
Canad. J. Math. Vol. 65 (2), 2013 pp. 349–402
http://dx.doi.org/10.4153/CJM-2012-009-7
c©Canadian Mathematical Society 2012

Ergodic Properties of Randomly Coloured
Point Sets
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Abstract. We provide a framework for studying randomly coloured point sets in a locally compact

second-countable space on which a metrizable unimodular group acts continuously and properly. We

first construct and describe an appropriate dynamical system for uniformly discrete uncoloured point

sets. For point sets of finite local complexity, we characterize ergodicity geometrically in terms of

pattern frequencies. The general framework allows us to incorporate a random colouring of the point

sets. We derive an ergodic theorem for randomly coloured point sets with finite-range dependencies.

Special attention is paid to the exclusion of exceptional instances for uniquely ergodic systems. The

setup allows for a straightforward application to randomly coloured graphs.

1 Introduction

Delone sets are subsets of Euclidean space that are uniformly discrete and relatively

dense. In the natural sciences, they are used to model pieces of matter. Recently,

geometric and spectral properties of Delone sets have been studied by many authors

using methods from topological dynamical systems; see e.g., [RaW, Ho1, Ho2, So,

BelHZ, LeMS, LP, LenS1, KlLS, LenS3, LeS]. Here, the dynamical system arises from

the closure of the translation orbit of the given Delone set with respect to a suitable

topology. This approach is particularly useful if the dynamical system is uniquely

ergodic, since the uniform ergodic theorem can then be used to infer properties of

the original Delone set. For a Delone set of finite local complexity, a geometric char-

acterization of unique ergodicity in terms of uniform pattern frequencies appears in

[LeMS]. If the Delone set is not periodic, then such a characterization cannot be

achieved with a discrete periodic subgroup of the Euclidean group as the group act-

ing on the dynamical system. Therefore one has to rely upon an ergodic theorem for

the action of a more general group than the multi-dimensional integers.

This approach has been generalized considerably in recent years. Euclidean space

has been replaced by a σ-compact, locally compact Abelian group, which admits a

suitable averaging sequence, and on which the same group acts by translations [S].

Within that setup, the important subclass of repetitive regular model sets (see e.g.,

[Mo]), which have a pure point diffraction spectrum such as periodic point sets,
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could be characterized by certain properties of the underlying dynamical system in-

cluding strict ergodicity and pure point dynamical spectrum [BLM]. More generally,

dynamical systems of translation bounded Borel measures [BL,LenRi] on such spaces

have been considered. Discrete subsets of a general locally compact topological space

have been studied in [Yo] via group actions of a locally compact group, focussing on

finite local complexity and on repetitivity.

As we are interested in discrete geometry, our setup will be formulated in terms

of uniformly discrete sets. We will use a locally compact, second-countable space as

our basic space of points, which we will simply refer to as the point space. Choosing

a metric allows us to define a notion of uniform discreteness. Local compactness of

the point space ensures sufficient structure for the space of uniformly discrete point

sets. The first main goal of this paper is to establish geometric criteria for (unique)

ergodicity of the dynamical system associated to a collection of uniformly discrete

point sets in terms of pattern frequencies. To do so, we rely on properness of the

group action. In addition, we will measure the “size” of a subset of the point space

in terms of the Haar measure on the group, which is pushed forward by the group

action and a reference point in the point space. We require that size to be the same for

group-equivalent reference points. This is ensured for unimodular groups. Thus our

setup comprises non-Abelian groups such as the Euclidean group. In particular, this

accommodates the pinwheel tilings of the plane [Ra1, Ra2, Ra3] and their relatives

[Fr]. Apart from [Yo], it seems that non-Abelian groups have not been treated in our

general context so far.

In order to define an appropriate dynamical system, we require that uniformly

discrete point sets, which are group-equivalent, have the same radius of discreteness.

This will be guaranteed if the metric on the point space is group-invariant. Indeed, it

has recently been shown [AMN, Thm. 1.1] that under our assumptions on the group

action, such a metric always exists among the set of all metrics that are compatible

with the topology of the point space. We will supply the space of uniformly discrete

point sets (of a given radius of discreteness) with the vague topology. This ensures

compactness of the relevant dynamical systems. In [Yo], a stronger “local match-

ing topology” is favoured instead. For a proper and transitive group action, both

topologies coincide if the point sets are of finite local complexity. This follows from

Lemma 2.27; see also [BL] for the Abelian case.

If the point space M admits a uniform structure compatible with the given topol-

ogy, but is not necessarily metrizable, it is still possible to define uniform discreteness

via the uniformity. In fact, a continuous and proper action of a group T on M gives

rise to a uniform structure on M, which induces the topology on M and has the de-

sirable invariance properties with respect to T, as follows from [AMN, Thm. 1.2]. A

corresponding framework could include our setup for metrizable spaces M, as well as

the approach of [S, BL, Yo] for a not-necessarily-metrizable space M as special cases.

We will not strive for such a generality here.

Our structural assumptions on the group and its action are minimal in a sense. By

properness, the group inherits local compactness and σ-compactness from the point

space. But local compactness is needed for the existence of a (well-behaved) Haar

measure, and σ-compactness is required for amenability. The role of unimodular-

ity has been discussed above, and Lindenstrauss’ pointwise ergodic theorem [Lin],
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which we rely upon to a great extent, requires metrizability of the group. We will,

however, not assume transitivity of the group action. This is motivated by our desire

to describe uniformly discrete sets, coloured versions thereof, and graphs built from

such sets – all within the same framework. Here, coloured point sets with possibly

infinitely many colours and also graphs will appear as point sets in some suitably

enlarged point space on which one cannot expect to have a transitive group action.

Due to the absence of transitivity we were also prompted to free the point space from

being a group by itself. We mention that coloured Delone sets of finite local com-

plexity – and thus with at most finitely many colours – have been studied by different

methods in [BelHZ, LeMS, LenS1].

As our choice of spaces is also canonical in stochastics, the connection to stochastic

geometry [SKM] may be broadened. Indeed, the setup allows us to study random

colourings of a point set on a rather general level. Ergodic properties of random

colourings of a repetitive Delone set in the Euclidean plane have already been studied

by Hof [Ho3], motivated by the problem of site percolation on the Penrose tiling. His

approach has been used to infer diffraction properties of random Euclidean point sets

of finite local complexity [BZ] with finite-range dependencies and beyond [BBM];

see also [Len] for an alternative approach. A recent extension to certain Delone sets

in σ-compact, locally compact Abelian groups is the subject of [AI]. Another recent

generalization to infinite-range dependencies, based on the theory of Gibbs measures

and stochastic geometry, can be found in [Ma]. Diffraction properties of certain non-

periodic stochastic point sets are also discussed in [Kü1, Kü2], where large-deviation

estimates and concentration inequalities for the finite-volume scattering measure are

derived.

We are not concerned with diffraction in this paper, however. In fact, our second

main goal is to provide an optimal ergodic theorem for dynamical systems of ran-

domly coloured point sets with finite-range stochastic dependencies. To do so, we

also pursue an idea of Hof [Ho3], who used the law of large numbers for reducing

the problem to that of the dynamical system for the underlying uncoloured point

sets. Unfortunately, Hof ’s approach only works for point sets of finite local complex-

ity, and is thus also restricted to finitely many colours. On the other hand, Lenz [Len]

proved an ergodic theorem for randomly coloured translation bounded measures on

Euclidean space without the need for finite local complexity. In combining the two

approaches, we obtain an ergodic theorem for randomly coloured point sets with-

out requiring finite local complexity. And, in contrast to [Len], it is optimal in the

sense that exceptional instances are excluded as far as possible in the case of uniquely

ergodic systems and continuous functions.

In a subsequent article, we will apply the aforementioned ergodic results to de-

scribe spectral properties of subcritical percolation graphs over such general point

sets; cf. [KM] for the periodic case. As we are able to treat rather general colour

spaces and group actions, our approach also opens the possibility to study finite-

range operators on uniformly discrete point sets with quite general internal degrees

of freedom and their randomized versions, such as (random) Schrödinger operators

with magnetic finite-range interactions on non-periodic point sets.

This paper is organized as follows. In Section 2, we recapitulate properties of

dynamical systems of uncoloured point sets, which carry over to our more general
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setup. As our general group actions have apparently not been studied before in this

context, we provide proofs for the convenience of the reader. Based on the general

pointwise ergodic theorem of Lindenstrauss [Lin], we state characterizations of er-

godicity in Theorem 2.14, which are handy to use and which we have not found in

the literature in sufficient generality. The same remark applies to Theorem 2.16,

which is the abstract analogue for uniquely ergodic systems, extending the well-

documented case of Z-actions [KB, O, Wa, Fu]. Whereas these two theorems are only

of a propaedeutic nature, our main results of Section 2 are Theorem 2.29 and Propo-

sition 2.32. They provide geometric characterizations of ergodicity and of unique

ergodicity in terms of pattern frequencies for uniformly discrete point sets of finite

local complexity.

In Section 3, we construct an ergodic measure for randomly coloured point sets

and present an optimal ergodic theorem as the second main result in Theorem 3.11.

Finite local complexity is not required in this section.

The formalism developed in Sections 2 and 3 is applied to randomly coloured

graphs in Section 4. Proofs are provided in the remaining sections.

2 Dynamical Systems for Point Sets

Here, we introduce our setup, discuss the basic ergodic theorem, and give a geometric

characterization of ergodic point sets in terms of pattern frequencies.

2.1 Topology on Collections of Point Sets

For the convenience of the reader, Section 5.1 contains proofs of the material that we

present here.

A point space M is a non-empty, locally compact, and second-countable topo-

logical space. Throughout this paper we stick to the convention that every locally

compact topological space enjoys the Hausdorff property. We recall that in locally

compact topological spaces, second countability is equivalent to σ-compactness and

metrizability [Bou2, Chap. IX, §2.9, Cor.].

In addition to the point space M we consider a metrizable topological group T

with left action α := αM : T × M → M, (x,m) 7→ xm on M. Throughout this paper

we will rely on the following assumption.

Assumption 2.1 The group T is non-compact, and its action on M is continuous

and proper. Moreover, we fix a T-invariant proper metric d on M that generates the

topology on M.

Remarks 2.2 (i) A metric d on M is T-invariant if and only if d(xm, xm ′) =

d(m,m ′) for all x ∈ T and all m,m ′ ∈ M. A metric is proper if and only if every

metric ball has a compact closure. The existence of a T-invariant proper metric d on

the metrizable space M that generates the topology of M follows from σ-compactness

of M and properness of the group action [AMN, Thm. 4.2].

(ii) We recall that the group action is continuous if and only if the map α : T ×
M → M is continuous with respect to the product topology on T × M. Properness
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of the group action means that the (continuous) map

α̃ : T × M → M × M, (x,m) 7→ (xm,m),

is proper; that is, pre-images of compact sets are compact (see [Bou1, Chap. III.4]).

We refer to Lemma 2.3 for different characterizations of properness.

(iii) All results of this section (and their proofs) remain valid for compact groups,

but reduce to trivial statements. For the following sections, however, non-compact-

ness will be crucial. It will be used in the proof of the strong law of large numbers:

Theorem 3.10.

(iv) Properness of the group action and local compactness of M imply that T is

also locally compact; see [AMN, Proposition 1.3] and subsequent comments. Fur-

thermore, since M is also σ-compact, so is T.

(v) We require metrizability of the group T in order to satisfy the hypotheses of

Lindenstrauss’ ergodic theorem. The latter is essential for large parts of this paper.

Thus, by the previous remark and by what was recalled at the beginning of this sec-

tion, the group T is also second countable.

(vi) Below we want to define nice T-orbits of uniformly discrete subsets in M

with a given radius of uniform discreteness. It is precisely for this purpose that we

work with a T-invariant metric d on M that is compatible with the topology.

For convenience we recall the following alternative characterizations of proper-

ness. We use the notation xU := {xm : m ∈ U} for x ∈ T and U ⊆ M and

introduce the transporter

(2.1) SU1,U2
:= {x ∈ T : xU1 ∩U2 6= ∅} ⊆ T

of subsets U1,U2 ⊆ M. The following lemma does not rely on Assumption 2.1.

Lemma 2.3 Assume that M and T are both locally compact and second-countable,

and that T acts continuously on M from the left. Then the following are equivalent.

(i) T acts properly on M.

(ii) For every choice of compact subsets V1,V2 ⊆ M, the transporter SV1,V2
is compact

in T.

(iii) For every choice of relatively compact subsets U1,U2 ⊆ M, the transporter SU1,U2

is relatively compact in T.

(iv) Given any two sequences (xn)n∈N ⊆ T and (mn)n∈N ⊆ M such that both (mn)n∈N

and (xnmn)n∈N converge in M, then (xn)n∈N has a convergent subsequence in T.

Remarks 2.4 (i) We will only use the implications (i) ⇒ (ii) ⇒ (iii) of the

lemma in the sequel. But for the purpose of completeness, we have included the

proof of all implications in Section 5.1.

(ii) Similar characterizations can be found, e.g., in [Bou1, Chap. III.4.5, Thm. 1]

or [AMN, Def. and Prop. 2.3].

(iii) Condition (ii) of the lemma implies that the map α( · ,m) : T → M is proper

for every m ∈ M, since (α( · ,m))−1(V ) = S{m},V for every compact V ⊆ M.
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Example 2.5 An often studied special case of our setup arises when M is a topo-

logical group by itself. Then one may choose T := M and α as the group multipli-

cation from the left. An important example for this special case is the Abelian group

M = R
d for d ∈ N, equipped with the Euclidean metric, which acts on itself canon-

ically by translation. This action is transitive, free, and proper, and the Euclidean

metric is T-invariant and also proper. (Recall that a group action is said to be tran-

sitive if and only if for every m,m ′ ∈ M there exists x ∈ T such that xm = m ′. It is

free if and only if for any x ∈ T and any m ∈ M the property xm = m implies x = e,

the neutral element in T.) Another prime example is M = R
d and T = E(d), the

Euclidean group, with the Euclidean metric. Then the canonical group action from

the left is transitive and proper, but not free. The Euclidean metric is also T-invariant

and proper. We note, however, that in situations relevant to us, M will not be a group.

The open ball (with respect to the metric d) of radius s > 0 about m ∈ M is

denoted by Bs(m). A subset P ⊆ M is uniformly discrete with radius r ∈]0,∞[, if

every open ball in M of radius r contains at most one element of P. A subset P ⊆ M

is called relatively dense with radius R ∈]0,∞[, if every closed ball of radius R has

non-empty intersection with P. If P is both uniformly discrete and relatively dense,

then it is called a Delone set. The collection of all subsets of M, which are uniformly

discrete of radius r, is denoted by Pr(M). We call every element of Pr(M) a point set.

Throughout this paper, the radius of uniform discreteness r will be fixed.

We define a topology on Pr(M) by requiring certain functions on Pr(M), which

are of the form (2.2), to be continuous. These functions will serve as a “scanning de-

vice” on a point set. Let Cc(M) denote the set of all real valued, continuous functions

on M with compact support.

Definition 2.6 With ϕ ∈ Cc(M) we associate

(2.2) fϕ :
Pr(M) → R

P 7→ fϕ(P) :=
∑

p∈P

ϕ(p)
.

The vague topology on Pr(M) is the weakest topology such that fϕ in (2.2) is contin-

uous for every ϕ ∈ Cc(M).

Remarks 2.7 (i) Even though the set Pr(M) itself depends on the metric d on

M, the nature of the vague topology on Pr(M) is solely determined by the topology

on M.

(ii) Particular examples of open sets in Pr(M) are given by pre-images of open

balls in R. For P ∈ Pr(M), ϕ ∈ Cc(M), and ε > 0 we define the open set

Uϕ,ε(P) :=
{

P̃ ∈ Pr(M) :
∣∣ fϕ(P̃) − fϕ(P)

∣∣ < ε
}
.

It is readily checked that the family obtained from finite intersections of open sets

Uϕ,ε(P) as above forms a neighbourhood base of the vague topology.

(iii) The above neighbourhood base arises naturally when identifying a point set

P with a point measure on M that has an atom of unit mass at each point of P; see
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e.g., [BelHZ,S,BL,Len]. It is from this perspective that the topology of Definition 2.6

appears as the vague topology on this space of measures. For the case where M is also

a group, [BL] coined the term local rubber topology for the vague topology (and they

defined it using transitivity of the canonical group action of M on itself). For the

particular example M = R
d the vague topology was studied under the name natural

topology in [LenS2] and earlier on in [BelHZ, LP].

(iv) Instead of uniformly discrete subsets of M, one may consider more general

locally finite sets. These are sets P ⊆ M for which P ∩ V is finite for every compact

set V ⊆ M. But the space of locally finite sets equipped with the vague topology

is not closed. For example, a sequence of locally finite point sets may give rise to

accumulation points in M.

(v) Local compactness and second countability of M imply metrizability of the

topology on Pr(M), see [Bau, Thm. 31.5].

Convergence in the topological space Pr(M) is characterized in the following

lemma.

Lemma 2.8 Fix a sequence (Pk)k∈N ⊆ Pr(M). Then the following statements are

equivalent.

(i) The sequence (Pk)k∈N converges in Pr(M).

(ii) There exists P ∈ Pr(M) such that for all ϕ ∈ Cc(M) we have

lim
k→∞

fϕ(Pk) = fϕ(P).

(iii) For every m ∈ M exactly one of the following two cases occurs:

(a) for every ε > 0 we have Pk ∩ Bε(m) 6= ∅ for finally all k ∈ N;

(b) There exists ε > 0 such that Pk ∩ Bε(m) = ∅ for finally all k ∈ N.

(iv) There exists P ∈ Pr(M) such that for every compact set V ⊆ M we have, for every

ε > 0 and finally all k ∈ N, the inclusions

Pk ∩V ⊆ (P)ε and P ∩V ⊆ (Pk)ε.

Here, the “thickened” point set (P)ε :=
⋃

p∈P Bε(p) is the set of points in M lying

within distance less than ε to P.

In either case, the limit P is the set of all points m ∈ M satisfying (iii)(a).

Below we will be concerned with ergodic properties of Pr(M) as a topological

dynamical system. This relies on the following proposition.

Proposition 2.9 The space Pr(M) is compact with respect to the vague topology.

Remarks 2.10 (i) In order to give a self-contained presentation, we prove (se-

quential) compactness of the metrizable space Pr(M) in Section 5.1. Thus, Propo-

sition 2.9 yields complete metrizability of Pr(M), in other words, Pr(M) is even a

Polish space. For the more general case of M being only σ-compact and locally

compact, compactness of Pr(M) has already been shown in [BL, Thm. 3]; see also

[Bau, Thm. 31.2] and [BelHZ].
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(ii) In tiling dynamical systems, the topology on Pr(M) is often characterized in

terms of a particular metric resembling a connection to symbolic dynamics, see e.g.,

[RaW, Ho3, LeMS]. The corresponding notion of distance means that two point sets

are close if they almost agree on a large ball in the point space. This can be formalized

as follows. The map dist : Pr(M) × Pr(M) → R>0, given by

dist(P, P̃) := min
{

1√
2
, inf

{
ε > 0 : P ∩ B 1

ε
⊆ (P̃)ε and P̃ ∩ B 1

ε
⊆ (P)ε

}}
,

where B 1
ε

:= B 1
ε
(mo) for some fixed reference point mo ∈ M, defines a metric on

Pr(M). The topology induced by the above metric does not depend on the choice of

reference point mo and coincides with the vague topology. (Since Pr(M) is compact,

it is complete with respect to the above metric, and the metric is proper.) In this

paper we prefer to work with the vague topology instead of the metric.

2.2 Ergodic Theorems for Group Actions

Our basic workhorse will be the general ergodic theorem of Lindenstrauss [Lin]. In

order to apply it we need to recall some further notions. We fix a left Haar mea-

sure on the locally compact and second-countable group T and write vol(S) =
∫

S
dx

for this Haar measure of a Borel set S ⊆ T. Below we will also require the group

T to be unimodular. This is equivalent to the requirement that the Haar measure

is inversion invariant, i.e.,
∫

T
f (x−1)dx =

∫
T

f (x)dx for every measurable func-

tion f : T → [0,∞] (and hence also for every integrable function f : T → R).

In particular, this implies vol(S−1) = vol(S) for every Borel set S ⊆ T, where

S−1 := {x ∈ T : ∃s ∈ S such that x = s−1}.

Since we want to compute certain group means below, we require that T admits

suitable averaging sequences. As usual, for K ⊆ T we denote by K̊ = int(K) the

interior of K and by K the closure of K, and for A,B ⊆ T we write AB := {x ∈ T :

∃(a, b) ∈ A × B such that x = ab} for the Minkowski product of A and B.

Definition 2.11 Let (Dn)n∈N be an increasing sequence of non-empty, compact

subsets of T such that
⋃

n∈N
D̊n = T.

(i) The sequence (Dn)n∈N is called a Følner sequence if for every compact K ⊆ T we

have

(2.3) lim
n→∞

vol(δKDn)

vol(Dn)
= 0,

where δK Dn is the symmetric difference of Dn and KDn,

δK Dn := (KDn) \ Dn ∪ (KDn)c \ Dc
n.

(ii) The sequence (Dn)n∈N is called a van Hove sequence if for every compact K ⊆ T

we have

(2.4) lim
n→∞

vol(∂K Dn)

vol(Dn)
= 0,

where ∂K Dn := (KDn) \ D̊n ∪ (KDc
n) \ Dc

n.
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(iii) The sequence (Dn)n∈N is tempered (or obeys Shulman’s condition) if there exists

C > 1 such that for all n ∈ N we have the estimate

vol
( n−1⋃

k=1

D−1
k Dn

)
6 C vol(Dn).

Remarks 2.12 (i) For every n ∈ N, the set ∂K Dn in (2.4) is compact. If T is

Abelian, then our definition of van Hove sequence is equivalent to that in [S].

(ii) We have δK D ⊆ ∂K D, which follows from the inclusion (AB)c ⊆ ABc for

arbitrary A,B ⊆ T. Consequently, every van Hove sequence is a Følner sequence.

(iii) The existence of a Følner sequence in T is equivalent to amenability of the

group [P, Thm. 4.16]. Every Følner sequence has a tempered subsequence [Lin,

Prop. 1.4].

(iv) According to [St], every second countable, locally compact group has a left-

invariant proper metric that generates the topology. Suppose the sequence (Bn)n∈N

of closed balls (with respect to this metric) about the neutral element e ∈ T of radius

n ∈ N constitutes a (tempered) Følner sequence in T satisfying BmBn = Bm+n for all

m, n ∈ N. Assume in addition that vol(∂Bn)/vol(Bn) → 0 as n → ∞, with ∂Bn the

topological boundary of Bn. It can be shown that (Bn)n∈N is also a (tempered) van

Hove sequence under these assumptions.

(v) If T is Abelian, the existence of a tempered van Hove sequence in T is guar-

anteed under our hypotheses. Indeed, [S, p. 145] ensures the existence of a van Hove

sequence in T, which is also a Følner sequence by (ii). As every Følner sequence has

a tempered subsequence, the argument is complete.

(vi) Consider the semidirect product [HR], denoted by T = N⋊H, of a unimod-

ular group N and a compact group H. Then T is unimodular. It can be shown that

if (Dn)n∈N is an H-invariant tempered van Hove sequence in N, then (Dn × H)n∈N

is a tempered van Hove sequence in T. This can be used to provide examples of a

non-Abelian non-compact unimodular group T with a tempered van Hove sequence.

(Take H non-Abelian and N Abelian but not compact.) A prominent example is the

Euclidean group E(d) = R
d
⋊ O(d), with centered closed balls of radius n ∈ N as

tempered van Hove sequence in R
d. The existence of Følner sequences in semidirect

products is discussed in [J, Wi].

The following lemma states that a Følner sequence (Dn)n∈N and its “thickened”

version (LDn)n∈N, where L ⊆ T is a compact set, have asymptotically the same vol-

ume. It also states that thickened versions of van Hove boundaries ∂K Dn, with K ⊆ T

compact, are of small volume, asymptotically as n → ∞. These properties will be

used repeatedly below.

Lemma 2.13 Let L ⊆ T be a compact set. Then the following statements hold.

(i) If (Dn)n∈N is a Følner sequence in T, we have the asymptotic estimate

vol(LDn) = vol(Dn) + o(vol(Dn)) (n → ∞).
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(ii) If (Dn)n∈N is a van Hove sequence in T, we have for every compact K ⊆ T the

asymptotic estimate

vol(L∂KDn) = o(vol(Dn)) (n → ∞).

Next, we state the basic pointwise ergodic theorem that will be applied several

times in the sequel. Let Q be a compact metrizable space (hence, with a countable

base of the topology and complete with respect to every metric generating the topol-

ogy), and assume that the group T acts measurably from the left on Q, i.e., there

exists a measurable map αQ : T × Q → Q, (x, q) 7→ αQ(x, q) =: xq. Here, T × Q is

endowed with the product topology.

A T-invariant probability measure on the Borel σ-algebra of Q is called (T-) er-

godic if every T-invariant Borel set has either measure 0 or 1. The existence of an

ergodic probability measure on Q follows from the compactness of Q by standard

arguments (compare [Wa, §6.2] for the discrete case). In other words, Q is ergodic

with respect to the group T. A dynamical system is called uniquely (T-) ergodic, if it

carries exactly one T-invariant probability measure, which is then ergodic; see below.

We rely on the general Birkhoff ergodic theorem of Lindenstrauss [Lin, Thm. 1.2].

For related abstract ergodic theorems, see also [Ch,Kr,P,N]. The shorthand µ( f ) :=∫
Q

dµ(q) f (q) in the next theorem denotes the µ-integral of a function f on Q. We

remark that the assumptions on the group T in the next theorem are more general

than those required by Assumption 2.1.

Theorem 2.14 (Pointwise Ergodic Theorem) Let Q be a compact metrizable space on

which a locally compact second-countable group T acts measurably from the left. Assume

that T admits a tempered Følner sequence (Dn)n∈N. Fix a T-invariant Borel probability

measure µ on Q and let f ∈ L1(Q, µ) arbitrary be given. Then

(2.5) In(q, f ) :=
1

vol(Dn)

∫

Dn

dx f (xq)

is finite for µ-a.a. q ∈ Q and all n ∈ N. Furthermore, there exists a T-invariant function

f ⋆ ∈ L1(Q, µ) such that µ( f ⋆) = µ( f ) and

(2.6) lim
n→∞

In(q, f ) = f ⋆(q) for µ-a.a. q ∈ Q.

Moreover, the following statements are equivalent.

(i) The measure µ is ergodic.

(ii) For every f ∈ L1(Q, µ), equation (2.6) holds with f ⋆ = µ( f ).

(iii) There exists a (‖ · ‖∞-) dense subset D ⊆ C(Q) such that for every f ∈ D,

equation (2.6) holds with f ⋆ = µ( f ).

Remarks 2.15 (i) For µ ergodic, the limit (2.6) is obviously independent of the

tempered Følner sequence.

(ii) As the proof shows, the statement of the theorem remains true for locally

compact Polish spaces (with D ⊆ Cc(Q) in (iii)). Moreover, our proof uses local
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compactness only for the implication (iii)⇒(i). Non-compact dynamical systems

have been studied in [O]. The reason we assume even compactness of Q in the hy-

potheses of the theorem is to guarantee the existence of an ergodic probability mea-

sure on Q. It is not obvious to us how to dispense with metrizability of Q.

In the case of a uniquely ergodic system, one may adapt arguments from [Fu, Wa]

to exclude the exceptional set in (2.6), provided that f is continuous. Note that the

next theorem is stated under more general assumptions on the group T than those

required by Assumption 2.1.

Theorem 2.16 (Unique ergodicity) Let Q be a compact metrizable space on which a

locally compact group T acts measurably from the left. Assume that T admits a Følner

sequence (Dn)n∈N and define In( · , · ) as in (2.5). Then the following statements are

equivalent.

(i) For every f ∈ C(Q) the sequence
(

In(q, f )
)

n∈N
converges uniformly in q ∈ Q,

and there is a constant I( f ) ∈ R such that

lim
n→∞

In(q, f ) = I( f )

for all q ∈ Q.

(ii) There exists a dense subset D ⊆ C(Q) and for every f ∈ D there exists a constant

I( f ) ∈ R such that pointwise for every q ∈ Q we have

lim
n→∞

In(q, f ) = I( f ).

(iii) There exists exactly one T-invariant Borel probability measure µ on Q.

In either case, the measureµ is ergodic, and the above statements hold with I( f ) = µ( f ).

Remark 2.17 In particular, the limits in the above theorem are again indepen-

dent of the choice of the Følner sequence. In contrast to Theorem 2.14, the Følner

sequence here does not need to be tempered. Neither does one need second count-

ability of the group T.

The role of the compact space Q in the above ergodic theorems will be played by

the closure of T-orbits of point sets.

Definition 2.18 Given a collection of point sets P ⊆ Pr(M), we introduce its closed

T-orbit

(2.7) XP := {xP : x ∈ T, P ∈ P} ⊆ Pr(M),

where xP := {xp : p ∈ P}. Being closed, XP is a compact subset of the compact space

Pr(M). The induced group action αXP
: T × XP → XP, (x, P) 7→ xP is continuous.

Remarks 2.19 (i) The validity of the set inclusion in (2.7) depends crucially on

Pr(M) being defined in terms of balls with respect to a T-invariant metric on M. The

compatibility between the point space M and the group T is necessary in order to

have a fruitful concept of orbits.
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(ii) The compact metrizable space XP is particularly useful if the closure is not

too large in comparison to the (unclosed) T-orbit. This has been analyzed mainly

for M = T = R
d with the canonical group action and the Euclidean metric. In that

case, there are two simple examples where the closure does not add anything new to

the (unclosed) T-orbit of P. This is when P consists of a single periodic point set,

or when P is a suitable collection of random tilings [RiHHB, GrS]. The definition

of the vague topology suggests that elements in XP added by the closure share local

properties of point sets from P. If P = {P} consists of a single point set P, there

is a geometric characterization of XP as the so-called local isomorphism class of the

point set if and only if P is repetitive. The latter property is in fact equivalent to

minimality of XP if P is of finite local complexity as in Definition 2.26(i), cf. [LP] for

M = T = R
d and [Yo] for the general case. Another criterion for a “nice” closure is

unique ergodicity of XP. We give a geometric characterization of unique ergodicity

in Theorem 2.29.

The triple (XP,T, αXP
) constitutes a compact topological dynamical system.

Thus, we have the following corollary.

Corollary 2.20 Let P ⊆ Pr(M) be a collection of uniformly discrete point sets of

radius r. Then the Ergodic Theorems 2.14 and 2.16 hold for Q = XP.

Remark 2.21 Ergodic theorems for systems of point sets in R
d or in a locally com-

pact Abelian group have been given and applied before; see e.g., [S, LeMS]. In ad-

dition we mention [LenS3, Thm. 1] for Banach space-valued functions in the case

of minimal ergodic systems of Delone sets of finite local complexity (see below for a

definition) in R
d.

2.3 Geometric Characterization of Ergodicity

In this section we relate ergodicity of a dynamical system of point sets to the spatial

frequencies with which patterns occur therein. This will require us to count the num-

ber of equivalent patterns within a given region of the point space, where equivalence

is defined by the group action.

First we introduce the relevant notation. Given a point set P ∈ Pr(M), we call a

finite subset Q ⊆ P a pattern of P (in M). Given a collection P ⊆ Pr(M) of point

sets, we say that Q is a pattern of P, if there exists P ∈ P such that Q is a pattern of

P. We write QP for the set of all patterns of P; see also Definition 5.3. For a pattern

Q of P, every compact set V ⊆ M such that Q = P ∩ V̊ is called a support of Q, and

we say that Q is a V -pattern of P. Two subsets V,V ′ ⊆ M are called (T-) equivalent,

if xV = V ′ for some x ∈ T.

For P ∈ Pr(M), Q ⊆ P a pattern of P and D ⊆ T, we analyze the number of

equivalent patterns of Q in P. Fixing m ∈ M, one may consider the two different sets

MD(Q) := {Q̃ ⊆ P : ∃x ∈ D−1 : xQ = Q̃},

M ′
D(Q) := {Q̃ ⊆ P ∩ D−1m : ∃x ∈ T : xQ = Q̃}
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for this purpose. Note that the set M ′
D(Q) depends on the choice of m ∈ M, in

contrast to the set MD(Q). For this reason we will use MD(Q) for pattern counting

in Definition 2.24. The set MD(Q) is a subset of the equivalence class of Q. The next

lemma describes how these two sets grow with the volume of D.

Lemma 2.22 Assume that T is even unimodular. Fix a Følner sequence (Dn)n∈N. Let

Q be a pattern of Pr(M) and fix P ∈ Pr(M). Then we have the asymptotic estimates

card
(

MDn
(Q)

)
= O(vol(Dn)),

card
(

M ′
Dn

(Q)
)
= O(vol(Dn)),

(n → ∞).

If (Dn)n∈N is even a van Hove sequence, and if Q ⊆ Tm, then

card
(

M ′
Dn

(Q)
)
= card

(
MDn

(Q)
)

+ o(vol(Dn)) (n → ∞).

The O-terms and the o-term may be chosen uniformly in P ∈ Pr(M).

Remarks 2.23 (i) The condition Q ⊆ Tm is satisfied for a transitive group ac-

tion, since Tm = M in that case.

(ii) The number of equivalent copies of Q in P may also be analyzed by counting

corresponding group elements of the group T. One may consider the two different

sets

TD(Q) := {x ∈ D−1 : xQ ⊆ P},

T ′
D(Q) := {x ∈ T : xQ ⊆ P ∩ D−1m}.

The set T ′
D(Q) is commonly used for pattern counting (see [S, LeMS]), but depends

on the choice of m ∈ M. In order to relate this to the above approaches of pattern

counting, consider the map f : T( ′)
D (Q) → M( ′)

D (Q), given by x 7→ f (x) := xQ. This

map is onto. It is readily checked that f is one-to-one, if Q 6= ∅, the group T is free

on Q and does not contain a nontrivial element of finite order. Hence, in that case,

both approaches coincide.

Our central notion of pattern counting is defined as follows.

Definition 2.24 Let (Dn)n∈N be a Følner sequence in T and let P,Q ∈ Pr(M) be

point sets with |Q| <∞. (In particular, Q may be a pattern of P.) If the limit

ν(Q) ≡ νP
(

Q; (Dn)n∈N

)
:= lim

n→∞

card
(

MDn
(Q)

)

vol(Dn)

exists, we call it the pattern frequency of Q. In most cases we suppress its dependence

on P and the Følner sequence in our notation.

Lemma 2.25 Assume that T is even unimodular. Let (Dn)n∈N be a Følner sequence

in T and let P,Q ∈ Pr(M) be point sets with |Q| <∞. Then
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(i) the quotient that arises in the definition of the pattern frequency is bounded,

sup
n∈N

card
(

MDn
(Q)

)

vol(Dn)
<∞;

in other words, since lim sup and lim inf of card(MDn
(Q))/vol(Dn) are always

both finite, existence of the pattern frequency ν(Q) is only a matter of whether they

coincide;

(ii) if (Dn)n∈N is a van Hove sequence and if the pattern frequency νP(Q; (Dn)n∈N)

exists, then νP(xQ; (Dn)n∈N), νP(Q; (xDn)n∈N) and νxP(Q; (Dn)n∈N) exist and are

all equal, i.e.,

νP
(

xQ; (Dn)n∈N

)
= νP

(
Q; (xDn)n∈N

)
= νxP

(
Q; (Dn)n∈N

)
= νP

(
Q; (Dn)n∈N

)

for every x ∈ T.

In order to relate ergodicity to pattern counting, we require a certain type of rigid-

ity for point sets.

Definition 2.26 Let P ⊆ Pr(M) be a collection of point sets and let QP ⊆ Pr(M)

be the collection of its patterns.

(i) P is of finite local complexity (FLC) if for every compact set V ⊆ M there is

a finite collection FP(V ) ⊆ QP of (without loss of generality mutually non-

equivalent) patterns, such that every pattern of P, which admits a support

equivalent to V , is equivalent to some pattern in FP(V ).

(ii) P is locally rigid if for every Q ∈ QP there exists ε > 0 such that for all Q̃ ∈ QP

and for all x ∈ T the properties xQ̃ ⊆ (Q)ε and Q ⊆ (xQ̃)ε imply that Q and Q̃

are equivalent.

The following lemma discusses and relates the above notions. For P ⊆ Pr(M) and

V ⊆ M, define P ∧V := {P ∩V : P ∈ P} ⊆ Pr(M).

Lemma 2.27 Let P ⊆ Pr(M) be a collection of point sets. Then

(i) P is FLC if and only if XP is FLC;

(ii) if P is FLC, then P is locally rigid;

(iii) if P is locally rigid and if QP ∧V is closed in Pr(M) for all compact V ⊆ M, then

P is FLC.

Remarks 2.28 (i) If P is finite, then FLC is equivalent to local rigidity. This

holds, since for finite P the set QP ∧ V is finite for all compact V ⊆ M, due to

uniform discreteness. In particular, it is closed in Pr(M).

(ii) The proof of Lemma 2.27(i) shows that in the FLC case every pattern of XP is

equivalent to some pattern of P.

Restricting to collections of point sets of finite local complexity, we can now state

a geometric characterization of ergodicity and of unique ergodicity.
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Theorem 2.29 (Ergodicity for FLC sets) Assume that T is even unimodular and that

T has a tempered van Hove sequence (Dn)n∈N. Let P ⊆ Pr(M) be a collection of point

sets of finite local complexity. Let µ be a T-invariant Borel probability measure on XP.

Then the following statements are equivalent.

(i) The measure µ is ergodic.

(ii) For every pattern Q in the set QP of all patterns of P, there is a subset X ⊆ XP of

full µ-measure such that the pattern frequency ν(Q) = νP(Q; (Dn)n∈N) exists for

all P ∈ X and is independent of P ∈ X.

If any of the above statements applies, then every pattern frequency ν(Q), Q ∈ QP, is

independent of the choice of the tempered van Hove sequence.

The system XP is uniquely ergodic if and only if (ii) holds for all patterns Q ∈ QP

with X = XP, that is, for every P ∈ XP. In that case, the van Hove sequence need not be

tempered, and every pattern frequency ν(Q), Q ∈ QP, is independent of the choice of the

van Hove sequence. Furthermore, the convergence to the limit underlying the definition

of each ν(Q) is even uniform in P ∈ XP.

In the following proposition, we give a characterization of unique ergodicity in

terms of properties of P instead of XP. This characterization is often referred to

as uniform pattern frequencies; compare [S, Thm. 3.2], [LeMS, Thm. 2.7], and [LP,

Def. 6.1].

Definition 2.30 Fix a van Hove sequence (Dn)n∈N and let P ⊆ Pr(M) be given.

We say that P has uniform pattern frequencies if for every pattern Q of P the sequence(
ν

y,P
n (Q)

)
n∈N

, defined by

(2.8) ν y,P
n (Q) :=

card
(
{Q̃ ⊆ P : ∃x ∈ Dn y : xQ̃ = Q}

)

vol(Dn)
,

converges uniformly in (y, P) ∈ T × P, and if its limit is independent of (y, P) ∈
T × P.

Remarks 2.31 (i) If M = T = R
d with the canonical group action, and if

P = {P} is linearly repetitive, then P has uniform pattern frequencies; see [LP, DL].

(ii) If P has uniform pattern frequencies, then the limit of (2.8) is also indepen-

dent of the choice of the van Hove sequence according to Theorem 2.29 and the

following proposition.

Proposition 2.32 (Unique ergodicity for FLC sets) Assume that T is even unimodu-

lar and has a van Hove sequence (Dn)n∈N. Let P ⊆ Pr(M) be a collection of point sets

of finite local complexity. Then the following statements are equivalent:

(i) XP is uniquely ergodic;

(ii) P has uniform pattern frequencies.

At the end of this section we investigate which values an ergodic measure on XP

can assign to cylinder sets. Cylinder sets play a prominent role in the constructions

of [LeMS] (compare also [Len]), and are defined as follows: it is well known [Ke,
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Lemma 4.5] that the compact metrizable topological space Pr(M) can be embedded

into the compact product space
∏

ϕ∈Cc(M) fϕ(Pr(M)), with injection map i given by

i(P)( fϕ) = fϕ(P). This motivates us to call f −1
ϕ (O) ⊆ Pr(M) an open cylinder if

O ⊆ R open and ϕ ∈ Cc(M), and finite intersections thereof are called cylinder sets.

We give an example of open cylinders in Pr(M) with a simple geometric interpre-

tation. Let U ⊆ M be an open ball such that diam(U ) < r. Take ϕ ∈ Cc(M) such

that ϕ−1({0}) = M \ U . (A possible choice is ϕ = d( · ,U c), where d( · , · ) denotes

the metric on M.) Consider the open cylinder

CU :=
{

P ∈ Pr(M) : fϕ(P) 6= 0
}
= f −1

ϕ

(
R \ {0}

)
.

It consists of all those point sets of Pr(M) that have exactly one point in U . Note that

CU is independent of the particular choice of ϕ ∈ Cc(M) with supp(ϕ) = U . For

open cylinders CU1
, . . . ,CUk

as above, we denote the cylinder set of their intersection

by

(2.9) CU :=
k⋂

i=1

CUi
.

In the case of finite local complexity, the pattern frequencies determine the values

that an ergodic measure assigns to such cylinder sets. The following proposition

extends [LeMS, Cor. 2.8, Lemma 4.3].

Proposition 2.33 Assume that T is even unimodular and has a van Hove sequence.

Let P ⊆ Pr(M) be a collection of point sets of finite local complexity. Let µ be an ergodic

Borel probability measure on XP. Furthermore, let Q = {q1, . . . , qk}, k ∈ N, be a

nonempty pattern of XP of cardinality k. Choose ε ∈]0, r/2[ such that all patterns

of XP in (Q)ε of cardinality k are equivalent to Q. For i ∈ {1, . . . , k}, consider the

pairwise disjoint sets Ui := Bε(qi) and define U :=
⋃k

i=1 Ui . Then the corresponding

cylinder set (2.9) has µ-measure

µ(CU) = ν(Q) vol(Dε),

with Dε := {x ∈ T : xQ ⊆ U} ⊆ T being open and relatively compact.

If T is even Abelian and acts transitively on M, then we have the equality

vol(Dε) = card(Sk(Q)) ζε,

where ζε := vol({x ∈ T : xm ∈ Bε(m)}) does not depend on m ∈ M and where Sk(Q)

is the group of “T-realizable” permutations of Q, i.e.,

Sk(Q) :=
{
π ∈ Sk : ∃x ∈ T such that xqπ(i) = qi for all i ∈ {1, . . . , k}

}
,

with Sk denoting the permutation group on {1, . . . , k}.
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3 Dynamical Systems for Randomly Coloured Point Sets

In this section, we supply the point sets of the previous section with a random colour-

ing. The results obtained here will be applied to randomly coloured graphs in the

next section. All proofs are deferred to Section 6.

In addition to a point space M and a metrizable group T satisfying Assumption 2.1

in the previous section, we consider a non-empty, locally compact, second-countable

topological space A, which we call a colour space.

Lemma 3.1 The product space M̂ := M × A, equipped with the product topology,

constitutes a point space in the sense of Section 2. The continuous and proper action α of

T on M induces a continuous and proper action α̂ : T × M̂ → M̂ of T on M̂ by setting

α̂
(

x, (m, a)
)

:= (xm, a). Thus, M̂ and T satisfy Assumption 2.1. We fix a T-invariant

proper metric d̂ on M̂ that is compatible with the topology on M̂.

Remarks 3.2 (i) When acting on M̂, the group T simply transports the colour

a of m along with m.

(ii) The maximum metric of the T-invariant proper metric d on M and some

metric generating the topology on A is an admissible choice for the metric d̂ in

Lemma 3.1, because it is T-invariant and because every metric on M̂ which gen-

erates the product topology is equivalent to the proper metric d̂ of Lemma 3.1, and

hence proper itself.

Lemma 3.1 and the arguments in the previous section imply that the space Pr(M̂)

of uniformly discrete point sets with radius r in M̂ is a compact metrizable space with

respect to the vague topology. The vague topology is defined as in Definition 2.6, but

with M replaced by M̂. The continuous action α̂ induces a continuous group action

on Pr(M̂) by setting

(3.1) xP̂ :=
{

(xm, a) ∈ M̂ : (m, a) ∈ P̂
}
∈ Pr(M̂)

for P̂ ∈ Pr(M̂). Again, the group action does not lead out of Pr(M̂) because of

T-invariance of the metric d̂. To summarize, all results established for Pr(M) in

Section 2 remain true for Pr(M̂).

Rather than working with general subsets of M̂, we are interested in those subsets

for which each point of M comes with exactly one colour.

Definition 3.3 (i) For a given point set P ⊆ M we set ΩP := ×p∈P
A and call

P(ω)
= {(p, ω(p)) : p ∈ P} ⊆ M̂ a coloured point set with colour realization

ω ∈ ΩP.

(ii) Given a collection P ⊆ Pr(M) of point sets, we introduce the collection of all

associated coloured point sets CP := {P(ω) : P ∈ P, ω ∈ ΩP}. In particular, we

write Cr(M) := CPr(M) for the space of coloured, uniformly discrete points sets

of radius r and X̂P := CXP
for the space of coloured closed T-orbits.

Remarks 3.4 (i) Let π : M̂ → M, (m, a) 7→ m, be the canonical projection onto

the space M. Then P̂ ⊆ M̂ is a coloured point set if and only if the restriction π
∣∣

P̂
is

injective.
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(ii) If P ∈ Pr(M), then P(ω) ∈ Pr(M̂) for every ω ∈ ΩP. Thus, we have CP ⊆
Pr(M̂) in the above definition, and CP inherits the vague topology from Pr(M̂).

(iii) We equip ΩP with the product topology (which is metrizable, since A is a

metric space and the product is countable). The product topology on ΩP and the

vague topology on CP coincide, when the two spaces are canonically identified by

ω ↔ P(ω). This is seen by noting that for both topologies convergence means point-

wise convergence.

Compactness of spaces of coloured point sets is established in the following propo-

sition.

Proposition 3.5 Let P ⊆ Pr(M) be given and assume that P is closed in Pr(M). Then

the metrizable space CP is closed in Pr(M̂) and hence compact. In particular, Cr(M) and

X̂P are compact.

It follows from (3.1) that the action of x ∈ T on a coloured point set P(ω) ∈ Cr(M)

can be described as

(3.2) xP(ω)
= (xP)(τxω).

Here, we introduce the measurable shift τx : ΩP → ΩxP, ω 7→ τxω, between probabil-

ity spaces, given by (τxω)(xp) := ω(p) for all p ∈ P.

We are particularly interested in T-invariant compact spaces of coloured point

sets. Therefore the following lemma is useful.

Lemma 3.6 For P ⊆ Pr(M) we have

X̂P =
{

xP(ω) : x ∈ T, P(ω) ∈ CP

}
,

where the closure is taken with respect to the vague topology. The group action αX̂P
: T×

X̂P → X̂P, (x, P̂) 7→ xP̂ is continuous.

The preceding proposition and lemma imply the following corollary.

Corollary 3.7 Let P ⊆ Pr(M) be a collection of point sets. Then (X̂P,T, αX̂P
) is a

compact topological dynamical system and the Ergodic Theorems 2.14 and 2.16 hold for

Q = X̂P.

Since we want to describe randomly coloured point sets, we will now introduce

suitable probability measures on the Borel spaces (ΩP,AP) for different P. Here,

AP :=
⊗

p∈P A is the product over all points in P of the Borel σ-algebra A on A.

It coincides with the Borel σ-algebra on ΩP [Ka, Lemma 1.2]. For V ⊆ M and

P ∈ Pr(M) we define the local σ-algebra A
(V )
P as the smallest σ-algebra on ΩP such

that the canonical projection (ΩP,A
(V )
P ) → (ΩP∩V ,AP∩V ) is measurable. It is the

σ-algebra of events concerning only colours attached to points in P ∩V .

For P ⊆ Pr(M) consider a family of Borel probability measures PP on (ΩP,AP),

which is indexed by P ∈ XP.
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Assumption 3.8 This is a list of properties that the family (PP)P∈XP
may or may

not satisfy.

(i) T-covariance. PxP = PP ◦ τ−1
x for all x ∈ T and all P ∈ XP.

(ii) Independence at a distance. There exists a length ̺ > 0 such that for every P ∈
XP and every V1,V2 ⊂ M with d(V1,V2) > ̺ the local σ-algebras A(V1)

P ,A(V2)
P

are PP-independent.

(iii) M-compatibility. For every f ∈ C(X̂P) the colour average E f : XP → R,

defined by

E f (P) :=

∫

ΩP

dPP(ω) f (P(ω)), P ∈ XP,

is a measurable function.

(iv) C-compatibility. For every f ∈ C(X̂P) we have E f ∈ C(XP).

Independence at a distance can be interpreted as interactions of finite range be-

tween points in the point set. Such types of interaction are relevant in statistical

mechanics; see, for example, [Sl].

In the next lemma we give two examples for a family (PP)P∈XP
of measures that

satisfy all of the above assumptions. The second example involves a random field

ξ : Σ × M → A, (σ,m) 7→ ξ(σ)(m) over M with values in A, where (Σ,A ′,P
′) is

some given underlying probability space [A]. We will also need the strong mixing

coefficient [Do] of ξ, defined by

R>0 ∋ L 7→ κ(L) := sup
{
κ(V1,V2) : V1,V2 ⊆ M, d(V1,V2) > L

}
,

where

κ(V1,V2) := sup
{
|P ′(A ′

1 ∩ A ′
2) − P

′(A ′
1)P

′(A ′
2)| : A ′

j ∈ A ′(V j) for j ∈ {1, 2}
}

6 1/4

measures the correlation of the local sub-σ-algebras A ′(V j) of events generated by

the family of random variables {ξ( · )(m) : m ∈ V j}.

Lemma 3.9 (i) Let P be a Borel probability measure on (A,A), and define PP :=⊗
p∈P P for every P ∈ XP. Then the family of measures (PP)P∈XP

satisfies the

Assumptions 3.8(i)–(iv).

(ii) Let (Σ,A ′,P
′) be a probability space and let ξ : Σ× M → A, (σ,m) 7→ ξ(σ)(m)

be an A-valued random field over M that is jointly measurable, T-stationary, has

a compactly supported strong mixing coefficient, and has continuous realizations

ξ(σ) : M → A for P
′-a.a. σ ∈ Σ. For a given point set P ∈ XP we define the

map ΞP : Σ → ΩP, σ 7→ ΞP(σ) := ξ(σ)
∣∣

P
. Then PP := P

′ ◦ Ξ
−1
P is a Borel

probability measure on (ΩP,AP), and the family of measures (PP)P∈XP
satisfies

the Assumptions 3.8(i)–(iv).

The main goal of this section is to characterize an ergodic Borel probability mea-

sure µ̂ on X̂P in terms of an ergodic Borel probability measure µ on uncoloured

https://doi.org/10.4153/CJM-2012-009-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-009-7


368 P. Müller and C. Richard

point sets XP and the colour probability measures (PP)P∈XP
. This will be achieved in

Theorem 3.11. A crucial ingredient of the proof is the following statement, which is

inspired by and generalizes [Ho3, Lemma 3.1].

Theorem 3.10 (Strong law of large numbers) Assume that T is even unimodular

and admits a Følner sequence (Dn)n∈N. Fix f ∈ C(X̂P), P ∈ XP and suppose that

(PP)P∈XP
has the property “independence at a distance” as in Assumption 3.8(ii). For

n ∈ N define the random variable Yn : ΩP → R by

(3.3) Yn(ω) :=
1

vol(Dn)

∫

Dn

dx f (xP(ω)), ω ∈ ΩP.

Then we have for PP-almost all ω ∈ ΩP the relation

(3.4) lim
n→∞

(
Yn(ω) −

∫

ΩP

dPP(η) Yn(η)

)
= 0.

We are now ready for the main result of this section.

Theorem 3.11 Assume that T is even unimodular. Let P ⊆ Pr(M) be a collection

of point sets. Fix an ergodic Borel probability measure µ on XP and a family of Borel

probability measures (PP)P∈XP
satisfying Assumptions 3.8(i)–(iii). Then there exists a

unique ergodic probability measure µ̂ on X̂P such that the following statements hold.

(i) For every f ∈ L1(X̂P, µ̂) we have

(3.5)

∫

X̂P

dµ̂(P(ω)) f (P(ω)) =

∫

XP

dµ(P)

∫

ΩP

dPP(ω) f (P(ω)).

(ii) For every f ∈ L1(X̂P, µ̂) and every tempered Følner sequence (Dn)n∈N in T the

limit

(3.6) lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xP(ω)) =

∫

X̂P

dµ̂(Q(σ)) f (Q(σ))

exists for µ̂-a.a. P(ω) ∈ X̂P. In fact, the limit exists for µ-a.a. P ∈ XP and for

PP-a.a. ω ∈ ΩP.

If XP is even uniquely ergodic, if (PP)P∈XP
satisfies also Assumption 3.8(iv) and if f is

continuous, then the limit (3.6) exists for all P ∈ XP and for PP-a.a. ω ∈ ΩP. In this

case the Følner sequence does not need to be tempered.

Remarks 3.12 (i) The asserted uniqueness of the ergodic measure µ̂ in the the-

orem does not mean that the dynamical system X̂P is uniquely ergodic. It only means

that µ̂ is uniquely determined by the given ergodic measure µ on XP and the mea-

sures (PP)P∈XP
on ΩP.

(ii) The corresponding [Ho3, Theorem 3.1] is a statement about Bernoulli site

percolation on the Penrose tiling. Our result is an extension, which covers both the

aperiodic and the periodic situation, under weaker assumptions on the underlying

point set, and for more general types of randomness.
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(iii) In contrast to a corresponding result [Len, Lemma 10], our Theorem 3.11

does not require a group structure of the point space M. Theorem 3.11 also makes

a stronger conclusion in that exceptional instances are characterized beyond being

µ̂-null sets. This is particularly useful in the uniquely ergodic case.

At the end of this section we discuss which values the measure µ̂ assigns to cylinder

sets of coloured point sets. In view of the decomposition (3.5) we are interested in

the relation to the µ-measure of the corresponding uncoloured cylinder set; see Sec-

tion 2.3. Consider open sets U1, . . . ,Uk ⊆ M with diam(Ui) < r for i ∈ {1, . . . , k}.

Choose ϕi ∈ Cc(M) such that ϕ−1
i ({0}) = M \Ui for i ∈ {1, . . . , k}. Similarly, con-

sider open relatively compact sets A1, . . . ,Ak ⊆ A and choose ψ1, . . . , ψk ∈ Cc(A)

such that ψ−1
i ({0}) = A \ Ai . With fϕ,ψ as in (6.1), we define the coloured cylinder

set

(3.7) CA
U :=

{
P(ω) ∈ Cr(M) : fϕ1,ψ1

(P(ω)) · · · fϕk,ψk
(P(ω)) 6= 0

}
,

where U := U1 × · · · ×Uk and A := A1 × · · · ×Ak. The set CA
U is independent of the

particular choice of the functions ϕi and ψi with supp(ϕi) = Ui and supp(ψi) = Ai ,

and it consists of all coloured point sets such that Ui contains exactly one point of

the underlying point set, with corresponding colour value in Ai , for i ∈ {1, . . . , k}.

In the case of independent and identically distributed (i.i.d.) colours, we have a nice

product formula for the measure of such a cylinder set, which is stated in the follow-

ing proposition.

Proposition 3.13 Assume that T is even unimodular and admits a Følner sequence.

Fix f ∈ C(X̂P), P ∈ XP and an ergodic Borel probability measure µ on XP. Let P

be a Borel probability measure on (A,A), and for every P ∈ XP consider the product

measure PP :=
⊗

p∈P P on ΩP, see Lemma 3.9(i). Assume in addition that the sets

U1, . . . ,Uk of the coloured cylinder set CA
U in (3.7) are pairwise disjoint. Then

µ̂(CA
U) = µ(CU) P(A1) · · · P(Ak),

where CU ⊆ XP is the corresponding uncoloured cylinder set (2.9).

4 Application to Graphs

One of our reasons for dealing with point spaces without a group structure in the

previous sections is that this allows for a description of simple graphs [Di]. Most

statements in this section do not require extra proofs, because they follow from the

application of the general results of Sections 2 and 3. More generally, one could treat

simple directed graphs or even hypergraphs [Di] by the same methods.

4.1 Graphs as Point Sets

Let V be a point space, i.e., a non-empty, locally compact, and second-countable

Hausdorff space and let T be a metrizable group. As in Section 2.1, we require the

following assumption.
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Assumption 4.1 The group T is non-compact, and its left action αV : T × V → V,

(x, v) 7→ xv, on V is continuous and proper. Moreover, we fix a T-invariant proper

metric dV on V that generates the topology on V.

Hence, T is also locally compact and second countable; compare Remarks 2.2(iii)

and (iv).

Next we consider the space M := (V × V)/∼ with the quotient topology, arising

from V×V with the product topology of V. Here, the equivalence relation∼ identifies

(v,w) ∈ V × V with (w, v) ∈ V × V, and we write m = mv,w = mw,v ∈ M for the

corresponding equivalence class. Clearly, the definition

d(mv1,w1
,mv2,w2

) := min
{

max
{

dV(v1, v2), dV(w1,w2)
}
,

max
{

dV(v1,w2), dV(v2,w1)
}}

for all v1, v2,w1,w2 ∈ V provides a T-invariant proper metric d on M that is com-

patible with the topology on M.

Lemma 4.2 The space M is a point space and, together with the induced actionα : T×
M → M, α(x,mv,w) := xmv,w := mxv,xw of T on M, satisfies Assumption 2.1.

As to the proof of the lemma, we note that M is clearly non-empty, locally compact

and second-countable, and thus a point space equipped with the T-invariant proper

metric above. Also, continuity of the induced action α is evident. The proof is then

completed by the first part of the following lemma.

Lemma 4.3 (i) The induced action α on M is proper.

(ii) If T does not contain an element of order two and αV acts freely, then so does α.

Remarks 4.4 (i) A proof of the lemma can be found in Section 7.

(ii) Transitivity of αV does not imply transitivity of α.

Definition 4.5 A point set G ⊆ M is called a (simple) graph (in V) if mv,w ∈ G

for v,w ∈ V implies mv,v ∈ G and mw,w ∈ G. A graph G ⊆ M has the vertex set

VG := {v ∈ V : mv,v ∈ G}, which is a point set in V, and its edge set is given by

EG :=
{
{v,w} : v,w ∈ V, v 6= w,mv,w ∈ G

}
.

Remark 4.6 Every graph G ⊆ M is a simple graph [Di], that is, without self-

loops or multiple edges between the same pair of vertices. It is easy to see that G is a

uniformly discrete subset of M with radius r if and only if VG is uniformly discrete in

V with the same radius. Also, relative denseness of G with radius R implies relative

denseness of VG with radius R. The converse statement does not hold. This is seen

from a graph with relatively dense vertex set, but without edges. Relative denseness of

the point set G implies the existence of vertices with infinitely many incident edges.

4.2 Ergodicity for Dynamical Systems of Graphs

In this section we will apply the ergodic results from Section 2 to graphs. The space

Pr(M) of uniformly discrete point sets in M = (V ×V)/∼ with radius r is a compact
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metrizable space with respect to the vague topology of Definition 2.6. The action α
on M induces in turn a continuous group action on Pr(M) by pointwise shifts as in

Section 2. Consequently, all results established for Pr(M) in Section 2 are available in

the present context.

Definition 4.7 For r ∈]0,∞[ we introduce the space

Gr(M) :=
{

G ∈ Pr(M) : G is a graph
}

of graphs in V with uniformly discrete vertex sets of radius r. It inherits the vague

topology from Pr(M).

We omit the obvious proof of the following proposition.

Proposition 4.8 Gr(M) is closed, hence compact in Pr(M). Moreover, Gr(M) is

T-invariant.

Again, we are interested in closed (hence compact) and T-invariant subsets of

Gr(M). An example is given by

XG := {xG : x ∈ T,G ∈ G} ⊆ Gr(M)

for some given subset G ⊆ Gr(M). We denote the continuous group action of T on

XG by αXG
and are now ready to apply the general ergodic results of Section 2.

Corollary 4.9 Let G ⊆ Gr(M) be given. Then (XG,T, αXG
) is a compact topological

dynamical system, and the Ergodic Theorems 2.14 and 2.16 hold for Q = XG.

G ′ is called a subgraph of G if G ′ ⊆ G and if G ′ is a graph. A subgraph G ′ of G

with a finite vertex set is called a patch of G. Every patch of G is a pattern of G. A

pattern Q of G is a patch of G if and only if Q is a subgraph of G. For a collection

G ⊆ Gr(M) of graphs, we call G ′ a patch of G, if there exists G ∈ G such that G ′ is a

patch of G. Every compact set V ⊆ V such that VG ′ = VG ∩ V̊ is called a support of

the patch.

It is easy to see that a collection G ⊆ Gr(M) of graphs has finite local complexity

in the sense of Definition 2.26(i) if and only if for every compact set V ⊆ V there is a

finite collection FG(V ) of patches such that every patch of G, which admits a support

equivalent to V , is equivalent to some patch in FG(V ).

In analogy to the case of point sets, we have the following characterization of er-

godicity and of unique ergodicity.

Theorem 4.10 (Ergodicity for FLC graphs) Assume that T is even unimodular and

that (Dn)n∈N is a tempered van Hove sequence in T. Let G ⊆ Gr(M) be a collection of

graphs of finite local complexity. Let µ be a T-invariant Borel probability measure on

XG. Then the following statements are equivalent.

(i) The measure µ is ergodic.
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(ii) For every patch H of G, there is a set X ⊆ XG of full µ-measure, such that the limit

(4.1) ν(H) := lim
n→∞

card
(
{H̃ ⊆ G : ∃x ∈ Dn : xH̃ = H}

)

vol(Dn)

exists for all G ∈ X and is independent of G ∈ X.

If any of the above statements applies, then the limit (4.1) is independent of the choice of

the tempered van Hove sequence.

Furthermore, the dynamical system XG is uniquely ergodic if and only if (ii) holds

for all patches H of G with X = XG, that is, for all G ∈ XG. In that case, the van Hove

sequence need not be tempered, and the limit (4.1) is independent of the choice of the

van Hove sequence. Moreover, the convergence to the limit in (4.1) is even uniform in

G ∈ XG.

Remarks 4.11 (i) A proof of the theorem can be found in Section 7.

(ii) Assume that condition (ii) in the above theorem is satisfied, and let H1 and H2

be equivalent patches of G. We then have ν(H1) = ν(H2); compare Lemma 2.25(ii).

(iii) Analogously to Proposition 2.32, there is also a characterization of unique

ergodicity in terms on uniform patch frequencies.

4.3 Randomly Coloured Graphs

Dynamical systems for coloured graphs are constructed as in Section 3. The only

difference is that Pr(M) will be replaced by Gr(M). A coloured graph G(ω), where

G ⊆ M is a graph and ω ∈ ΩG, is given as in Definition 3.3(i). Copying the proofs of

Proposition 3.5 and Lemma 3.6, we get the following proposition.

Proposition 4.12 If G ⊆ Gr(M) is closed in Gr(M), then the metrizable space

CG := {G(ω) : G ∈ G, ω ∈ ΩG}

is closed in Gr(M̂) and hence compact. In particular, CGr(M) and

X̂G := CXG
=

{
xG(ω) : x ∈ T, G(ω) ∈ CG

}

are compact. Moreover, the group action αX̂G
: T × X̂G → X̂G, (x,G(ω)) 7→ xG(ω),

which obeys (3.2), is continuous.

Corollary 4.13 Let G ⊆ Gr(M) be given. Then (X̂G,T, αX̂G
) is a compact topological

dynamical system and the Ergodic Theorems 2.14 and 2.16 hold for Q = X̂G.

Finally, we turn to randomly coloured graphs and, for given G ⊆ Gr(M), consider

a family of Borel probability measures PG on (ΩG,AG), which is indexed by G ∈ XG.

Assumptions 3.8 read exactly the same when formulated for the family (PG)G∈XG
. In

fact, we refer to this when we cite Assumptions 3.8 below. Noting Lemma 4.3(i), the

Ergodic Theorem 3.11 takes the following form for randomly coloured graphs.
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Corollary 4.14 Let G ⊆ Gr(M) be given. Fix an ergodic Borel probability mea-

sure µ on XG and a family of Borel probability measures (PG)G∈XG
satisfying Assump-

tions 3.8(i)–(iii). Then there exists a unique ergodic probability measure µ̂ on X̂G such

that the following statements hold.

(i) For every f ∈ L1(X̂G, µ̂) we have

∫

X̂G

dµ̂(G(ω)) f (G(ω)) =

∫

XG

dµ(G)

∫

ΩG

dPG(ω) f (G(ω)).

(ii) For every f ∈ L1(X̂G, µ̂) and every tempered Følner sequence (Dn)n∈N in T, the

limit

(4.2) lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xG(ω)) =

∫

X̂G

dµ̂(H(σ)) f (H(σ))

exists for µ̂-a.a. G(ω) ∈ X̂G. In fact, the limit exists for µ-a.a. G ∈ XG and for

PG-a.a. ω ∈ ΩG.

If XG is even uniquely ergodic, if (PG)G∈XG
satisfies also Assumption 3.8(iv) and if f is

continuous, then the limit (4.2) exists for all G ∈ XG and for PG-a.a. ω ∈ ΩG. In this

case the Følner sequence does not need to be tempered.

When colouring graphs randomly, one may wish to distribute colours on vertices

differently from colours on edges. This is possible within our framework, as is shown

by the following example.

Example 4.15 Let Pv and Pe be two Borel probability measures on (A,A). Given a

graph G ∈ G ⊆ Gr(M), we define

PG := ⊗
mv,v∈G: v∈VG

Pv ⊗
mv,w∈G: e={v,w}∈EG

Pe

on (ΩG,AG), which corresponds to an i.i.d. distribution of colours on vertices and

an independent i.i.d. distribution of colours on edges. Then, the family of measures

(PG)G∈XG
satisfies Assumptions 3.8(i)–(iv). Indeed, T-covariance and independence

at a distance are obvious, and C-compatibility can be verified as in the proof of

Lemma 3.9(i). In doing so, we use that identity (6.4) in the proof of that lemma

has an analogue in the present context of graphs because, if G,G ′ ∈ Gr(M), m ∈ G,

m ′ ∈ G ′ and d(m,m ′) < r, then m and m ′ are either both vertices or both edges due

to uniform discreteness.

5 Proofs of Results in Section 2

For the convenience of the reader we have also included proofs of the more elemen-

tary results in Section 2.1.
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5.1 Proofs of Results in Section 2.1

Proof of Lemma 2.3 (i) ⇒ (ii). Let V1,V2 ⊆ M be compact and observe the identity

SV1,V2
= πT

(
α̃−1(V2 ×V1)

)
, where πT stands for the canonical projection T×M →

T. Hence, properness of the map α̃ and continuity of πT yield the claim.

(ii) ⇒ (iii). Let U1,U2 ⊆ M be relatively compact. Then, SU1,U2
is relatively com-

pact because it is contained in SU1,U2
, which is compact by hypothesis.

(iii) ⇒ (iv). The sets U1 := {mn ∈ M : n ∈ N} and U2 := {xnmn ∈
M : n ∈ N} are relatively compact in M because the sequences converge. Since

{xn ∈ T : n ∈ N} ⊆ SU1,U2
, and the latter is relatively compact by hypothesis, we

infer the claim from the Bolzano–Weierstrass theorem.

(iv) ⇒ (i). Let V (2) ⊆ M × M be compact. Then Z := α̃−1(V (2)) is closed

in T × M by continuity of α̃. Let ((xn,mn))n∈N be any sequence in Z. Then

((xnmn,mn))n∈N ⊆ V (2), and compactness allows us to choose a convergent sub-

sequence (xnl
mnl

,mnl
) → (m ′,m) ∈ V (2) as l → ∞. In particular, every compo-

nent converges and (iv) yields the existence of a further subsequence (xnlk
)k∈N ⊆ T,

which converges in T. Let us denote its limit by x. Since Z is closed, we have

(xnlk
,mnlk

) → (x,m) ∈ Z as k → ∞. This proves compactness of Z.

Proof of Lemma 2.8 (i) ⇒ (ii). This holds by continuity.

(ii) ⇒ (iii). Fix m ∈ M.

Case 1: assume m ∈ P. Let ε > 0 and define ϕ ∈ Cc(M) by ϕ(m ′) = 1−d(m,m ′)/ε
for m ′ ∈ Bε(m) and ϕ(m ′) = 0 otherwise. Then we have fϕ(P) > 1 and hence

fϕ(Pk) > 0 for finally all k ∈ N by (ii). But this means that Pk ∩ Bε(m) 6= ∅ for

finally all k ∈ N.

Case 2: assume m /∈ P. Choose ε > 0 such that P ∩ B2ε(m) = ∅. Define ϕ ∈ Cc(M)

by ϕ(m ′) = 1 − d(m,m ′)/2ε for m ′ ∈ B2ε(m) and ϕ(m ′) = 0 otherwise. Then we

have fϕ(P) = 0 and hence fϕ(Pk) < 1/2 for finally all k ∈ N by (ii). But this means

that Pk ∩ Bε(m) = ∅ for finally all k ∈ N.

(iii) ⇒ (iv). Let P be the set of points satisfying condition (iii)(a) and define

N := M \ P. We first show that P ∈ Pr(M). To see this, take arbitrary m ∈ M and

assume that p, q ∈ P∩Br(m). Then there exist for finally all k ∈ N points pk, qk ∈ Pk

such that pk → p and qk → q as k → ∞. But then pk, qk ∈ Pk ∩ Br(m) for finally all

k ∈ N, which implies pk = qk for finally all k ∈ N due to uniform discreteness of Pk.

Hence p = q and card(P ∩ Br(m)) = 1.

Since V is compact, P f := P∩V is finite. For m ∈ N denote by ε(m) > 0 a number

satisfying Pk ∩ Bε(m)(m) = ∅ for finally all k ∈ N. Now fix ε > 0. Compactness of

V yields the existence of a finite set N f ⊆ N such that V ⊆ (P f )ε ∪
⋃

m∈N f
Bε(m)(m).

We therefore have for finally all k ∈ N the inclusions

Pk ∩V ⊆ Pk ∩
(

(P)ε ∪
⋃

m∈N f

Bε(m)(m)
)
= Pk ∩ (P)ε ⊆ (P)ε,

where we used the assumption (iii)(b) for the equality sign. The remaining inclusion

follows from P ∩V = P f ⊆ (Pk)ε for finally all k ∈ N due to assumption (iii)(a).

(iv) ⇒ (i). Let ϕ1, . . . , ϕn ∈ Cc(M) and ε1, . . . , εn > 0 be given. For an arbitrary

i ∈ {1, . . . , n}, define the compact set Vi = supp(ϕi) and denote by ni ∈ N an
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upper bound for the number of points that a uniformly discrete point set of radius

r may have in Vi . By continuity of ϕi , we may choose δi ∈]0, r[ such that we have

|ϕi(m) − ϕi(m ′)| < εi/ni for all m,m ′ ∈ Vi satisfying d(m,m ′) < δi . This means

in particular that |ϕi(m)| < εi/ni for all m ∈ Vi such that d(m,V c
i ) < δi . By

assumption (iv), with ε = δi and V = Vi , this implies for finally all k ∈ N the

estimate

| fϕi
(Pk) − fϕi

(P)| < εi .

Since i ∈ {1, . . . , n} was arbitrary, this means that for finally all k ∈ N we have

Pk ∈ Uϕ1,ε1
(P) ∩ · · · ∩Uϕn,εn

(P).

Proof of Proposition 2.9 Let (Pn)n∈N ⊆ Pr(M) be given. It suffices to show that

(Pn)n∈N contains a convergent subsequence, since Pr(M) is metrizable.

Since M is σ-compact, we can find a countable open cover (Br(m j)) j∈N of M with

m j ∈ M for j ∈ N. For j ∈ N fixed, consider the sequence (Pn ∩ Br(m j))n∈N.

Exactly one of the following two cases occurs. Either there is N j ∈ N such that

Pn ∩ Br(m j) = ∅ for all n > N j , or there is a subsequence (nk)k∈N ⊆ N such that

∅ 6= Pnk
∩ Br(m j) =: {p

( j)
nk }. Due to relative compactness of Br(m j) we assume

without loss of generosity that the induced point sequence (p
( j)
nk )k∈N converges in M.

Now, consider the sequence (Pn ∩ Br(m1))n∈N. In the second case of the above

scenario, choose a subsequence (Pn(1)
k

)k∈N of (Pn)n∈N such that the induced point

sequence (p(1)
n(1)

k

)k∈N converges to some p(1) ∈ M. Otherwise, set n(1)
k := N1 + k for

all k ∈ N. We repeat this procedure with the sequence (Pn(1)
k
∩ Br(m2))k∈N, yielding

a subsequence (n(2)
k )k of (n(1)

k )k, and then successively for all j > 3. In this way

we obtain nested subsequences (n
( j+1)
k )k ⊆ (n

( j)
k )k for all j ∈ N. We claim that

by Cantor’s diagonal sequence trick, (Pn(k)
k

)k∈N fulfills the convergence criterion of

Lemma 2.8(iii) and thus converges to P := {p( j) ∈ M : j ∈ N} in the vague topology.

Indeed, for every j the set Br(m j) ∩ (
⋃

k∈N
Pn(k)

k
) is either empty or consists of the

points of the convergent sequence (p( j)
n(k)

k

)k∈N with limit p( j) ∈ M. Thus, alternative

(b) must hold for every m ∈ Br(m j), m 6= p( j), otherwise (a) applies.

5.2 Proofs of Results in Section 2.2

Proof of Lemma 2.13 (i) This follows readily from the Følner property, as (LDn) \
Dn ⊆ δLDn.

(ii) For D, E ⊆ T, it is straightforward to verify L((KD) \ E) ⊆ LKD ∩ LEc. This

results in the relations

(5.1) L
(

(KD) \ E
)
⊆

{
(LKD) \ D ∪ (LEc) \ Dc,

(LKD) \ E ∪ (LEc) \ Ec.

Consider the first relation in (5.1) for D = Dn and for E = D̊n. This yields

L
(

(KDn) \ D̊n

)
⊆ (LKDn) \ D̊n ∪ (LDc

n) \ Dc
n,
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where we used (D̊)c
= Dc. Consider the second relation in (5.1) for D = Dc

n and for

E = Dc
n. This yields

L
(

(KDc
n) \ Dc

n

)
⊆ (LKDc

n) \ Dc
n ∪ (LDn) \ D̊n.

When combining these two implications, we obtain

L(∂K Dn) ⊆ ∂LK Dn ∪ ∂
LDn.

Now the van Hove property yields the claim of the lemma.

Proof of Theorem 2.14 Until further notice in this proof we only assume that Q is

a Polish space (i.e., completely metrizable with a countable base of the topology);

see Remark 2.15(ii). The µ-almost-sure existence of the integral (2.5) follows from

Fubini’s theorem. To prove (2.6) we apply the general pointwise ergodic theorem of

Lindenstrauss [Lin, Thm. 1.2] for tempered Følner sequences. Since this theorem

requires to work with a standard probability space (also called Lebesgue space, see [I,

Thm. 2.4.1]), we consider the completed probability space (Q, µ̄) with the completed

measure µ̄ living on the completion of the Borel σ-algebra. Then [Lin] yields the

existence of a T-invariant function f ⋆ ∈ L1(Q, µ̄) that obeys µ̄( f ⋆) = µ̄( f ) and

(5.2) lim
n→∞

In(q, f ) = f ⋆(q) for µ̄-a.e. q ∈ Q.

But the limit on the left-hand side of (5.2) is clearly Borel measurable in q, since f is.

Thus, we conclude f ⋆ ∈ L1(Q, µ), µ( f ⋆) = µ( f ) and that the exceptional set in (5.2)

can be chosen to be a µ-null set.

It remains to establish the chain of equivalences.

(i) ⇒ (ii). Since µ is ergodic, f ⋆ is µ-a.e. constant [BeM, Thm. 1.3]. Hence

f ⋆(q) = µ( f ⋆) = µ( f ) for µ-a.a. q ∈ Q.

(ii) ⇒ (iii). This is obvious.

(iii) ⇒ (i). We are inspired by ideas in [Ho3, Thm. 3.1] and establish first an

auxiliary lemma.

Auxiliary Lemma For k ∈ N let fk, f ∈ L1(Q, µ) be given. Assume that ‖ f − fk‖1 →
0 as k → ∞ and that f ⋆k = µ( fk) holds µ-a.e. for all k ∈ N. Then f ⋆ = µ( f ) holds

µ-a.e.

Proof of the Auxiliary Lemma Equation (2.6), the triangle inequality, Fatou’s Lem-

ma, Fubini’s theorem, and T-invariance of µ provide the inequality ‖( f − fk)⋆‖1 6

‖ f − fk‖1. Thus ‖( f − fk)⋆‖1 → 0 as k → ∞, which in turn implies the existence of

a subsequence (kl)l∈N such that ( f − fkl
)⋆ → 0 pointwise µ-a.e. as l → ∞. Now, the

assertion of the Auxiliary Lemma can be seen from

0 = lim
l→∞

( f − fkl
)⋆ = f ⋆ − lim

l→∞
µ( fkl

) = f ⋆ − µ( f ),

which holds µ-a.e. and where the rightmost equality follows from L1-convergence.
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From now on we assume in addition that Q is locally compact. We use the Auxil-

iary Lemma to establish µ-a.e.

(5.3) (1K )⋆ = µ(1K )

for indicator functions 1K of compact sets K ⊆ Q. To see this, fix a metric on the

metrizable space Q that is compatible with the topology, and note that by local com-

pactness of Q, there exists ε > 0 such that (K)ε is relatively compact. For n ∈ N such

that n > 1/ε consider the relatively compact thickened sets Kn := (K)1/n. Using the

metric, we define continuous functions gn : Q → [0, 1] such that gn = 1 on K, and

gn = 0 on Kc
n and supp(gn) ⊆ Kn. We thus have gn ∈ Cc(Q) for all n > N. We also

have L1-convergence of gn to 1K , since

‖gn − 1K‖1 =

∫

Kn\K

dµ(q) gn(q) 6 µ(Kn \ K).

The latter expression vanishes as n → ∞ by dominated convergence, since µ(Q) = 1,

and since closedness of K implies limn→∞ 1Kn\K ≡ 0. On the other hand, denseness

of D in Cc(Q) with respect to ‖ · ‖∞ implies denseness with respect to ‖ · ‖1 so that

we infer the existence of a sequence ( fn)n∈N ⊆ D with ‖ fn − 1K‖1 → 0 as n → ∞.

By the hypothesis of (iii) we also have µ-a.e. the equality f ⋆n = µ( fn) for all n ∈ N.

The Auxiliary Lemma then yields (5.3).

Now local compactness and second countability of Q ensure ([Bau, Thm. 29.12])

inner regularity of the Borel measure µ, and another application of the Auxiliary

Lemma yields (1B)⋆ = µ(1B) almost surely for arbitrary Borel sets B ⊆ Q. In partic-

ular, for every T-invariant Borel set B ⊆ Q we conclude from this µ(B) = 1B(q) for

µ-a.a. q ∈ Q. Hence, either µ(B) = 0 or µ(B) = 1, proving (i).

Proof of Theorem 2.16 We adapt the line of reasoning in [Wa, Thm. 6.19]. An al-

ternative proof can be given using [Fu, Thm. 3.5]; compare also [S, Thm. 3.2].

The implication (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii). Let µ j , j ∈ {1, 2}, be two T-invariant Borel probability measures

on Q. The estimate |In(q, f )| 6 ‖ f ‖∞ holds for all n ∈ N, q ∈ Q and f ∈ D.

This and dominated convergence imply limn→∞ µ j(In( · , f )) = µ j(I( f )) = I( f ).

On the other hand, Fubini’s theorem yields µ j(In( · , f )) = µ j( f ) for all n ∈ N and

j ∈ {1, 2}. Hence, we get µ1( f ) = µ2( f ) for all f ∈ D. Now, denseness of D and

boundedness of µ j give µ1( f ) = µ2( f ) for all f ∈ C(Q). Thus, µ1 = µ2, as both

belong to the dual space of C(Q).

(iii) ⇒ (i). We prove that (i) holds with I( f ) = µ( f ). Suppose this were false.

Then there exists g ∈ C(Q), ε > 0, a subsequence (nk)k∈N ⊆ N and a sequence

(qk)k∈N ⊆ Q such that for all k ∈ N we have

(5.4)
∣∣ Ink

(qk, g) − µ(g)
∣∣ > ε.

On the other hand, for every k ∈ N the linear functional Ink
(qk, · ) belongs to the

closed unit ball in the dual of the Banach space C(Q), which is separable, since Q is

metrizable [Bou2, Sec. X.3.3, Thm. 1]. The sequential Banach-Alaoglu theorem [Ru,
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Thm. 3.17] asserts that this closed unit ball is weak*-sequentially compact so that

for every f ∈ C(Q) the sequence (Ink
(qk, f ))k∈N contains a convergent subsequence.

Pick a countable dense subset C ⊆ C(Q) with g, 1 ∈ C. Cantor’s diagonal trick gives

the existence of a common subsequence (nkl
)l∈N ⊆ N such that liml→∞ Inkl

(qkl
, f ) =:

J( f ) exists for all f ∈ C. Furthermore we have | J( f )| 6 ‖ f ‖∞ for all f ∈ C. Thus,

J : C → R, f 7→ J( f ), is a bounded linear functional. It is T-invariant, due to

the Følner property of (Dn)n. It admits a unique bounded linear extension to C(Q),

which we denote again by J. This extension is positivity preserving, i.e., J( f ) > 0,

if f > 0. Therefore the Riesz–Markov representation theorem [ReSi, Thm. IV.14]

yields the existence of a positive Borel measure ν on C(Q) such that J( f ) = ν( f ) for

all f ∈ C(Q). But J(1) = 1, which can be seen from the definition of J. Moreover, ν
inherits T-invariance from J. Hence, ν is a T-invariant probability measure and thus

ν = µ by uniqueness. But ν(g) 6= µ(g) on account of (5.4), which is a contradiction.

So far we have obtained the equivalences (i) to (iii) and that, in either case, the

limit I( f ) equals µ( f ). In particular, this limit does not depend on the chosen Følner

sequence. If µ is not ergodic, there exists a T-invariant Borel set E such that 0 <
µ(E) < 1. Then a T-invariant probability measure ν 6= µ is given by ν(B) :=

µ(B∩E)/µ(E) for all Borel sets B. Since µ is the only T-invariant probability measure,

we conclude that µ is ergodic.

5.3 Proofs of Results in Section 2.3

The Haar measure on T allows us to estimate how many points of a given point

set P ∈ Pr(M) fall into some compact region in M. The following statement is a

preparation for the proof of Lemma 2.22.

Proposition 5.1 Assume that T is even unimodular. Let (Dn)n∈N be a Følner sequence

in T.

(i) For every relatively compact set U ⊆ M we have the asymptotic estimate

card(P ∩ D−1
n U ) = O(vol(Dn)) as n → ∞,

uniformly in P ∈ Pr(M).

(ii) If (Dn)n∈N is even a van Hove sequence, we have for every compact set K ⊆ T and

for every relatively compact set U ⊆ M the asymptotic estimate

card
(

P ∩ (∂K Dn)−1U
)
= o(vol(Dn)) as n → ∞,

uniformly in P ∈ Pr(M).

Before we give the proof of the proposition we turn to a useful transformation

property of transporters.

Remark 5.2 In slight abuse of the notation for transporters introduced in (2.1), we

write Sm,U := S{m},U = {x ∈ T : xm ∈ U} for m ∈ M and a subset U ⊆ M. Then,

given any group element x ∈ T, we observe the identity Sxm,U = Sm,U x−1.
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Proof of Proposition 5.1 We fix ε > 0 and a relatively compact subset U ⊆ M.

Without loss of generality we assume that U 6= ∅. The open thickened subset Uε :=

(U )ε is still relatively compact due to the properness of the metric d( · , · ) on M.

We define ϕε ∈ Cc(M) for p ∈ M by ϕε(p) := d(p, (Uε)
c). For given p ∈ M,

the function x 7→ ϕε(xp) lies in Cc(T), since ϕε ∈ Cc(M) and the group action is

continuous and proper. In particular, x 7→ ϕε(xp) is integrable. For D ⊆ T compact

we evaluate

(5.5)

∫

D

dx fϕε(xP) =

∫

D

dx
∑

p∈P

ϕε(xp) =
∑

p∈P∩D−1Uε

∫

D

dx ϕε(xp).

Note that P∩D−1Uε is finite, because P is uniformly discrete and D−1Uε is compact.

(This argument uses continuity of the group action.) Below we wish to approximate

the last integral of (5.5) by

(5.6) I(p) :=

∫

T

dx ϕε(xp) =

∫

Sp,Uε

dx ϕε(xp).

Here, we make use of the transporter Sp,Uε
⊆ T, which was introduced in Remark 5.2

and is relatively compact by Lemma 2.3(iii). It serves to restrict the integration in

I(p) to all those arguments where the integrand is strictly positive. But first, we will

rewrite I(p) for p ∈ P ∩D−1Uε. For such p there exists y ∈ D and m ∈ Uε such that

p = y−1m. Hence, Remark 5.2 implies

Sp,Uε
= Sm,Uε

y ⊆ Sm,Uε
D ⊆ LUε

D,

where LUε
:= SUε,Uε

is compact in T by Lemma 2.3(ii). Therefore we have the identity

(5.7) I(p) =

∫

LUεD

dx ϕε(xp)

for every p ∈ P ∩ D−1Uε.

Next we derive a positive lower bound on the integral I(p), which is uniform in

p ∈ P ∩ TU (not Uε!). For such p there is y ∈ T and q ∈ U such that y p = q. This

implies

I(p) =

∫

T

dxϕε(xy−1q) =

∫

T

dxϕε
(

(yx)−1q
)
=

∫

T

dxϕε(xq) = I(q),

where we use unimodularity of the group in the second and third equality and left

invariance of the Haar measure in the third equality. We conclude that for every

p ∈ P ∩ TU we have

(5.8) I(p) > inf
{

I(q) : q ∈ U
}
=: IU > 0.

The strict positivity follows from a compactness argument, using continuity of the

map q 7→ I(q), and from I(q) > 0 for all q ∈ U . To see the latter we observe
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Sq,Uε
⊇ Sq,Bε/2(q) for every q ∈ U . The transporter Sq,Bε/2(q) contains the identity e ∈ T

and is open by continuity of the group action and openness of the ball Bε/2(q) ⊆ M.

Therefore there exists an open ball BT ⊆ T about e such that Sq,Bε/2(q) ⊇ BT and

ϕε|BT > 0. Since vol(BT) > 0 (one can cover the σ-compact group T by countably

many copies of BT , all of which have the same Haar measure), it follows that I(q) > 0.

Next, we establish an auxiliary estimate, which is a consequence of uniform dis-

creteness (of a given radius r): for every relatively compact subset U ⊆ M there exists

a constant N(U ) <∞ such that for every P ∈ Pr(M) and every x ∈ T the bound

(5.9) card(P ∩ xU ) 6 N(U ) <∞

holds. To prove this, we first set x = e, the identity in T, and note that a covering

argument then implies (5.9) uniformly in P ∈ Pr(M). This and the equality card(P∩
xU ) = card(x−1P ∩U ) yield the desired uniformity of N(U ) in x ∈ T.

Now, consider the difference of the right-hand side of (5.5) and the corresponding

expression where the integral is replaced by I(p). This difference can be estimated as

∣∣∣∣
∑

p∈P∩D−1Uε

∫

(LUεD)\D

dxϕε(xp)

∣∣∣∣ 6
∫

(LUεD)\D

dx
∑

p∈P∩D−1Uε

|ϕε(xp)|(5.10)

6

∫

LUεD

dx
∑

p∈P∩x−1Uε

|ϕε(xp)|

6 vol(LUε
D) FUε

,

where, using (5.9), the constant FUε
:= N(Uε) ‖ϕε‖∞ < ∞ does not depend on P,

nor on D. Therefore (5.8) and (5.10) imply

card(P ∩ D−1U ) IU 6
∑

p∈P∩D−1U

I(p) 6
∑

p∈P∩D−1Uε

I(p)

6

∫

D

dx fϕε(xP) + vol(LUε
D) FUε

6 FUε

[
vol(D) + vol(LUε

D)
]
.

Thus, the first claim of the proposition follows with D = Dn and Lemma 2.13(i),

while the second claim follows with D = ∂K Dn, the van Hove property, and

Lemma 2.13(ii).

Proof of Lemma 2.22 Fix any ∅ 6= D ⊆ T compact, assume without loss of gener-

ality that Q 6= ∅ and fix q ∈ Q. Then the number of points q̃ ∈ P ∩ D−1m such that

q̃ = xq for some x ∈ T is at most card(P ∩ D−1m). For q̃ ∈ P ∩ D−1m we introduce

the set

(5.11) Aq,q̃ :=
{

Q̃ ⊆ P : ∃x ∈ T : xQ = Q̃ and xq = q̃
}
.
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Clearly, the estimate

card
(

M ′
D(Q)

)
6 card(P ∩ D−1m) · max

{
card(Aq,q̃) : q̃ ∈ P ∩ D−1m

}

holds with the fixed q ∈ Q. In order to estimate the cardinality of Aq,q̃ for a given q̃

(assuming Aq,q̃ 6= ∅), we fix a reference pattern Q̃r ∈ Aq,q̃ and consider an arbitrary

Q̃ ∈ Aq,q̃. Thus there exist xr, x ∈ T such that xrQ = Q̃r, xQ = Q̃, and xrq = q̃,

xq = q̃. The latter imply x−1
r x ∈ Sq,{q} =: Sq, the compact stabilizer group of q by

Lemma 2.3(ii). In addition, Q̃ = xrx
−1
r xQ ⊆ xrSqQ. By definition, we have Q̃ ⊆ P,

hence Q̃ ⊆ P ∩ xrSqQ for every Q̃ ∈ Aq,q̃.

We conclude from (5.9) that card(P ∩ xrSqQ) 6 N(
⋃

q∈Q SqQ), uniformly in P ∈

Pr(M) and uniformly in q ∈ Q and in q̃ ∈ P ∩ D−1m (which enters through xr).

Therefore there are at most

F(Q) :=

(
N
( ⋃

q∈Q SqQ
)

card(Q)

)

possibilities to choose a subset Q̃ with card(Q̃) = card(Q) points out of the pattern

P ∩ xrSqQ. We conclude

(5.12) card(Aq,q̃) 6 F(Q)

uniformly in q ∈ Q and q̃ ∈ P ∩ D−1m and P ∈ Pr(M), and thus

card
(

M ′
D(Q)

)
6 F(Q) card(P ∩ D−1m).

Hence the second estimate follows with D = Dn from Proposition 5.1(i), since T is

unimodular and the group action is proper. For the first estimate, we note

(5.13) MD(Q) ⊆
{

Q̃ ⊆ P ∩ D−1Q : ∃x ∈ T : xQ = Q̃
}
.

Therefore we can argue as above and obtain

(5.14) card
(

MD(Q)
)
6 F(Q) card(P ∩ D−1Q).

Since Q is compact, we may now set D = Dn and apply Proposition 5.1(i), which

uses unimodularity and properness.

So it remains to prove that card(MD(Q)) and card(M ′
D(Q)) differ by a o(vol(D))-

term under the specified stronger hypotheses. Assume without loss of generality that

Q 6= ∅. By assumption, we may write Q = Km for some non-empty finite set K ⊆ T.

Let S := Sm := Sm,{m} denote the stabilizer group of m ∈ M, which is compact by

Lemma 2.3(ii). We have S = S−1 and Am∩ Bm ⊆ (A∩ BS)m for A,B ⊆ T arbitrary.

Note that Q̃ ∈ M ′
Dn

(Q) \ MDn
(Q) implies that there exists x ∈ (D−1

n )c such that

xQ = Q̃ ⊆ P ∩ D−1
n m. Hence we have

Q̃ ⊆ D−1
n m ∩ (D−1

n )cKm ⊆
(

D−1
n ∩ (Dc

n)−1KS
)

m ⊆ (∂SK−1

Dn)−1m.

https://doi.org/10.4153/CJM-2012-009-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-009-7


382 P. Müller and C. Richard

Now the same argument as in (i) yields

card
(

M ′
Dn

(Q) \ MDn
(Q)

)
6 F(Q) card

(
P ∩ (∂SK−1

Dn)−1m
)
,

and the latter term is recognized as o(vol(Dn)) by Proposition 5.1(ii), since T is uni-

modular and the group action is proper.

Similarly, Q̃ ∈ MDn
(Q)\M ′

Dn
(Q) implies Q̃ ⊆ D−1

n Q and Q̃ 6⊆ D−1
n m. Thus, there

exist x ∈ T and q ∈ Q such that xq ∈ Q̃ and xq ∈ (D−1
n m)c, which implies

xq ∈ D−1
n Km ∩ (Dc

n)−1m ⊆
(

D−1
n KS ∩ (Dc

n)−1
)

m ⊆ (∂SK−1

Dn)−1m.

We have

MDn
(Q) \ M ′

Dn
(Q)

⊆
{

Q̃ ⊆ P : ∃(x, q) ∈ T × Q : xQ = Q̃ ∧ xq ∈ (∂SK−1

Dn)−1m
}
=: A.

This set can be represented as

A =
⋃

q∈Q

⋃
q̃∈P∩(∂SK−1

Dn)−1m

Aq,q̃

with Aq,q̃ given by (5.11). Therefore we use (5.12) to conclude

card
(

MDn
(Q) \ M ′

Dn
(Q)

)
6 F(Q) card(Q) card

(
P ∩ (∂SK−1

Dn)−1m
)
,

and the latter term is recognized as o(vol(Dn)) by Proposition 5.1(ii), since T is uni-

modular and the group action is proper.

Proof of Lemma 2.25 (i). The finiteness of the supremum follows from inequality

(5.14) and Proposition 5.1(i).

(ii). Fix y ∈ T. It suffices to show νP(yQ; (Dn)n∈N) = νP(Q; (Dn)n∈N). Since

MDn
(yQ) = MyDn

(Q) and

∣∣ card
(

MyDn
(Q)

)
− card

(
MDn

(Q)
) ∣∣ 6 card

(
MAn

(Q)
)
,

where An := δ{y}Dn ⊆ ∂{y}Dn, the claim follows from inequality (5.14) and Propo-

sition 5.1(ii).

Proof of Lemma 2.27 (i). If XP is FLC, then P ⊆ XP is FLC by definition. Con-

versely, assume that P is FLC. Take V ⊆ M compact and a corresponding finite

set FP(V ) ⊆ QP of patterns of P. Now let Q be any xV -pattern of XP. Then

there is P ∈ XP such that Q = P ∩ xV̊ . Since P ∈ XP, there is a sequence

((xn, Pn))n∈N ⊆ T × P such that xnPn → P as n → ∞. Hence, for every n ∈ N, the

pattern Q̃n := Pn ∩ x−1
n xV̊ is equivalent to some pattern in FP(V ), and xnQ̃n → Q

as n → ∞. Since FP(V ) is finite, there is Q̃ ∈ FP(V ), a sequence (yk)k∈N in T
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and a subsequence (nk)k∈N of N such that Q̃nk
= ykQ̃ for all k ∈ N, implying that

xnk
ykQ̃ → Q as k → ∞. Local compactness of M and properness of the group action

imply that a subsequence of (xnk
yk)k∈N converges to some z ∈ T. Continuity of the

group action then yields zQ̃ = Q. Thus z−1Q ∈ FP(V ).

(ii). For patterns Q, Q̃ ∈ Pr(M) define ε(Q, Q̃) by

ε(Q, Q̃) := inf
{
δ > 0 : ∃x ∈ T : Q ⊆ (xQ̃)δ and xQ̃ ⊆ (Q)δ

}
.

If Q̃ is not equivalent to Q, we have ε(Q, Q̃) > 0. Indeed, write Q = {q1, . . . , qk} and

Q̃ = {q̃1, . . . , q̃k} and assume that ε(Q, Q̃) = 0. Invoking the local compactness of

M, we find a sequence (xn)n∈N ⊆ T such that we have xnq̃i → qi for i ∈ {1, . . . , k}
as n → ∞ (possibly after some permutation of indices). Local compactness of M

and properness of the group action imply that a subsequence of (xn)n∈N converges

to some x ∈ T. By continuity of the group action, we thus get xQ̃ = Q, which is a

contradiction.

Now take an arbitrary Q ∈ QP and define the compact support V := (Q)r of Q

in M. Let FP(V ) be a finite set of patterns corresponding to V in the FLC condition

and define ε > 0 by

2ε := min
{
ε(Q, Q̃) : Q̃ ∈ FP(V ) and ∀y ∈ T : Q 6= yQ̃

}
.

Now assume that there exist x ∈ T and Q̃ ∈ QP such that xQ̃ ⊆ (Q)ε and Q ⊆ (xQ̃)ε.

Then Q is equivalent to Q̃, by definition of ε.

(iii). Assume that P is not FLC. Then there exist a compact set V0 ⊆ M and an

infinite collection (Qn)n∈N of mutually non-equivalent patterns of P supported on

T-shifted copies of V0. Due to the compactness of Pr(M), a subsequence Q̃k := Qnk
,

k ∈ N, of (Qn)n∈N ⊆ QP converges to some Q ∈ Pr(M). Let V ⊆ M be a compact

set satisfying Q ⊆ V̊ . Since QP ∧ V is closed in Pr(M) by assumption, we have Q ∈

QP ∧V , which implies Q ∈ QP. By construction, we have ε(Q, Q̃k) → 0 as k → ∞.

If Q is not equivalent to any Q̃k, this contradicts the local rigidity of P. Otherwise,

Q = xQ̃ℓ for exactly one ℓ and some x ∈ T and ε(Q̃ℓ, Q̃k) = ε(Q, Q̃k) → 0 as k → ∞.

This is also a contradiction to the local rigidity of P, since Q̃ℓ is not equivalent to Q̃k

for k 6= ℓ.

Before we can approach auxiliary results for the proof of Theorem 2.29 we intro-

duce some more systematic notation for pattern collections of point sets.

Definition 5.3 Let U ⊆ M and D ⊆ T. For P ∈ Pr(M) we define

QP(U ; D) :=
{

Q ⊆ P : ∃x ∈ D such that xQ ⊆ U
}

and, in slight abuse of notation for P ⊆ Pr(M),

QP(U ; D) :=
⋃

P∈P

QP(U ; D).
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It is also convenient to fix in addition the number of points k ∈ N of the patterns, in

symbols,

Qk
P(U ; D) :=

{
Q ∈ QP(U ; D) : card(Q) = k

}
,

and similarly Qk
P

(U ; D). In particular, we have MD(Q) = Q
card(Q)
P (Q; D) for every

given point set P. We write Qk
P

(U ) := Qk
P

(U ; T) and Qk
P

:= Qk
P

(M), which has

already been used.

The next lemma and the subsequent proposition will be needed in the course of

the proof of Theorem 2.29. But they also enter into the proof of Theorem 3.10, which

is the main ingredient for the ergodic theorem of randomly coloured point sets.

Lemma 5.4 Given P ∈ Pr(M) and a relatively compact subset U ⊆ M, there exists

a constant ΓU > 0 that depends only on U and the radius of relative discreteness r, but

not on P ∈ Pr(M), such that for every k ∈ N and every compact subset D ⊆ T the

following estimate holds:

card
(
Qk

P(U ; D)
)
6 Γ

k−1
U card(P ∩ D−1U ).

Proof We start by observing that Qk
P(U ; D) ⊆

⋃
q∈P∩D−1U Aq, where

Aq :=
{

Q ⊆ P : card(Q) = k, q ∈ Q and ∃ x ∈ T such that xQ ⊆ U
}

=

{
{q, q2, . . . , qk} ⊆ P : ∃ x ∈ Sq,U with xqi ∈ U ∀i ∈ {2, . . . , k}

}

⊆
{
{q, q2, . . . , qk} ⊆ P : qi ∈ P ∩ S−1

q,UU ∀i ∈ {2, . . . , k}
}
.

This implies

card
(
Qk

P(U ; D)
)
6

∑

q∈P∩D−1U

[
card

(
P ∩ S−1

q,UU
)] k−1

6 card(P ∩ D−1U )
[

sup
q∈P∩TU

card
(

P ∩ S−1
q,UU

)] k−1

.

For every q ∈ P ∩ TU there exists xq ∈ T and mq ∈ U such that q = xqmq. Thus, we

conclude from the transformation property of transporters in Remark 5.2 that

card
(

P ∩ S−1
q,UU

)
= card

(
P ∩ xqS−1

mq,U
U
)
6 card

(
x−1

q P ∩ S−1
U ,UU

)

6 N
(

S−1
U ,UU

)
,

where the last inequality rests on (5.9) and holds uniformly in P ∈ Pr(M) and xq ∈ T,

and therefore uniformly in q ∈ P ∩ TU . Here, the application of (5.9) is justified,

because S−1
U ,UU is relatively compact in M. This follows from Lemma 2.3(iii) and

continuity of the group action. So the claim holds with ΓU = N(S−1
U ,UU ).
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We write L0
b,c(M) to denote the set of all real-valued, Borel-measurable, and

bounded functions ϕ on M, whose set-theoretic support {m ∈ M : ϕ(m) 6= 0}
is relatively compact. For ϕ ∈ L0

b,c(M), we consider fϕ : Pr(M) → R as in Defini-

tion 2.6.

Proposition 5.5 Let (Dn)n∈N be a Følner sequence in T. Fix k ∈ N and consider func-

tions ϕi ∈ L0
b,c(M), i ∈ {1, . . . , k}, whose set-theoretic supports Ui , i ∈ {1, . . . , k}, are

relatively compact and pairwise disjoint. Let U :=
⋃k

i=1Ui . Then we have the equality

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP) =

∑

Q∈Qk
P(U ;Dn)

I(Q) + o(vol(Dn)),

asymptotically as n → ∞. Here the o(vol(Dn))-term can be chosen uniformly in P ∈
Pr(M), and the leading term

(5.15) I(Q) :=
∑

π∈Sk

∫

T

dx
k∏

i=1

ϕi(xqπ(i))

involves a sum over all permutations from the symmetric group Sk so that the fixed choice

for enumerating the points of the pattern Q = {q1, . . . , qk} is irrelevant.

Proof We fix P ∈ Pr(M) arbitrary. Note first that, for p ∈ M and i ∈ {1, . . . , k}
fixed, the function x 7→ ϕi(xp) is integrable, since ϕi is measurable, bounded, has

a relatively compact support, and since the group action is continuous and proper.

Hence, x 7→
∏k

i=1ϕi(xqπ(i)) is integrable, too. Moreover, since the supports Ui , i ∈
{1, . . . , k}, are pairwise disjoint, we have

(5.16)
( k∏

i=1

fϕi

)
(xP) =

k∏
i=1

( ∑

p∈P

ϕi(xp)

)
=

∑

Q∈Qk
P(U ;Dn)

∑

π∈Sk

k∏
i=1

ϕi(xqπ(i))

for every x ∈ Dn. By Lemma 5.4 the set Qk
P(U ; Dn) is finite, and integrating (5.16)

gives

(5.17)

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP) =

∑

Q∈Qk
P(U ;Dn)

∑

π∈Sk

∫

Dn

dx
k∏

i=1

ϕi(xqπ(i)).

Now we wish to replace the sum over permutations on the right-hand side of (5.17)

by I(Q) asymptotically as n → ∞. This is achieved in analogy to the argument

leading from (5.6) to (5.7). We start with the observation

(5.18)

∫

T

dx
k∏

i=1

ϕi(xqπ(i)) =

∫

S(Q)

dx
k∏

i=1

ϕi(xqπ(i)),

where we introduced

S(Q̂) := {x ∈ T : xQ̂ ⊆ U} =
⋂

q̂∈Q̂

Sq̂,U ⊆ T
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for general Q̂ ⊆ M. In this way we excluded parts of the domain of integration in

(5.18) where the integrand vanishes anyway. In the special case Q̂ ⊆ U we have

S(Q̂) ⊆ SU ,U =: LU , which is compact by Lemma 2.3(ii). Next suppose that Q ⊆

D−1
n U (as is the case for Q ∈ Qk

Dn
(P)). Then there exists y ≡ y(Q) ∈ Dn and Q̂ ⊆ U

such that Q = y−1Q̂. Hence we conclude from Remark 5.2 that

S(Q) = S(y−1Q̂) = S(Q̂)y ⊆ LU y(5.19)

⊆ LU Dn.(5.20)

Therefore (5.18) and (5.20) yield the identity

(5.21) I(Q) =
∑

π∈Sk

∫

LU Dn

dx
k∏

i=1

ϕi(xqπ(i))

for every Q ∈ Qk
Dn

(P). From (5.21) and (5.17) we deduce the estimate

∣∣∣∣
∑

Q∈Qk
P(U ;Dn)

I(Q) −

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP)

∣∣∣∣

6
∑

π∈Sk

∫

(LU Dn)\Dn

dx
∑

Q∈Qk
P(U ;{x})

k∏
i=1

|ϕi(xqπ(i))|

6 k! vol
(

(LU Dn) \ Dn

)
sup
x∈T

[
card

(
Qk

P(U ; {x})
)] k∏

i=1

‖ϕi‖∞.

In order to get the first inequality above we have used the identity

∑

Q∈Qk
P(U ;Dn)

k∏
i=1

ϕi(xqπ(i)) =
∑

Q∈Qk
P(U ;{x})

k∏
i=1

ϕi(xqπ(i)),

which holds for every fixed x ∈ T. The assertion of the proposition now follows from

the Følner property (2.3), the fact that LU is independent of P, and the estimate

card
(
Qk

P(U ; {x})
)
6 Γ

k−1
U card(P ∩ x−1U ) 6 Γ

k−1
U N(U ) <∞,

which is based on Lemma 5.4 and holds uniformly in P ∈ Pr(M) and x ∈ T by

(5.9).

The following proposition refines the asymptotic evaluation of Proposition 5.5 in

terms of pattern frequencies. For that reason, T is assumed to be unimodular, and

the FLC assumption is imposed.

Proposition 5.6 Let (Dn)n∈N be a van Hove sequence in the unimodular group T.

Fix k ∈ N and consider functions ϕi ∈ L0
b,c(M), i ∈ {1, . . . , k}, whose set-theoretic
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supports Ui , i ∈ {1, . . . , k}, are relatively compact and pairwise disjoint. Set U :=⋃k
i=1 Ui . Let P ⊆ Pr(M) be of finite local complexity and let Fk

XP
(U ) be a maximal

subset of mutually non-equivalent patterns in Qk
XP

(U ). Then we have for every P ∈ XP

the asymptotic estimate

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP) =

∑

Q∈Fk
XP

(U )

I(Q) card
(

MDn
(Q)

)
+ o(vol(Dn))

as n → ∞. Here, the finite set Fk
XP

(U ) and the integral I(Q) are independent of the

particular choice of P ∈ XP, and the error term can be chosen uniformly in P ∈ XP.

Proof Fix P ∈ XP. By Proposition 5.5, we have

(5.22)

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP) =

∑

Q̃∈Qk
P(U ;Dn)

I(Q̃) + o(vol(Dn)),

asymptotically as n → ∞, where the error term can be chosen uniformly in P ∈
XP. In order to establish a connection to pattern frequencies, we partition the set

Qk
P(U ; Dn) into subsets of equivalent patterns. Due to FLC of XP (cf. Lemma 2.27),

the set Fk
XP

(U ) is finite. Given an arbitrary pattern Q ∈ Fk
XP

(U ) we consider the

collection Qk
P∩D−1

n U
(Q) ⊆ Qk

P∩D−1
n U

= Qk
P(U ; Dn) of all its translates in P ∩ D−1

n U .

Then the sum in (5.22) decomposes

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP) =

∑

Q∈Fk
XP

(U )

∑

Q̃∈Qk

P∩D
−1
n U

(Q)

I(Q̃) + o(vol(Dn)).(5.23)

But the integral I(Q̃) is independent of the particular choice of Q̃ ∈ Qk
P∩D−1

n U
(Q),

as we now show. By definition there exists y = y(Q̃) ∈ T and enumerations of the

points in the two patterns Q = {q1, . . . , qk} and Q̃ = {q̃1, . . . , q̃k} such that yq̃i = qi

for all i ∈ {1, . . . , k}. Then we get

I(Q̃) =
∑

π∈Sk

∫

T

dx
k∏

i=1

ϕi(xq̃π(i)) =
∑

π∈Sk

∫

T

dx
k∏

i=1

ϕi

(
(yx)−1qπ(i)

)
(5.24)

=

∑

π∈Sk

∫

T

dx
k∏

i=1

ϕi(xqπ(i)) = I(Q),

where we used unimodularity of the group for the second and third equality and left

invariance of the Haar measure for the third equality.

In order to analyze the cardinality of Qk
P∩D−1

n U
(Q) for card(Q) = k, consider the

set

S := {x ∈ T : xQ ⊆ U} =

k⋂
i=1

Sqi ,U ,
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which is relatively compact in T by Lemma 2.3(iii). Then we claim

Qk
P∩D−1

n U
(Q) =

{
Q̃ ⊆ P : ∃y ∈ S−1Dn with yQ̃ = Q

}
= MS−1Dn

(Q).

Indeed, to verify the inclusion Qk
P∩D−1

n U
(Q) ⊆ MS−1Dn

(Q), take Q̃ ∈ Qk
P∩D−1

n U
(Q) and

choose x ∈ Dn and y ∈ T such that xQ̃ ⊆ U and yQ̃ = Q. Then we have xy−1 ∈ S.

But this means that y ∈ S−1Dn, whence Q̃ ∈ MS−1Dn
(Q). For the reverse inclusion,

take Q̃ ∈ MS−1Dn
(Q) and choose y ∈ S−1Dn with yQ̃ = Q. Then y = s−1x for some

s ∈ S and some x ∈ Dn. Hence xQ̃ = sQ ⊆ U . This means that Q ∈ Qk
P∩D−1

n U
(Q).

But the sets MS−1Dn
(Q) and MDn

(Q) are asymptotically of the same cardinality.

This can be seen from

MS−1Dn
(Q) △ MDn

(Q) =
{

Q̃ ⊆ P : ∃x ∈
(
δS−1

Dn

)−1
: xQ = Q̃

}

⊆
{

Q̃ ⊆ P ∩
(
∂S−1

Dn

)−1
Q : ∃x ∈ T : xQ = Q̃

}
,

where △ denotes the symmetric difference. We argue as in the proof of Lemma 2.22;

compare equations (5.13)–(5.14), to show

card
(

MS−1Dn
(Q) △ MDn

(Q)
)
6 F(Q) card

(
P ∩ (∂S−1

Dn)−1Q
)
.

A final appeal to Proposition 5.1(ii) yields

card
(
Qk

P∩D−1
n U

(Q)
)
= card

(
MS−1Dn

(Q)
)
= card

(
MDn

(Q)
)

+ o(vol(Dn))

as n → ∞, where the error term can be chosen uniformly in P ∈ XP. This holds by

the van Hove property of (Dn)n∈N, where we used unimodularity and properness of

the group action. Thus, the claim follows together with (5.23) and (5.24).

Proof of Theorem 2.29 Let µ be a T-invariant Borel probability measure on XP. We

first prove the asserted characterization of ergodicity of µ. Our arguments rely on

Theorem 2.14, which requires a tempered Følner sequence. In addition, the van Hove

property enters through Proposition 5.6.

(i) ⇒ (ii) Without loss of generality fix a non-empty pattern Q = {q1, . . . , qk},

k ∈ N, of P. By FLC of XP (cf Remarks 2.28), we may choose ε ∈]0, r/2[ such that

all patterns of XP of cardinality k, which admit a support equivalent to the compact

set (Q)ε, are equivalent to Q. For i ∈ {1, . . . , k} define the mutually disjoint sets

Ui := Bε(qi). Choose ϕi ∈ Cc(M) of compact support Ui for i ∈ {1, . . . , k} and

consider the function f := fϕ1
· · · fϕk

∈ C(XP). Setting U :=
⋃k

i=1Ui , we can now

apply Proposition 5.6 with Fk
XP

(U ) = {Q}. This yields

(5.25)

∫

Dn

dx f (xP) = I(Q) card
(

MDn
(Q)

)
+ o(vol(Dn)),
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where P enters only through MDn
(Q) on the right-hand side. Since µ is ergodic and

f ∈ L1(XP, µ), Theorem 2.14 (ii) guarantees the existence of a set X ⊆ XP of full

µ-measure such that for all P ∈ X we have

lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xP) = µ( f ),

and this limit is independent of P ∈ X. Hence condition (ii) of the theorem is satis-

fied.

(ii) ⇒ (i) We will apply the characterization of ergodicity in Theorem 2.14(iii).

First, we define a suitable ‖ · ‖∞-dense subset D of C(XP). It will be constructed

from the set

D0 :=
{

fϕ : ϕ ∈ Cc(M), diam
(

supp(ϕ)
)
< r/2

}
∪ {1} ,

where 1 ∈ C(XP) denotes the constant function equal to one, and with fϕ as in

Definition 2.6. The set D0 separates points in XP. Hence the Stone–Weierstrass

theorem [Ke, Prob. 7R] assures that the algebra D := alg(D0) generated by D0 is

dense in C(XP) with respect to the supremum norm.

Without loss of generality consider f ∈ D of the form f = fϕ1
· · · fϕk

, where

k ∈ N and fϕ j
∈ D0 \ {1} for j ∈ {1, . . . , k}. Write Vi := supp(ϕi) for the compact

supports of the functions ϕi for i ∈ {1, . . . , k}. Note that Vi ∩ V j 6= ∅ implies that

fϕi
· fϕ j

= fϕi ·ϕ j
. We thus assume without loss of generality that Vi∩V j = ∅ for i 6= j.

Write Ui ⊆ Vi for the set-theoretical support of the function ϕi , for i ∈ {1, . . . , k},

and define U :=
⋃k

i=1 Ui .

Theorem 2.14 guarantees the existence of X ′ ⊆ XP of full µ-measure and of a

T-invariant function f ⋆ ∈ L1(XP, µ) such that µ( f ⋆) = µ( f ), and such that for all

P ∈ X ′ we have

(5.26) lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xP) = f ⋆(P).

In order to show that the right-hand side of (5.26) is constant in P, we will evaluate

the left-hand side of (5.26) using Proposition 5.6. To do so, we note that Fk
XP

(U ) is

a finite set. Thus, there exists a set X ⊆ XP of full µ-measure such that hypothesis

(ii) is satisfied for all Q ∈ Fk
XP

(U ) and for all P ∈ X. Then the set X ′ ′ := X ′ ∩ X

has full µ-measure (and is in particular non-empty), and equation (5.26) holds for

all P ∈ X ′ ′. Now, Proposition 5.6. and hypothesis (ii) imply that the value f ⋆(P) is

indeed independent of P ∈ X ′ ′, which in turn yields f ⋆ = µ( f ⋆) = µ( f ) on X ′ ′.
Therefore µ is ergodic. The asserted independence of the pattern frequency of the

choice of the tempered van Hove sequence follows from the corresponding indepen-

dence in the Ergodic Theorem 2.14.

In the simpler case of unique ergodicity one can argue as above, now with an arbi-

trary van Hove sequence. To prove (i) ⇒ (ii), one uses Theorem 2.16(i). To prove (ii)

⇒ (i), one can apply the characterization of unique ergodicity in Theorem 2.16(ii).

Independence of the choice of the van Hove sequence follows from Theorem 2.16.
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If XP is uniquely ergodic, then the convergence to ν(Q) in Definition 2.24 is even

uniform in P ∈ XP, since, after dividing by vol(Dn) in (5.25), the convergence on the

left-hand side is uniform in P ∈ XP by Theorem 2.16(i), and since the error term can

be chosen uniformly in P ∈ XP.

Proof of Proposition 2.32 Let (Dn)n∈N be a van Hove sequence in T.

(i) ⇒ (ii). Note first that uniform convergence of ν(y, P) in (y, P) ⊆ T × P, with

a limit independent of (y, P), is equivalent to the existence of the limit

(5.27) lim
n→∞

ν yn,Pn
n (Q) = lim

n→∞

card
({

Q̃ ⊆ Pn : ∃x ∈ Dn yn : xQ̃ = Q
})

vol(Dn)

for every sequence ((yn, Pn))n∈N ⊆ T × P, with independence of the limit of

((yn, Pn))n∈N. Assume now that XP is uniquely ergodic and fix a pattern Q ∈ QP.

Then condition (5.27) is satisfied, because for every sequence ((yn, Pn))n∈N ⊆ T ×P

we have

ν yn,Pn
n (Q) =

card
({

Q̃ ⊆ ynPn : ∃x ∈ Dn : xQ̃ = Q
})

vol(Dn)
= νe,ynPn

n (Q),

and because the convergence in the limit underlying the definition of ν(Q) is uniform

in P ∈ XP by unique ergodicity of XP; see the second part of Theorem 2.29. Hence

P has uniform pattern frequencies.

(ii) ⇒ (i). We use the characterization in Theorem 2.16(ii) with the dense algebra

of functions D from the proof of Theorem 2.29, (ii) ⇒ (i). As explained there, it

suffices to consider products
∏k

i=1 fϕi
, k ∈ N, with ϕi ∈ L0

b,c(M) for i ∈ {1, . . . , k}
having pairwise disjoint set-theoretical supports Ui . Given P ∈ XP, we abbreviate

In(P) :=
1

vol(Dn)

∫

Dn

dx
( k∏

i=1

fϕi

)
(xP)

and take a sequence
(
(ym, Pm)

)
m∈N

⊆ T × P such that (ymPm)m∈N converges to P.

Then, for every n ∈ N, the sequence (In(ymPm))m∈N converges to In(P) by dominated

convergence. On the other hand, uniform pattern frequencies, Remark 2.28(ii) and

Proposition 5.6 imply that

lim
n→∞

In(P̃) =
∑

Q∈Fk
XP

(U )

I(Q) ν(Q) =: J,

the convergence being uniform in P̃ ∈ XP and the limit J independent of P̃ ∈ XP. In

particular, uniformity allows the interchange of limits in

lim
n→∞

In(P) = lim
n→∞

lim
m→∞

In(ymPm) = lim
m→∞

lim
n→∞

In(ymPm) = J,

showing that limn→∞ In(P) exists for every P ∈ XP and is independent of P.
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Proof of Proposition 2.33 With 1A denoting the indicator function of a set A, the

pointwise ergodic theorem Theorem 2.14(ii) (together with a tempered subsequence

(Dn)n∈N of the given van Hove sequence in T) yields for µ-a.a. P ∈ XP

µ(CU) = µ(1CU
) = lim

n→∞
1

vol(Dn)

∫

Dn

dx 1CU
(xP).

On the other hand, the indicator function of the cylinder set CU can be expressed as

1CU
= f1U1

· · · f1Uk
,

since diam(Ui) < r. Apart from Q itself, the region (Q)ε contains, up to equivalence,

by hypothesis no other pattern of QXP
of the same cardinality as Q. Therefore we can

apply Proposition 5.6 with Fk
XP

(U ) = {Q}, which yields for all P ∈ XP

∫

Dn

dx 1CU
(xP) = I(Q) card

(
MDn

(Q)
)

+ o(vol(Dn))

as n → ∞, where the integral I(Q) is given by

I(Q) =
∑

π∈Sk

∫

T

dx
k∏

i=1

1Ui
(xqπ(i)).

Therefore we conclude from Theorems 2.29 and 2.14 that the pattern frequency ν(Q)

exists for µ-a.a. P ∈ XP, and for any such P we have

µ(CU) = I(Q) ν(Q).

Next we show that I(Q) = vol(Dε). To do so, we use the notation of Remark 5.2

and introduce Tπ
Q,U :=

⋂k
i=1 Sqπ(i),Ui

for π ∈ Sk. Since each Ui can accommodate at

most one point of a pattern, we obtain

Dε = {x ∈ T : xQ ⊆ U}(5.28)

=
⋃
π∈Sk

{
x ∈ T : xqπ(i) ∈ Ui for all i ∈ {1, . . . , k}

}

=
⋃
π∈Sk

Tπ
Q,U =

⋃
π∈Sk(Q)

Tπ
Q,U .

The restriction to Sk(Q) ⊆ Sk in the last equality of (5.28) is justified, because if for

some π ∈ Sk there is x ∈ T such that xqπ(i) ∈ Ui for all i, then there must exist

xπ ∈ T such that xπqπ(i) = qi , due to our hypothesis on the smallness of ε and the

uniqueness of Q. Hence π ∈ Sk(Q). The representation (5.28) also implies that Dε is

open and relatively compact in T; compare Lemma 2.3(iii).

On the other hand, since π ∈ Sk \ Sk(Q) does not contribute to I(Q) either (by

the same argument as above), we conclude

I(Q) =
∑

π∈Sk(Q)

∫

T

dx
k∏

i=1

1Ui
(xqπ(i)) =

∑

π∈Sk(Q)

vol
(

Tπ
Q,U

)
.
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Thus, the desired equality I(Q) = vol(Dε) follows if the rightmost union in (5.28) is

disjoint. To see this we take π, π̃ ∈ Sk(Q). By definition, there exist xπ, xπ̃ ∈ T such

that

xπqπ(i) = qi and xπ̃qπ̃(i) = qi

for all i ∈ {1, . . . , k}. On account of Remark 5.2, this implies

(5.29) Tπ
Q,U = T id

Q,U xπ and T π̃
Q,U = T id

Q,U xπ̃.

Assuming Tπ
Q,U ∩ T π̃

Q,U 6= ∅, we see that (5.29) then ensures the existence of y, ỹ ∈

T id
Q,U , which obey yxπ = ỹxπ̃ . This implies in turn

yqi = yxπqπ(i) = ỹxπ̃qπ(i) = ỹxπ̃qπ̃((π̃−1◦π)(i)) = ỹq(π̃−1◦π)(i)

for all i ∈ {1, . . . , k}. Hence, yqi ∈ Ui ∩ U(π̃−1◦π)(i) for all i ∈ {1, . . . , k}. Since

Ui ∩ U j = ∅ for i 6= j, we infer that π = π̃. Hence the rightmost union in (5.28) is

disjoint and I(Q) = vol(Dε) holds. This completes the proof of the first statement of

the proposition.

To show the remaining statement of the proposition we assume that T is Abelian

and note that

Sym,Bε(ym) = {x ∈ T : d(xym, ym) < ε} = {x ∈ T : d(xm,m) < ε}

= Sm,Bε(m)

for all y ∈ T and all m ∈ M due to T-invariance of the metric. Hence, if the group

also acts transitively on M, we infer T id
Q,U = Sm,Bε(m) for every m ∈ M. Together with

(5.29) and (5.28) this implies

Dε =
·⋃

π∈Sk(Q)

Sm,Bε(m)xπ,

and the statement follows from the unimodularity of T (which yields right invariance

of the Haar measure).

6 Proofs of Results in Section 3

Proof of Lemma 3.1 We only comment on properness of the induced action α̂, since

all other claims are evident. Properness of α follows from [Bou1, Prop. 5(ii), Chap.

III.4.2], where we choose G = G ′
= T, ϕ = id, X = M̂, X ′

= M, and ψ : M̂ → M,

(m, a) 7→ m.

Proof of Proposition 3.5 Compactness follows from closedness of CP in the com-

pact metrizable space Pr(M̂). Let (P(ωn)
n )n∈N ⊆ CP be a sequence with

lim
n→∞

P(ωn)
n = P̂ ∈ Pr(M̂).

Let P := π(P̂) ⊆ M. We show that P ∈ P and that P̂ is a coloured point set, which

implies P̂ ∈ CP.
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Continuity of the projection π yields limn→∞ Pn = P. Therefore we have P ∈ P

by closedness of P. Now assume that p̂1 := (p, a1) ∈ P̂ and p̂2 := (p, a2) ∈ P̂, where

p ∈ P and a1, a2 ∈ A. Thus, there exist two sequences ( p̂ n
j ) j∈N, j = 1, 2, such that

p̂ n
j ∈ P(ωn)

n for all n ∈ N and limn→∞ d̂( p̂ n
j , p̂ j) = 0 for both j = 1, 2. Continuity

of π yields limn→∞ d(pn
1, p) = 0 = limn→∞ d(pn

2, p). This implies d(pn
1, pn

2) < r for

finally all n ∈ N. Uniform discreteness of Pn then yields pn
1 = pn

2 =: pn, and we must

have an
1 = ωn(pn) = an

2 for finally all n ∈ N. This shows a1 = a2.

Proof of Lemma 3.6 Let Y :=
{

xP(ω) : x ∈ T, P(ω) ∈ CP

}
. Since CP ⊆ X̂P and X̂P

is T-invariant and closed, we deduce Y ⊆ X̂P.

To prove the converse inclusion, let P(ω) ∈ X̂P be arbitrary. This means P ∈ XP,

so there exists a sequence (Pn)n∈N in P converging to P. By choosing appropriate

ωn ∈ ΩPn
, we obtain a sequence (P(ωn)

n )n∈N in CP ⊆ Y that converges to Pω . Hence,

P(ω) ∈ Y .

Continuity of the group action αX̂P
follows from continuity of action α̂ on M̂.

Proof of Lemma 3.9 We give a detailed proof for the first example only. The proof

for the second example follows along the same lines, where T-stationarity ensures

T-covariance, the compactly supported strong mixing coefficient ensures indepen-

dence at a distance and where the continuous realizations ξ(σ)( · ) ensure C-compati-

bility and hence M-compatibility.

For the first example, T-covariance and independence at a distance are clear. It

remains to verify C-compatibility, from which M-compatibility follows. First, we

construct a ‖ · ‖∞-dense subset D of C(X̂P). For ϕ ∈ Cc(M) and ψ ∈ Cc(A) define

fϕ,ψ : X̂P → R by

(6.1) fϕ,ψ(P(ω)) :=
∑

p∈P

ϕ(p) · ψ
(
ω(p)

)
, P(ω) ∈ X̂P.

Continuity of fϕ,ψ is obvious from the definition of the vague topology. We also

introduce the constant function 1 ∈ C(X̂P) equal to one and the set

(6.2) D0 :=
{

fϕ,ψ : ϕ ∈ Cc(M) with diam (supp(ϕ)) < r/2, ψ ∈ Cc(A)
}

∪ {1},

which separates points in X̂P. The Stone–Weierstrass theorem [Ke, Prob. 7R] then

assures that the algebra D := alg(D0) generated by D0 is dense in C(X̂P) with respect

to the supremum norm.

Since

E f (P) − E f (P ′) =

∫

ΩP

dPP(ω)

∫

ΩP ′

dPP ′(σ) [ f (P(ω)) − f (P ′(σ))]

for all P, P ′ ∈ XP and since the algebra D is uniformly dense in C(X̂P), it suffices to

prove continuity of E f for functions f of the form gk :=
∏k

i=1 fϕi ,ψi
, where k ∈ N and

fϕi ,ψi
∈ D0 for all i ∈ {1, . . . , k}. Furthermore, since XP is metrizable, it suffices to

show sequential continuity of Egk
.
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Fix P ∈ XP and take a sequence (Pn)n∈N ⊆ XP which converges to P. Define

the compact set V :=
⋃k

i=1 supp(ϕi) and the (finite) pattern Q := P ∩ V̊ . Then the

pattern Q and (V̊ )c have a positive distance δ0 := d(Q, (V̊ )c) > 0. For arbitrary fixed

δ ∈]0,min(δ0, r)[, we find by Lemma 2.8(iv) an N = N(δ) such that we have for all

n > N the inclusions

(6.3) Pn ∩V ⊆ (P)δ, P ∩V ⊆ (Pn)δ.

For n > N we consider the finite patterns

Qn :=
{

p ∈ Pn : ∃ q ∈ Q with d(p, q) < δ
}

⊆ V̊ .

By (6.3), there exists a bijection hn : Q → Qn with d
(

q, hn(q)
)
< δ for all q ∈ Q and

for all n > N. Thus, we get

Egk
(Pn) =

∑

(q1,...,qk)∈Qk

( k∏
i=1

ϕi

(
hn(qi)

)) ∫

ΩPn

dP(σ)
k∏

i=1

ψi

(
σ
(

hn(qi)
))

(6.4)

=

∑

(q1,...,qk)∈Qk

( k∏
i=1

ϕi

(
hn(qi)

)) ∫

ΩP

dP(ω)
k∏

i=1

ψi

(
ω(qi)

)
,

where the last equality follows from the fact that all random variables are indepen-

dently and identically distributed. This implies, for all n > N, the estimate

|Egk
(P) − Egk

(Pn)|

6
∑

(q1,...,qk)∈Qk

∣∣∣
k∏

i=1

ϕi(qi) −
k∏

i=1

ϕi

(
hn(qi)

) ∣∣∣
∫

ΩP

dP(ω)
k∏

i=1

∣∣ψi

(
ω(qi)

) ∣∣

6

( k∏
i=1

‖ψi‖∞
) ∑

(q1,...,qk)∈Qk

∣∣∣
k∏

i=1

ϕi(qi) −
k∏

i=1

ϕi

(
hn(qi)

) ∣∣∣ .

Since the functions ϕi are continuous with compact support, we can make this dif-

ference as small as we want uniformly in n > N, by choosing δ sufficiently close to

zero.

Proof of Theorem 3.10 The map Yn : ΩP → R is continuous (hence measurable) for

every n ∈ N, as can be seen by applying Lebesgue’s dominated convergence theorem.

Below we prove (3.4) for random variables Yn corresponding to functions f in

the ‖ · ‖∞-dense subalgebra D ⊆ C(X̂P), which was introduced after equation (6.2).

This and an ε/3-argument establish the lemma for all f ∈ C(X̂P) because, given an

approximating sequence ( fk)k∈N ⊆ D, we have
∣∣Y (k)

n (ω) − Yn(ω)
∣∣ 6 ‖ fk − f ‖∞

uniformly in n and in ω. Here, Y (k)
n denotes the random variable (3.3) corresponding

to fk.

Thus, it suffices to prove (3.4) for random variables Yn corresponding to functions

f of the form f = fϕ1,ψ1
· · · fϕk,ψk

, where k ∈ N and fϕ j ,ψ j
∈ D0 for j ∈ {1, . . . , k}.
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To do so we fix P ∈ XP and ω ∈ ΩP arbitrary and set U j := int(supp(ϕ j)), which

is relatively compact for j ∈ {1, . . . , k}. Then we can apply Proposition 5.5 (with M̂

playing the role of M there) and obtain

(6.5)

∫

Dn

dx
( k∏

i=1

fϕi ,ψi

)
(xP(ω)) =

∑

π∈Sk

∑

Q∈Qk
P(U ;Dn)

Iπ(Q) Zπ
Q(ω) + o(vol(Dn)),

asymptotically as n → ∞, where the o(vol(Dn))-term can be chosen uniformly in

P ∈ XP and ω ∈ ΩP. In (6.5) we have used the notation of Proposition 5.5 and

Definition 5.3, except that we have singled out the sum over permutations π from

the integral (5.15) as well as the part involving the random variables

ΩP ∋ ω 7→ Zπ
Q(ω) :=

k∏
i=1

ψi

(
ω(qπ(i))

)
,

which amounts to setting

Iπ(Q) :=

∫

T

dx
k∏

i=1

ϕi(xqπ(i)).

The lemma will now follow from (6.5) and the relation

(6.6) lim
n→∞

1

vol(Dn)

∑

Q∈Qk
P(U ;Dn)

Iπ(Q)

[
Zπ

Q(ω) −

∫

ΩP

dPP(η) Zπ
Q(η)

]
= 0

for PP-a.a. ω ∈ ΩP, every P ∈ and every permutation π ∈ Sk.

If the set Qk
P(U ) := Qk

P(U ; T) is finite, then (6.6) follows from vol(Dn) → ∞
as n → ∞. Hence we assume in the remainder that the set Qk

P(U ) is infinite. The

relation (6.6) will then follow from the strong law of large numbers, as we now show.

We note, first, that the variances Var(Zπ
Q) 6

∏k
i=1 ‖ψi‖

2
∞ are bounded uniformly

in Q (and π). Second, the cardinality of the finite set Qk
P(U ; Dn) grows at most with

vol(Dn). This can be seen from the relative compactness of U =
⋃k

i=1 Ui , Lemma 5.4,

and Proposition 5.1(i), which both require unimodularity. Third, we show that the

coefficients Iπ(Q) are uniformly bounded in Q ∈ Qk
P(U ) (and π ∈ Sk). This will

follow from (5.18), which yields the estimate

|Iπ(Q)| 6 vol
(

S(Q)
) k∏

i=1

‖ϕi‖∞,

the inclusion (5.19), compactness of LU := SU ,U by Lemma 2.3(ii), and right invari-

ance vol(LU y) = vol(LU ) <∞ of the Haar measure on the unimodular group T.

Having these three properties in mind, the desired relation (6.6) follows from the

strong law of large numbers and Kolmogorov’s criterion [Bau, Thm. 14.5], provided

we know that the family (Iπ(Q)Zπ
Q)Q∈Qk

P(U ) consists of pairwise independent random

variables.
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If pairwise independence happens not to be the case, then we argue below that the

index set Qk
P(U ) can be partitioned into a finite number J of mutually disjoint subsets

(6.7) Qk
P(U ) =

J
·⋃

j=1

F j

such that for each j ∈ {1, . . . , J} the subfamily
(

Iπ(Q)Zπ
Q

)
Q∈F j

consists of pairwise

independent random variables. Assuming this decomposition for the time being, we

rewrite (6.6) as

(6.8) lim
n→∞

J∑

j=1

card(F(n)
j )

vol(Dn)
Z

(n)
j (ω) = 0 for PP-almost all ω ∈ ΩP,

where F(n)
j := F j ∩ Qk

P(U ; Dn) and

Z
(n)
j (ω) :=

1

card(F(n)
j )

∑

Q∈F(n)
j

Iπ(Q)

[
Zπ

Q(ω) −

∫

ΩP

dPP(η) Zπ
Q(η)

]

for j ∈ {1, . . . , J}. But (6.8) is indeed true. This follows from vol(Dn) → ∞ as n →
∞ for those j ∈ {1, . . . , J} such that F j is finite, and from the PP-almost sure relation

limn→∞ Z
(n)
j = 0 for those j ∈ {1, . . . , J} such that F j is infinite, thanks to pairwise

independence by the strong law of large numbers and Kolmogorov’s criterion.

It remains to verify the existence of the partition (6.7). This may be seen by

a graph-colouring argument: construct a graph T with infinite vertex set Qk
P(U ).

Two vertices Q and Q ′ of T are joined by an edge if and only if Zπ
Q and Zπ

Q ′ are

PP-dependent. Clearly, a vertex colouring of T (with finitely many colours and with

adjacent vertices having different colours) provides an example for the partition that

we are seeking. Due to uniform discreteness of P, independence at a distance of PP,

and because U is contained in some compact set in M, we infer that the degree of

any vertex in T is bounded by some number dT,max <∞. Thus, the vertex-colouring

theorem [Di] ensures the existence of such a colouring with J 6 1 + dT,max different

colours.

Proof of Theorem 3.11 First, we prove the existence of a unique T-invariant Borel

probability measure µ̂ on X̂P which obeys (i).

Thanks to M-compatibility, Assumption 3.8(iii), the integral

I( f ) :=

∫

XP

dµ(P) E f (P)

is well defined and finite for every f ∈ C(X̂P). Moreover, the map I : C(X̂P) →
R, f 7→ I( f ) is a positive, bounded linear functional that is also normalized, I(1) = 1,

and T-invariant because of (3.2), T-covariance of PP, and T-invariance of µ. By the

Riesz–Markov theorem there exists a unique Borel probability measure µ̂ on X̂P such

that

(6.9) µ̂( f ) =

∫

XP

dµ(P)

∫

ΩP

dPP(ω) f (P(ω))
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for all f ∈ C(X̂P). Since X̂P is a compact metric space and µ̂ is a Borel measure, the

continuous functions C(X̂P) lie dense in L1(X̂P, µ̂) with respect to ‖ · ‖1. Thus, given

f ∈ L1(X̂P, µ̂) there exists a sequence ( fk)k∈N ⊆ C(X̂P) that converges pointwise

and in ‖ · ‖1-sense towards f . This and dominated convergence yield for all f ∈
L∞(X̂P, µ̂) measurability of the map E f : XP → R ∪ {±∞} and that (6.9) holds.

Finally, these conclusions hold also for f ∈ L1(X̂P, µ̂) by decomposing f into its

positive and negative part and using monotone convergence for a sequence of L∞-

approximants.

In what remains we prove ergodicity of the T-invariant probability measure µ̂.

The additional statements about exceptional sets will be obtained along the way. Fix

f ∈ C(X̂P) arbitrary. On the one hand, the Ergodic Theorem 2.14 for Q = X̂P

provides the existence of f ⋆ ∈ L1(X̂P, µ̂) and of a µ̂-null set N̂ ⊆ X̂P such that

(6.10) lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xP(ω)) = f ⋆(P(ω))

for all P(ω) ∈ X̂P \ N̂. On the other hand, we apply the Ergodic Theorem 2.14

for Q = XP to the function E f ∈ L∞(XP, µ) and combine it with Theorem 3.10

(which requires unimodularity of T). This yields the existence of a set X̃ ⊆ XP of full

µ-measure and, for every P ∈ X̃, of a set Ω̃P ⊆ ΩP of full PP-measure such that the

equality

lim
n→∞

1

vol(Dn)

∫

Dn

dx f (xP(ω)) =

∫

XP

dµ(Q)

∫

ΩQ

dPQ(σ) f (Q(σ))

= µ̂( f )(6.11)

holds for all P ∈ X̃ and for all ω ∈ Ω̃P. In the uniquely ergodic case we rely on

C-compatibility E f ∈ C(XP) and apply the Ergodic Theorem 2.16 instead. This gives

(6.11) with X̃ = XP (and without requiring temperedness for the Følner sequence).

But

∫

X̂P

dµ̂(P(ω)) | f ⋆(P(ω)) − µ̂( f )|

=

∫

X̂P

dµ̂(P(ω)) 1X̂P\N̂ (P(ω)) | f ⋆(P(ω)) − µ̂( f )|

=

∫

XP

dµ(P)

∫

ΩP

dPP(ω) 1X̂P\N̂ (P(ω)) | f ⋆(P(ω)) − µ̂( f )|

= 0

on account of (3.5), (6.10), and (6.11), showing µ̂-a.e. f ⋆ = µ̂( f ) for all f ∈ C(X̂P).

The implication (iii) ⇒ (i) in the Ergodic Theorem 2.14 for Q = X̂P now completes

the proof.
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Proof of Proposition 3.13 Let (Dn)n∈N be a tempered subsequence of a Følner se-

quence in T. By Theorem 3.11 we have for µ-a.a. P ∈ XP and for PP-a.a. ω ∈ ΩP

that

µ̂(CA
U) =

∫

X̂P

dµ̂(Q(σ)) 1CA
U

(Q(σ)) =

∫

XP

dµ(Q)

∫

ΩQ

dPQ(σ) 1CA
U
(Q(σ))

= lim
n→∞

1

vol(Dn)

∫

Dn

dx 1CA
U

(xP(ω)).

Since the coloured cylinder set CA
U contains precisely all those coloured point sets

that possess exactly one point in each of the Ui (thanks to diam(Ui) < r), and with

corresponding colour value in Ai for i ∈ {1, . . . , k}, we can express its indicator

function as

1CA
U
= f1U1

,1A1
· · · f1Uk

,1Ak
.

Thus, we conclude from (6.5), which, according to the hypotheses of Proposition 5.5,

is also valid for indicator functions ϕi = 1Ui
, ψi = 1Ai

, i ∈ {1, . . . , k}, of open,

relatively compact sets, that for every P(ω) ∈ X̂P the equality

∫

Dn

dx 1CA
U
(xP(ω)) =

∑

Q∈Qk
P(U ;Dn)

∑

π∈Sk

Iπ(Q) Zπ
Q(ω) + o(vol(Dn)),

holds asymptotically as n → ∞. Here we used the notation introduced in (6.5).

Likewise, the law of large numbers (6.6) continues to hold for ϕi = 1Ui
, ψi = 1Ai

,

i ∈ {1, . . . , k}. This amounts to

lim
n→∞

1

vol(Dn)

∑

Q∈Qk
P(U ;Dn)

Iπ(Q)
[
Zπ

Q(ω) − P(A1) · · · P(Ak)
]
= 0

for PP-a.a. ω ∈ ΩP, for every P ∈ XP and every permutation π ∈ Sk, because the

expectation of Zπ
Q factorizes due to the product structure of PP and disjointness of

the Ui . Now we benefit from PP being a product of identical factors and summarize

the arguments so far as

(6.12) µ̂(CA
U) = P(A1) · · · P(Ak) lim

n→∞
1

vol(Dn)

∑

Q∈Qk
P(U ;Dn)

I(Q),

where I(Q) :=
∑

π∈Sk
Iπ(Q) =

∑
π∈Sk

∫
T

dx
∏k

i=1 1Ui
(xqπ(i)). Equation (6.12)

holds for µ-a.a. P ∈ XP. Since f1U1
· · · f1Uk

= 1CU
, Proposition 5.5 yields

lim
n→∞

1

vol(Dn)

∑

Q∈Qk
P(U ;Dn)

I(Q) = lim
n→∞

1

vol(Dn)

∫

Dn

dx 1CU
(xP) = µ(CU),

where the last equality holds for µ-a.a. P ∈ XP as a consequence of the Pointwise

Ergodic Theorem 2.14 applied to µ (Cor. 2.20). The claim then follows together with

(6.12).
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7 Proofs of Results in Section 4

Proof of Lemma 4.3 (i) First, properness of the actionαV of T on V implies that

the action αV×V of T on V × V, defined by αV×V(x, (v,w)) := x(v,w) := (xv, xw),

is also proper. This follows from [Bou1, Prop. 5(ii), Chap. III.4.2], where we chose

G = G ′
= T, ϕ = id, X = V × V, X ′

= V, and ψ : V × V → V, (v,w) 7→ v.

Secondly, properness of the action αV×V of T on V × V implies that the action α of

T on M is proper. This follows from [Bou1, Prop. 5(i) Chap. III.4.2], where we chose

G = G ′
= T, ϕ = id, X = V × V, X ′

= M, and ψ : V × V →, (v,w) 7→ {v,w}.

Here, the map ψ is required to be continuous, onto and proper. While the first two

properties are instantly clear, the third one follows from [Bou1, Prop. 2(c), Chap.

III.4.1]: setting there X = V ×V and K = {e, π}, the permutation group of 2 objects

that acts on (v,w) ∈ V × V according to e(v,w) := (v,w) and π(v,w) := (w, v), we

recognize ψ as the canonical map X → X/K.

(ii) Let mv,w ∈ M and x ∈ T be given such that xmv,w = mv,w. This means

that {(xv, xw), (xw, xv)} = {(v,w), (w, v)}. If (xv, xw) = (v,w), we have xv = v,

and freeness on V implies x = e. Otherwise, we have (xv, xw) = (w, v), implying

w = x(xw) = x2w. Freeness on V yields x2
= e, from which x = e follows by

assumption.

Proof of Theorem 4.10 Theorem 2.29 gives a characterization of (unique) ergod-

icity in terms of uniform pattern frequencies. In order to prove Theorem 4.10, it

suffices to show that the frequency of every pattern of XG can be expressed in terms

of frequencies of certain patches from XG.

Indeed, for every pattern Q of G that is not a patch there exists a uniquely deter-

mined minimal patch H of G by “adding the missing vertices on the diagonal”. Then,

the pattern Q occurs if and only if the patch H occurs.
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