. Of course, if R is Gorenstein then we may take J = x, and the theory
is well developed, but we may also look at R when there exists an h such that Jw = xtR.
We will use the term Q-Gorenstein for such rings, omitting the usual requirement that R
be normal. Even though we do not know whether localization commutes with tight
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closure for irreducible ideals in Q-Gorenstein rings, it seems to be almost true and it is
close enough to give improved versions of the theorems on test elements.

For a reduced ring R, a test element is an element c not in any minimal prime of R
such that d* c / for all ideals / of the ring. The test ideal, T, is the ideal generated by
all test elements. Smith shows that if £ is a complete local Gorenstein ring then xRP

is the test ideal for RP [7] (more generally she proves that parameter test ideals localize
in complete Cohen-Macaulay rings [8]). In Section 3 we show that test ideals localize
for Cohen-Macaulay Q-Gorenstein reduced local rings. This gives several results on
the openness of loci and existence of test elements, but the local condition is restrictive
and so in Section 4 we use the gamma construction to get around this.

It is of great importance to have elements which not only annihilate tight closure over
the ring but also over completions and localizations. We call a nonzero c e R a completely
stable test element if it is a test element in every local ring of R and also in the completion
of every local ring. The strongest result on the existence of (completely stable) test
elements is the following [4, Theorem 6.2]: Let R be a reduced algebra of finite type over a
reduced excellent local ring. Let c, not in any minimal prime, be such that Rc is F-regular
and Gorenstein. Then c has a power which is a completely stable test element. In fact, in
Section 4 we show that the hypothesis can be softened to Rc being Q-Gorenstein.

If all ideals of a ring are equal to their tight closure (i.e., the ring is weakly F-
regular) then the test ideal is the unit ideal. It is conjectured that the completely stable
test ideal is also the unit ideal. Using that any two dimensional F-rational ring is Q-
Gorenstein, we also show in Section 4 that the completely stable test ideal in a local
excellent weakly F-regular ring has height at least three.

2. Background

Tight closure. We need the following notation and information from [3].
Let F': R —> R denote the e-th iteration of the Frobenius endomorphism, so for

reR, F~(r) = r" where q = p'.
Let S denote R considered as an J?-algebra via the e-th power of the Frobenius

endomorphism. The e-th Peskine-Szpiro functor, F'(-) = S ®R (—), is a covariant
functor from Jit-modules to S-modules, that is from ^-modules to i?-modules. Note
tha t a(b <8) m) = (ab) <g> m and b ® am — baq <8> m.

There is a natural map M -*• F'(M) given by m •-» 1 ® m. We denote the image of
m in F~(M) by m". Let N c. M be /{-modules. By NJS, or simply N[q\ we mean the
submodule of F'(M) generated by the image of F*(N), i.e., Im(F'(JV) -+ F(M)). Thus
N[ql is the submodule of F'(M) generated by {«': n e N}. Also for t] e N we use rj[q] to
denote the image of r\ in Nlq]. In the case M = R and N = I, an ideal, we have
F'(R) - R and /•*' c R is the ideal generated by {i* : i e I}.

We can now define tight closure. Denote the complement of the minimal primes of
R by R". For R-modules N c M, we say that x e M is in the tight closure of N in M,
denoted N*M (or simply N* if M is understood), if there exists c e R° such that
cxq e N1M for all q » 0. N is said to be tightly closed in M if AT = N. Tight closure is
truly a closure operation if M is a finitely generated module.
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Another notion of tight closure arises for non-Noetherian modules. The finitistic
tight closure of a finitely generated module N in M is the union of the submodules N'M-
where M' is any finitely generated submodule of M containing N. This is denoted
Nt and Nt c JV̂ .

A ring R is called weakly F-regular if every ideal in R is tightly closed. The ring R
is then normal and under mild conditions (e.g., R is the image of a Cohen-Macaulay
ring) R is Cohen-Macaulay. The term F-regular is reserved for rings for which all
localizations are weakly F-regular. A ring is called F-rational if all ideals generated by
parameters are tightly closed.

For reduced rings, R, we call R F-finite if R1/p is module-finite over R. An F-finite
ring is said to be strongly F-regular if for all c not in any minimal prime of R, there
exists q such that the inclusion Rc]/<l c Rl/q splits as a map of R-modules.

For a reduced ring R, a test element is an element c not in any minimal prime of R
such that c/* c / for all ideals I of the ring, whereas the test ideal, x, is the ideal
generated by all such elements. Then for the local ring (R, m), [3, 8.23] states that
T — AnnR0^B

R/m) = n,(/t : /*) for any sequence of Gorenstein ideals, {/,}, cofinal with the
powers of m. A completely stable test element is a test element which remains a test
element in the completion of every local ring (this implies that it is also a test element
in every local ring as well [3, 8.13(c)]).

Q-Gorenstein rings. Let R be any ring and let / c R be a height 1 ideal. By T**' we
mean the intersection of all height one primary components of Ih. R is called Q-
Gorenstein if there exists a height one ideal J that is a canonical module and such that
Jw is principal for some integer h. Here we do not assume R is either normal or
Cohen-Macaulay, although if R is a Cohen-Macaulay reduced local ring which admits
a canonical module (i.e., the homomorphic image of a Gorenstein local ring) then it
has a canonical ideal of pure height one. Q-Gorenstein weakly F-regular F-finite rings
are strongly F-regular [6].

Q-Gorenstein implies Gorenstein at height one primes which are Cohen-Macaulay.
One can see this by looking at the reduction of the canonical ideal, J, in a one-
dimensional Cohen-Macaulay Q-Gorenstein ring, R. There exists m such that Jm+I =
bJm. Also since there are no embedded components Jh = Jw = (a). Pick k so that
kh > m. Then JkM = bJkh and hence by cancelling J = (b).

Remark 2.1. If R is Gorenstein at height 1 primes, then there are elements a e J
and b e R such that J — (a: b). To see this, let U be the complement of the associated
primes of J. Then JU~lR is principal and we may pick a generator a e J. Then there
is an element b e U such that bJ c (a). In fact, J — (a: b), which can be checked at
minimal primes of aR. Note that then for all n, b"J(n) c {a").

3. Localization of test ideals

Smith in [8] proves that parameter test ideals localize for complete local Cohen-
Macaulay reduced rings. One of the main points is that there is a natural action of
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Frobenius on Hd
m(R), i.e., for a submodule M of Hd

m(R) there is a containment
F(M) c Hd

m(R). This is quite useful for the study of the parameter test ideal, which can
be expressed as AnnR(0^(R)). Since the test ideal is AnnR(0j/9) one would like a
comparable situation for the Frobenius action on the injective hull E of the residue
field; however there are no longer isomorphisms between E and F'(E) and this makes
an analogous definition of "F-ideals" rather problematic. Even worse, the maps in the
limit system defining F'{E) are no longer injective. Nonetheless in the case when the
ring is Q-Gorenstein this bad behaviour can be controlled.

Previously, using methods similar to those in [8], Smith had proved that test ideals
localize for complete local Gorenstein reduced rings [7, 4.1] (note that for Gorenstein
rings the test ideal is the same as the parameter test ideal). It is this earlier result we
extend here to: test ideals localize for local Cohen-Macaulay Q-Gorenstein reduced
rings. Notice that the condition of complete can be removed and in fact it can also be
removed from [7, 4.1] by a direct application of Lemma 4.2 (rather than using the
colocalization technique [7, 3.1]). Unfortunately, since it is unknown whether test ideals
behave well with respect to localization at maximal ideals, we are unable to remove
the local condition. This is particularly desirable since it would give the existence of
test elements without using the gamma construction (cf. 4.2).

If J is a canonical ideal for the local Cohen-Macaulay ring (R, m), choose x, e J
and x 2 , . . . , xn e m such that x , , . . . , xn is a system of parameters and x2 , . . . , xn is a
system of parameters on R/J. Then the injective hull of the residue field over R is
E — limH"~\R/x\J) — lim R/{x\J, x2 x'n) (the maps are multiplication by x, • • • x j .
We can represent an element r\ e E by n — [z + (x\ J, x2 , . . . , x*)].

Furthermore, if J is principal at height one primes then F'{E) ̂  F'(lim H"^\R/x\J)) ^
\\mHn-\R/x\qJ{'l])^\\mHn-\R/x\qJ(q)) (the last isomorphism follows "because dim(Jiq)/

< n - 2). Then fj '^e F\E) may be identified with [zq + ( x JV w , x\',.... x"n
s)] (or with

The first difficulty is that since the injective hull is never Noetherian when
dim R > 0, we must ostensibly distinguish between the tight closure and the finitistic
tight closure. The following proposition shows we need not distinguish between the
finitistic tight closure and standard tight closure of zero in the injective hull over Q-
Gorenstein rings. For integers n and m we use \n/m\ to denote the floor of n/m, i.e.,
the greatest integer less than or equal to n/m.

Proposition 3.1. Let Rbe a local Cohen-Macaulay Q-Gorenstein ring. Then 0^g = 0*E.

Proof. Let J c R be a canonical ideal. Suppose that J**' = (x,), and x2,... ,xn are
parameters on R/J. We may assume that x2J c (a) for a e J as in Remark 2.1. Identify
E with lim R/(x\J, x2 , . . . , x*) as above.

Take ~q = [z + (xj J, x 2 . . . , x^)] e 0*E. Then for some ceR°, ct,[q] = [cz"+ (xf J[q\
x'q,..., x^)] = 0 for all q. Translating this statement back to the ring, we get for each q
there is a t, e N such that c(x, •••xj'z" e (x^'"Jlq],.. .,xs

n
q+'^). But then

c(x, • • • xj"zq € (xr''*t*J xT"'), and thus cz" e (xfx1*1,... ,xsq). Hence x\czq e
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(x\"Jiq) xs
n'), which in turn gives xfc(x, • • • x n )V e ( x ^ ' V , x 2

J + l \ . . . , x<f+l)<7). Thus

(x, • • • xn)z e (xf ' J , x 2
+ I , . . . . x5

n
+1)*, which shows that r\ e Of. D

Lemma 3.2. Let R be a local reduced Cohen-Macaulay Q-Gorenstein ring. Let x be
the test ideal for R and for a prime ideal, P, let xP be the test ideal for RP. Then
Ann£(R/P)Ti?P c 0E(R/P) implies xP c xRP.

Proof. First observe that AnnR/,(AnnE(R/P)Ti?P) = xRP, as this is true for any ideal.
If AnnE(R/P)TflP c 0E(R/P) = 0%R/P) then xP = AnnOE(R/P) c AnnR(,(Ann£(R/P)Ti?P) = zRP. D

The next result generalizes [7, 4.1].

Theorem 3.3. Let R be a local reduced Cohen-Macaulay Q-Gorenstein ring. Let U
be any multiplicative system. Let x be the test ideal for R and xv be the test ideal for
U']R. Then xU^R = xv, i.e., the test ideal localizes.

Moreover, let R be a local reduced ring. If for some prime ideal P the ring RP is Q-
Gorenstein then xP = xRP.

Proof. To start with we will assume that U — R — P for some P e Spec R and RP

is Q-Gorenstein.
First we show xRP c xP. Recall that xP = CM, : /* for any sequence of Gorenstein

ideals, /,, in RP such that /, c P'. If J is any canonical ideal for RP, then for any
r 6 RP, RP is Q-Gorenstein with respect to rJ, so for any t we may take a canonical
ideal, J,, contained in P'. Take x,, € J\h)RP such that (J,RP)W = (x,,)RP. Suppose the
height of P is k. Pick x , 2 , . . . , x,k e P' so that x , , , . . . , x,k are parameters in R. The
ideals (J,, x,2,..., x,k)RP form a sequence of Gorenstein ideals so that in particular it
suffices to show (we drop the subscript t for the rest of the argument) that
T((y, X2, . . . , Xk)RP) ^ ( j , X2, . . . , Xk)RP.

Take u e (J, x2,..., xk)R'P. Then for each q there is an / , 6 R — P with cuqfq e

(J, x2,..., xk)
lq]R. Let P , , . . . , Pm be the associated primes of ( x , , . . . , xk) with P = Pj and

let p , , . . . , pm be the primary components. Set S = (R - UP,)~'i?. Since (x xk)
lq]S

has no embedded components, its primary components are p ^ ' S , . . . . pJ '̂S. Note that since

(JRP)lh) = x,KP, we have for all q there exists gqeR-P that gqJ
[q] c gqf

q) c (x[*J) for

all q. Now cu%gq g (9qJ
[q],xq

2,.. .,xq
k)R c (x\V,xq

2 x'k)R, and hence cuqx\~^fqgq e

(x? xq
k)R. It follows that cuqx\~^] e ( x , , . . . , xk)S

lq] :fqgq c plq]S since fqgq # P,. For

some />„ P*' c p,S. Take / e P1? • • • P£" - P,. Then cuqx\~^fq e ( x , , . . . , xk)S
[q]. Clearing

denominators, cuqx\ fhq e (xq,..., xq
k)R for some hq & UPf. Here xt,... ,xk,hq is

a regular sequence and so the hq cancels. The x, powers also cancel to give

cuqr e (x\V, xq
2 xq

k)R. Let J = (a : b) as in Remark 2.1. Then (a"c)uqpbq e

(aq, bqx\,..., bqxq
k). In particular ufb e (a, bx2,..., bxk)' and so xufb c (a, bx2, ..., bxk).
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Thus T(U/) C ((a : b), x2 , . . . , xk) — (J, x2 xk), and hence xRP C XP.
We note that this argument does not depend on R being local.
By Lemma 3.2 it now suffices to show that AnnEWP)xRP c 0E(R/py Keep J, x , , . . . , xk

as above. As above, take any r] = [z+ (x\J,.. .,x'k)RP] e AnnEWP)xRP. Then
T(X, • • • xjzf e (x f J,.... x f ) for some f & R-P and s e N . Extend x xk to
x , , . . . , x n a full system of parameters for R. Then for all H e N , T(X, • • • xn)'zf e
(x f ' J , . . . , xT, x"M,..., xH

n). Thus v = [zf + (x1, J , . . . , x'k, xf+1 xn")] e Ann£r = O'£.
This gives vM = [(z/)' + (x?'JM xf, jcgf,,. . . , xf)] e 0J.{e). Now for some s (which
may depend on H) we have

, J ,..., xk , xk+ , xn ;.

Multiply by gq e R — P where gq3
(<t> Cx , to get a monomial ideal and so cancel x

terms to get

H z / ) 9q €\x\ . • • • • xk < xk+l xn )•

Since this is true for any H, we have i(zf)qgq e (xfH , . . . , x*') or xz" e
(xl'+[ii,..., xq

k')RP. Multiplying both sides by x, we see that X,TZ" e (xf Jiq\ . . . . xq
k')RP.

In particular X,T»;M = 0 e F'(E(R/P)) for all q and thus f/ 6 O'E(R/P).
Now let /? be Q-Gorenstein and let U be any multiplicative system. Let / c U~lR

and ze(/l/"'i?)*. For any Pe Spec t/"'R, z/1 e (/RP)', hence T(Z/1) C / R P . Thus
r(z/l) C IU~]R, and hence T£/~'R C T^. If w e Ty then our observation that the first
part of the proof holds for any ring shows that w/1 6 zP = iRP for all P e Spec U~lR.
Hence w e TU'1R. •

Corollary 3.4. IfR is a weakly F-regular Q-Gorenstein reduced ring then R is F-regular.

Proof. By the proof of Lemma 3.2, TRP c TP for a non-local Q-Gorenstein
reduced ring. If R is weakly F-regular then 1 € x and thus 1 € xP and hence RP is
weakly F-regular. •

Corollary 3.5. Let R be an excellent weakly F-regular ring. Then RP is F-regular
and Q-Gorenstein for any prime ideal P of height two.

Proof. R weakly F-regular implies R is F-rational hence pseudorational [9] and so
Q-Gorenstein at height two primes [5]. Hence by Theorem 3.3, for any prime, P, of
height at most two, 1 e xRP = xP so that RP is weakly F-regular. •

Corollary 3.6. If R is a reduced excellent local Cohen-Macaulay Q-Gorenstein ring
then the defining ideal of the non-F-regular locus is rad(t) and x is in fact the completely
stable test ideal.
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Proof. RP is weakly F-regular if and only if 1 e TP = xRP. Thus RP is weakly F-
regular if and only if P & K(T). Moreover, R has a completely stable test element by [4,
7.32] (or 4.2) and hence by [3, 8.23] T(RP) = z(R~P) n RP. Thus any c e T, by Theorem
3.3, is in r(RP) and so is also a completely stable test element. •

Notice a consequence of this last corollary is that, for reduced excellent local Q-Gorenstein
rings, if Rc is F-regular then c has a power which is a completely stable test element. This
is a weaker version of the theorem on existence of test elements, Theorem 4.2.

4. Existence of test elements

The basis of most existence results for test elements is that if R is F-finite and c is
such that Rc is strongly F-regular, then c has a power in the test ideal [2, 3.4].
Difficulties arise if the ring is not F-finite. The idea of the gamma construction is when
given an excellent local ring S which is not F-finite to create a flat, purely inseparable
extension ring Rr of R = S such that (Rr)i/t> is module finite over Rr. This allows one
to pass from the ring to a gamma construction, use F-finiteness, and then descend back
to R and then S. This technique is developed in [4]. There one assumes the original ring
S (or S localized at some element) is weakly F-regular and one needs to deduce that
the gamma construction is strongly F-regular. A key point is that weakly F-regular F-
finite Gorenstein rings are strongly F-regular. We seek to improve this existence result
by noting that in fact weak F-regularity is strong F-regularity for Q-Gorenstein rings
[6]. We refer to [4] for the details and proofs involving Rr, but we list the basic
definitions below.

Let (R, m, K) be a complete ring. Let F be a cofinite subset of a p-base A. Define
Kr

e = K[kUp' : X G T). Set Rr = \Jt <[[/?]] (where for a field L 2 K, L[[R]] is the
completion of L <g>K R at m(L <g>K R)). If A is a finitely generated algebra over a
complete local ring B, then Rr = R®B Br. Then Rr is F-finite as well as faithfully flat
and purely inseparable over R, with Gorenstein fibers.

Hence if J is a canonical ideal of a Cohen-Macaulay ring, R, then JRr is a canonical
ideal for Rr [1, 3.3.14]. Also the primary decompositions are preserved by flatness,
i.e., J(")Rr - (JRr)("\ so if R is Q-Gorenstein then Rr is also Q-Gorenstein. Similarly,
for U any multiplicative system of R, if U~]R is Q-Gorenstein so is l/~'i?r.

Now the existence of test elements follows directly from [4]. First we have an
analogue of [4, 6.19].

Lemma 4.1. Let R be a reduced algebra of finite type over a complete local ring B.
Let c be such that Rc is weakly F-regular and Q-Gorenstein. Then there exists a choice
for F such that R^ is weakly F-regular and Q-Gorenstein.

Proof. The proof is identical to [4, 6.19] by observing that one does not actually
require that Rc is Gorenstein, only that the weakly F-regular locus of R^ is the same as
the strongly F-regular locus and this follows since R[ is Q-Gorenstein. •
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The following theorem is a strengthening of [4, 7.32]. As in that result, we require
that if Rc is strongly F-regular then c has a power which is a completely stable element
and again [4, 5.10] is given as a reference even though it does not precisely state this
(it is an immediate consequence of that theorem).

Theorem 4.2. Let R be a reduced algebra of finite type over a reduced excellent local
ring B. Let c not in any minimal prime be such that Rc is weakly F-regular and Q-
Gorenstein. Then c has a power which is a completely stable test element.

Proof. Since the fibers of B -*• B are smooth we have that R -* R ®B B is regular
thus (R ®B B)c is weakly F-regular by Theorem 3.3 and [4, 7.25(a)].

Apply Lemma 4.1 to get a choice for F such that (R ®B B)l is strongly F-regular.
Hence c has a power which is a completely stable test element in (R <8>B B)r [4, 5.10].
Since (R <g>B B)r is faithfully flat over R, this power is also a completely stable test
element for R [4, 6.14(c)]. •

Theorem 4.3. Let R be of finite type over an excellent local ring B. The Q-Gorenstein,
weakly F-regular locus is open.

Proof. Say Rp is weakly F-regular with canonical ideal J. Let S = R <g>B B. Then S
is Q-Gorenstein and for any prime ideal Q of S lying over P the map RP ->• SQ is
faithfully flat. The fibers are regular, so QSQ — (P,w] w,)Se. Also, SQ is Q-
Gorenstein. Let u be the socle element of RP/(x'J, y2,..., yk). Then the image of u is
the socle element in Se/(x'J, y2,... ,yk,w},..., w,). Thus if (x'J, y2,... ,yk,w , w,)
fails to be tightly closed in SQ we get the image of u in ((x'J, y2,..., yk, w,,. . . , w,)Se)\
and hence u € ((x'J, y2,...,, yk)RP)' since R and S have a common completely stable
test element. Then for F small enough, Sr

P is strongly F-regular. The strongly F-regular
locus of Sr is open so there exists c e R- P such that S[ is strongly F-regular, and
hence Rc is F-regular. It is easy to see that a further localization at c makes Rcc> both
Q-Gorenstein and (weakly) F-regular. •

Corollary 4.4. The completely stable test ideal in a local excellent weakly F-regular
domain has height at least three.

Proof. Let % be the completely stable test ideal for R. If we localize at any height
two prime, P, the ring is F-regular and Q-Gorenstein by Corollary 3.5. Since we can
preserve (JRpfn) = (xt)RP by localizing at a single element, we may take c e R — P such
that Rc is Q-Gorenstein. By Theorem 4.3, the non-F-regular locus of Rc is closed, since
Rc is an algebra of finite type over R. If / is the defining ideal, then since / has height
at least three we may take d e I - P. Hence Rcd is Q-Gorenstein and F-regular. By
Theorem 3.2, cd has some power in the completely stable test ideal, but cd g P and
hence x 2 P. •
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