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ABSTRACT

A functional approach is taken for the total claim amount distribution for the
individual risk model. Various commonly used approximations for this distri-
bution are considered, including the compound Poisson approximation, the
compound binomial approximation, the compound negative binomial approxi-
mation and the normal approximation. These are shown to arise as zeroth
order approximations in the functional set-up. By taking the derivative of the
functional that maps the individual claim distributions onto the total claim
amount distribution, new first order approximation formulae are obtained as
refinements to the existing approximations. For particular choices of input, these
new approximations are simple to calculate. Numerical examples, including
the well-known Gerber portfolio, are considered. Corresponding approxima-
tions for stop-loss premiums are given.
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1. INTRODUCTION

A key task in risk theory is the evaluation of the distribution of the aggregate
claim S arising from a collection of risks over a fixed time period. Historically,
two main approaches to this are via the individual risk model and via the collec-
tive risk model. These are considered in Cramér (1930) who refers back to ear-
lier work by Lundberg and others. More recent overviews appear in Klugman,
Panjer and Willmot (1998) and Rolski, Schmidli, Schmidt and Teugels (1999).

1.1. The individual risk model

In the individual risk model, the total amount claimed is modelled as the sum
of the amounts claimed on each of the separate risks. Thus if Xi is the claim
amount for the i th risk, i = 1, …, m, then the aggregate claim is
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S = X1 + … + Xm ,

where it is usually assumed that the Xi’s are independent but not necessarily
identically distributed.

If Gi is the distribution function of Xi , so that Gi(x) = P (Xi ≤ x), we often
have

Gi = (1 – qi)1[0,∞) + qi Fi ,

where qi ∈ (0,1) is the probability that there is a claim on the i th risk, 1A is the
indicator function of the set A, and Fi is the distribution function of a posi-
tive random variable Yi representing the size of claim on the ith risk, given that
a claim occurs. Then the distribution function FS of the total claim amount S is

FS = G1 ✶ … ✶ Gm,

where ✶ denotes Lebesgue-Stieltjes convolution.

Example 1. A typical simple example has the distribution of Yi concentrated
on a single point bi , so that Xi is the discrete random variable

0 with probability 1 – qi
Xi = { bi with probability qi.

A concrete example of this model is a group life insurance plan covering m lives,
where bi and qi are the amount payable on death and the mortality respectively
for individual i (see Klugman et al. (1998), §4.12.1).

One of the main quantities of interest in the individual model is the total claim
amount distribution FS, and we need to handle this both in terms of numeri-
cal evaluation of FS and also in terms of deriving theoretical properties of FS.
Although the convolution product FS = G1 ✶ … ✶ Gm is a conceptually simple
quantity, historically it turned out to be much easier to deal with the collec-
tive risk model, as descibed below. In addition, the use of the collective risk
model in practice avoids the necessity of obtaining precise statistical estimates
of each of G1, …, Gm from claims data.

1.2. Approximations for the individual risk model

In the collective risk model, we do not keep track of which risk gives rise to which
claim. Instead, we model the total claim amount as the sum of a random num-
ber N of claims, where the claims Z1, Z2, … are assumed to be independent,
identically distributed random variables with distribution function FZ, say, and
with {Zi} assumed to be independent of N. Writing T for the total claim amount
in the collective risk model, we have

T = Z1 + … + ZN,
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with T = 0 if N = 0. Thus T is a random sum and has a compound distribu-
tion, with distribution function FT = k 0=

P3! (N = k)F ★k
Z , where F ★0 = 1[0,∞).

One popular collective model approximation to the individual model is given
by a compound Poisson approximation where N has a Poisson distribution
with mean l and FZ is F, where
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We use the distribution function FT of the resulting collective total claim
amount T as an approximation to the distribution function FS of the individual
total claim amount S.

Another approximation uses a compound binomial approximation where N
has a binomial distribution with index m, so that

N + Bin(m,p) with p = m q1

i

m

1=
i! , and FZ = F as above. (1.2)

A third collective risk model is a compound negative binomial approximation,
where N has a negative binomial distribution, N + NB(m,1 / (1 + p)), with
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(so that N has probability generating function GN (z) = (1 + p – pz)–m), where
p = /q mi! as in (1.2) and FZ = F again.

All these three approximating collective risk models have the mean of the
approximating total claim amount exactly equal to the mean of the total claim
amount S in the individual risk model, but they all have variances that are
larger than var(S). See Rolski et al. (1999) §4.6 and the references therein for
further discussion of these approximations, and see Kuon, Radtke and Reich
(1993) for different choices of parameter values in the collective risk models that
ensure that both the means and the variances match those of the individual model.
An alternative compound Poisson approximation has N Poisson distributed
with mean l� = i 1=

/q q1i
m

- i! ^ h and FZ = i 1=
/ /q q F l1 �i

m
i- i! ^^ hh (see Kornya

(1983), and also Hipp (1986)). A third possible compound Poisson approximation
has Poisson mean l� = i 1=

log q1
m

- -e i! ^ h and FZ = i 1=
/log q F l1 �m

i- -e i! ^ h (see
Klugman et al (1998), §4.12.3).

All the above commonly found collective risk models have N distributed as
Poisson, binomial or negative binomial, and hence are such that Panjer recur-
sion (see Panjer (1981)) can be used to calculate the compound distribution.
An alternative numerical method of calculation of compound distributions
is the fast Fourier transform algorithm (see Embrechts, Grübel and Pitts
(1993)), whose use is not restricted to those N-distributions suitable for Panjer
recursion.
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For moderate portfolio sizes, direct calculation methods may be useful for
FS in the individual risk model. These direct methods include the use of gene-
rating functions, the De Pril algorithm (see De Pril (1986), (1989)), and the fast
Fourier transform algorithm (see Charles (2002)). Comparing the use of the
fast Fourier transform algorithm for the individual model and for the collective
model, we see that in general we need m transform steps for direct numerical
evaluation of FS for the individual model (if the Fi ’s are all different), then mul-
tiplication of the m transforms, and finally one inverse transform step. In con-
trast, for the compound Poisson approximation we need first to find F in (1.1),
then one transform step, then an exponentiation step and one inverse, ie fewer
transforms.

A much simpler approximation is obtained by approximating FS by a nor-
mal distribution function (see Klugman et al. (1998) §4.12.1). If mi = �(Yi) and
s2

i = var(Yi) (assumed finite), then the approximating normal distribution has
mean and variance given by

� S qm mS i i
i

m

1

= =
=

!] g and  .S q q qvars s m1S i i i i i
i

m
2 2 2

1

= = + -
=

!] ^_g h i (1.4)

This approximation is easy to calculate, although it may fail to capture impor-
tant aspects, such as skewness, of FS.

Many papers have considered approximations and calculation techniques for
the individual risk model, some of which have already been mentioned. A com-
mon theme in the literature is to derive error bounds for these approxima-
tion in terms of, for example sup|FT (x) – FS (x) | (De Pril and Dhaene (1992),
Dhaene and Sundt (1997)). An important paper for our work is Hipp (1986),
who gives higher order compound Poisson approximations. These are discussed
below in §3.1.

1.3. A functional approach

In this paper, we adopt a simple functional framework that is appropriate for
both the individual model and for the approximating models. In this set-up,
the existing approximations described in §1.2 arise as “zeroth’’ order approxi-
mations, and we then refine these to obtain new naturally arising “first’’ order
approximations which require very little extra mathematical effort beyond
finding an appropriate functional framework. The approximations obtained
are in principle approximation formulae, rather then numerical approxima-
tions, although they can be used to obtain numerical values.

To adopt a functional framework means that we regard the risk model as
a map F that takes the input, for example, (G1,…,Gm), onto an output quantity
of interest, such as FS. We show below that each of the collective risk and nor-
mal approximations can be written as the result of applying F to various
input (a1,…, am). Then, by showing that F is differentiable (in an appropriate
sense) at (a1,…, am), we obtain first order correction terms for the various
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approximations, giving rise to the new refined first order approximations. Higher
derivatives potentially lead to higher order approximations. However, the first
order ones here are particularly simple.

This functional approach has previously been used for stochastic models in
renewal theory (Grübel (1989), Politis and Pitts (1998)), queueing theory (Grü-
bel and Pitts (1992)), and ion channel models (Pitts (1998), Pitts (1999)).

The structure of the paper is as follows. In §2 we give the functional frame-
work for the map F, and the relevant differentiability result. In §3, we apply
the general first order correction terms to the compound Poisson, binomial
and negative binomial collective risk model approximations, and also to the nor-
mal approximation. §4 contains numerical examples, and stop-loss premiums
are considered in §5. §6 contains some miscellaneous comments.

2. THE CONVOLUTION PRODUCT MAP

In this section we specify the domain and codomain for the convolution prod-
uct map F, and we find its derivative. We work in the space A of finite signed
measures on (�,B), where B is the Borel s-field of �. We note that A is con-
tained in the space of finite complex measures on (�,B), and inherits many of
the properties of this space (see Rudin (1986), chapter 6). For a in A, we write
|a | for the non-negative measure given by |a | (E) = sup i 1= ( )a Ei

3! , the supre-
mum being taken over all partitions {Ei}∞

i =1 of E in B , and we write ||a || for the
total variation norm of a, given by ||a || = |a |(�). Then (A, ||·||) is a Banach space
(see Dunford and Schwartz (1958), III 7.4). The convolution of a and b in A
is a * b, where for E in B , a * b (E ) = a# (E – x)b (dx), and it is easy to check
that the norm inequality is satisfied, i.e. ||a * b || ≤ ||a || ||b ||. Let db be the element
of A that assigns a unit mass to b ∈ �. Then d0 is the identity element of A.

Now let Am = A ≈ … ≈ A, and for (x1, … , xm) in Am, let || (x1, … , xm) || =

i 1=
xi

m! . Let the convolution product map F : Am → A be defined by F (x1,…,
xm) = x1 *… *xm . We sometimes write 1= aii

m% for the convolution product a1 *
… *am . It should be clear from the context whether || · || refers to the norm in A
or in Am, and whether the symbol Π refers to convolution of elements of A or
to multiplication of numbers.

We show below that F is Fréchet differentiable and we give its Fréchet
derivative. In general, a map C : U → B2, where U is an nonempty open subset
of B1, and where (Bi, ||·||i), i = 1,2 are Banach spaces, is Fréchet differentiable at
a ∈U if there exists a linear bounded map C�a : B1 → B2 such that for all e > 0,
there exists d > 0 such that ||h ||1 < d implies

||C(a + h) – C(a) – C�a(h) ||2 ≤ e ||h ||1. (2.1)

Then C�a is the Fréchet derivative of C at a (§2.1 in Chapter 1 of Cartan (1971)).

Proposition 2. The convolution product map F is Fréchet differentiable at (a1, …,
am) for all (a1,…,am) ∈ Am, with Fréchet derivative
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for (h1, …, hm) in Am.

Proof. For a = (a1,…,am) and h = (h1,…,hm) in Am, we have
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For ||h|| ≤ 1, this is bounded above by ||h||2 (1 + ||a||)m. Given e > 0, for ||h|| ≤
min{e / ((1 + ||a||)m),1}, we have that (2.3) is bounded above by e ||h||, so that
(2.1) holds, and the derivative of F is as in (2.2).

The map F�a is linear. If ||h|| ≤ 1, then

||F�a(h)|| ≤ j

m 1-
,h a m a

!
i

i

m

j i1

#
=

! %

so that F�a is bounded. Hence the map F is Fréchet differentiable at a with
Fréchet derivative F�a there. ¡

3. APPLICATIONS TO THE INDIVIDUAL RISK MODEL

For the individual risk model, suppose the distribution Gi of the i th individ-
ual claim Xi corresponds to element xi of A, i = 1,…,m. Then the total claim
amount distribution FS corresponds to s in A given by s = F(x1,…,xm). Using
notation as in §1.1, if yi in A corresponds to the distribution of Yi , then we
set xi = (1 – qi)d0 + qi yi ∈ A, i = 1,…,m. For Example 1 we have xi = (1 – qi)d0 +
qi dbi

∈ A, i = 1,…,m.
We approximate F(x1,…,xm) by F(a1,…,am) where ai ∈ A, i = 1,…,m, and

the ai’s are chosen so that F(a1,…,am) is easily found. We call this the “zeroth’’
order approximation. We refine this by adding a first order correction term
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which leads to the first order approximation

F(x1,…,xm) ≈ F(a1,…,am) + j .x a a
!

i i
i

m

j i1

-
=

*! %^ h (3.1)

If all the ai’s are the same, and equal to a say, then the zeroth order approxi-
mation is a*m. The first order correction term is then

( ) , ..., ,x a x a x a maF ,...,
( )

a a m i
i
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1- - = -
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-* *
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� !^ dh n (3.2)

and the first order approximation is

, ..., .x x x a m aF 1( )
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m m
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-* **!^ d ]h n g (3.3)

We apply these results to the various approximations introduced in §1.2. For
each case, we show how the approximation can be written in the form of a
zeroth order approximation F(a1,…,am), for suitably chosen ai’s, and then we
find the form of the resulting first order approximation.

3.1. The compound Poisson approximation

We consider the compound Poisson approximation given in (1.1), with l =

i 1= qi
m! and FZ = F = ( i 1= qi

m! )–1
i 1= qi
m! Fi. Given the relative simplicity of (3.3)

compared to (3.1), we approximate the compound Bernoulli distribution xi =
(1 – qi) d0 + qi yi by a compound Poisson distribution a with Poisson parame-
ter i 1= /q mi

m! and with claims size distribution y in A given by y = ( i 1= qi
m! )–1

i 1= qi
m! yi (so that y corresponds to F in (1.1)). Then a*m is an approximation

to x1 * … * xm, and moreover, a*m is the convolution of compound Poisson dis-
tributions and hence is itself a compound Poisson distribution, with Poisson
parameter l = i 1= qi

m! and the claim size distribution y, so that a*m is the com-
pound Poisson approximation in (1.1). Thus the approximation in (1.1) is F(a,
…, a), and so fits into our functional framework. We note that the compound
Poisson approximation can be written as exp(l (y – d0)) in A, where for a ∈ A,
exp a = k 0= a3! *k /k!, so that the above relationship says that exp(l (y – d0)) =
(exp (l (y – d0) /m))*m.

We apply (3.3) to obtain the first order approximation
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The convolution product a*(m–1) is a compound Poisson distribution with Pois-
son parameter (1 – m –1) qi! and claim size distribution y. If the zeroth order
approximation a*m has already been found, then the first order correction term
involves evaluation of the compound Poisson distribution a*(m–1) (which is as
easy to find as the zeroth order approximation) and it also involves evaluation of
one potentially difficult convolution ly*a*(m–1). Roughly, writing comp(Poiss(l),F)
to denote a compound Poisson distribution with Poisson parameter l and
claim size distribution F, we obtain,

FS ≈ (m – qi! )comp(Poiss((m – 1)l /m),F )
+ ( iq Fi! ) ✶ comp(Poiss((m – 1)l /m),F )
– (m – 1) comp(Poiss(l),F ).

For illustration purposes only, we can apply this expression to Example 1 where
Fi = dbi, although we note that in this case exact calculation of s is avaiable via
De Pril recursion (De Pril (1986)). Write sk for P(S = k), and write comp (Poiss
(l),F )k for the probability that the given compound Poisson random variable
takes the value k. Then

sk ≈ (m – qi! )comp(Poiss((m – 1)l /m),F )k

+ qi! comp(Poiss((m – 1)l /m),F )k– bi

– (m – 1) comp(Poiss(l),F )k.

In terms of numerical calculation via transforms, we suppose we already have the
fast Fourier transform of y and a*m in yfft and zerofft respectively. To calcu-
late the first order approximation in (3.4), we need basically one exponentiation
step and one multiplication step to find

((m – l) + lyfft)exp((m – 1)l /m (yfft – 1)) – (m – 1)zerofft,

and then one inverse transform.

An alternative representation of the zeroth order compound Poisson approxi-
mation as a convolution product is to approximate the compound Bernoulli
factor xi = (1 – qi)d0 + qiyi by the compound Poisson distribution ai, with Pois-
son parameter qi and with claim size distribution yi. Then a1 * … * am is the same
zeroth order compound Poisson distribution given in (1.1). The first order
approximation is given by (3.1). Although each j!j i a% is a compound Poisson
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distribution, it has a different Poisson parameter and a different claim size dis-
tribution for each i. Thus this first order approximation is more complicated
to evaluate than (3.4). For numerical evaluation via transforms, this would
need m different exponentiations and m different counterparts of yfft.

The same procedure can be applied to the other compound Poisson approxi-
mations in §1.2 to get first order approximations.

Hipp (1986) obtains first and higher order approximations, together with
error bounds, for compound Poisson approximations. Each of these approxi-
mations is itself a (generalised) compound Poisson measure. For the zeroth
order compound Poisson approximation in (1.1), Hipp’s corresponding next
higher order approximation in our notation is the element h (1) of A given by

h (1) = exp yl d( ) ( )1 1
0-__ ii, (3.5)

where

l (1) = q
q
2i

i

i

m

1

+
=

2

!f p,

y(1) = q q y q y
l
1

2
1

( ) i i i i i
i

m

1
2 2 2

1

+ -
=

*! _b i l. (3.6)

This is different from the first order approximations we obtained above. While
(3.5) turns out to be much more accurate than (3.3) in the examples considered
below in §4, we note that it is intrinsically more complicated than our approxi-
mations. Calculation of (3.6) involves computation of y*2

i for i = 1, …, m.
For some distributions this is easy, for example if yi = dbi then y*2

i = d2bi, but
for general yi’s, calculation via fast Fourier transform methods involves finding
the transform of each yi and squaring it. In summary, the first order approxi-
mation in (3.3) is cruder but often simpler than Hipp’s corresponding approxi-
mation. Furthermore, our approximation technique is also applied to compound
binomial, compound negative binomial and normal approximations below,
whereas Hipp’s more accurate expansions are only for compound Poisson
approximations. Similar comments apply to the expansions discussed in Ceka-
navicius and Wang (2003).

3.2. The compound binomial approximation

The compound binomial approximation given in (1.2) approximates x1 * … * xm

by ((1 – p)d0 + py)*m, where p = /q mi! and y = /q y qi i i! ! . It is immediate
that this approximation is an m-fold convolution product and that it fits into
our functional framework. This compound binomial approximation uses the
same compound Bernoulli distribution a = (1 – p)d0 + py to approximate each
compound Bernoulli factor xi, so that x1 * … * xm is approximated by a*m.

We note that
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Hence, by (3.2), the first order correction term for the compound binomial
approximation is

,x ma a 0( )
i

i
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1

1- =
=

-*
*!de n o

and so in this case the zeroth and first order approximations are the same.

3.3. The compound negative binomial approximation

The compound negative binomial approximation in (1.3) has moment genera-
ting function

MT(t) = (1 + p – pMY (t)) –m,

where MY(t) is the moment generating function of a random variable with dis-
tribution function F. Hence MT(t) = a(t)m, where a(t) = (1 + p – pMY(t))–1 is
the moment generating function of a compound geometric distribution. This
compound geometric distribution corresponds to an element a, say, of A. Hence
the compound negative binomial approximation can be written as the output
a*m of the convolution product map.

Using (3.2), the first order correction term is

,m q q y a mad ( )
i i

m m
0

1- + --* *
*! !^ ^^ h h h

and a*(m–1) here is a compound negative binomial distribution with N ∼ NB
(m – 1,1/(p + 1)) and claim size distribution y. Thus this expression is relatively
easy to evaluate with only one potentially difficult convolution.

3.4. The normal approximation

We apply the above technique to the Normal approximation in §1.2. Write
f (m,s2) for a N(m,s2) distribution with mean m and variance s2. Then, taking ai to
be f (�(Xi), var(Xi)), where �(Xi) = qi mi = mXi say, and var(Xi) = qi s

2
i + qi(1 – qi)

m2
i = s2

Xi
say, we have the zeroth order approximation F(a1, …, am) = f (mS, s2

S ),
ie the usual normal approximation to the distribution of S. We write m \i for

jX!j i m! and s2
\i for 

jX!j i s
2! , and obtain from (3.1) the first order approxima-

tion
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\i) – (m – 1) f (mS, s2

S ). (3.7)

As we have seen for compound distribution approximations, simplifications
often occur when a1 = … = am = a, say. If we take a = f (mS /m, s2

S /m), then the
zeroth order approximation F(a,…,a) = a*m corresponds to the same Normal
approximation N(mS, s2

S ) in (1.4). The first order approximation is

, , .s x f m
m

m
m m fm s m s1 1

1i
i

m

S S S S
1

2 2. - -
- -

=
*!d b ] _n l g i (3.8)

The above two approaches to the Normal approximation give the same zeroth
order approximations, but different first order approximations. The expression
(3.8) is easier to evaluate, since it has just one potentially awkward convolution
( i 1= xi

m! ) * f ((1 – m –1)mS, (1 – m–1)s2
S ), whereas (3.7) has m such convolutions.

If we apply (3.7) and (3.8) to Example 1 we obtain respectively the simple
approximation formulae

s q1 i
i

m

1

. -
=

!^ h f (m \i , s2
\i) + qi

i

m

1=

! f (m \i + bi, s2
\i) – (m – 1) f (mS, s2

S ),

and

,

, , .

s q f m m

q f m b m m f

m s

m s m s

1 1 1

1 1 1

i
i

m

S S

i
i

m

S i S S S

1

1 1 2

1

1 1 2 2

. - - -

+ - + - - -

=

- -

=

- -

!

!

^d _ __

_ __ ] _

hn i i i

i i i g i

4. NUMERICAL EXAMPLES

Table 1 gives Gerber’s portfolio of 31 policies (page 35 in Gerber (1979); see also
Hipp (1986), Kuon et al. (1993)). Here, each xi is of the form xi = (1 – qi)d0 +
qidbi, as in Example 1.
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TABLE 1

GERBER’S PORTFOLIO OF 31 POLICIES

No. of b
policies 1 2 3 4 5

0.03 2 3 1 2 0
q 0.04 0 1 2 2 1

0.05 0 2 4 2 2
0.06 0 2 2 2 1
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Our approach allows us to find the corresponding first order correction terms
for each of the compound Poisson, compound binomial and compound nega-
tive binomial approximations given in (1.1), (1.2) and (1.3) respectively. Table 2
shows the true s, the compound Poisson zeroth and first order approximations
sp

(0) and sp
(1), the compound binomial zeroth order approximation sb

(0) (this is the
same as the first order approximation, see §3.2), and the zeroth and first order
compound negative binomial approximations snb

(0) and snb
(1). For each approxi-

mation, Table 2 shows the mass given to k = 0, 1,…,19. These are all calculated
using the fast Fourier transform.

The ||·|| errors for these approximations are given in the first row of Table 3.
For an approximation s(i), write S(i) for the mass given by this approximation
to the interval (– ∞,x]. The second row of Table 3 gives supx |S (i)(x) – FS(x) |.
Our theory only concerns ||·||-errors, but we include the sup-error since other
papers (in particular Hipp (1986)) refer to this distance measure.

From Table 3, we see that for Poisson and negative binomial cases, going
from zeroth to first order approximations leads to a reduction in both types
of error. We see that the compound binomial is the best of the zeroth order
approximations for both types of error. Further, the compound Poisson and
compound negative binomial first order approximations are similar to each
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TABLE 2

ZEROTH ORDER S (0) AND FIRST ORDER S (1) APPROXIMATIONS FOR GERBER PORTFOLIO.
S : TRUE TOTAL CLAIM AMOUNT DISTRIBUTION; SUFFIX p DENOTES COMPOUND POISSON,
b DENOTES COMPOUND BINOMIAL AND nb DENOTES COMPOUND NEGATIVE BINOMIAL.

s sp
(0) sp

(1) sb
(0) = sb

(1) snb
(0) snb

(1)

0 0.238195 0.246597 0.238563 0.238688 0.254283 0.238206
1 0.0147337 0.0147958 0.0150128 0.0149986 0.0145977 0.0150528
2 0.0877342 0.0867528 0.0880305 0.0879481 0.0855859 0.0882629
3 0.113183 0.111224 0.112917 0.112820 0.109672 0.113193
4 0.110709 0.110397 0.112271 0.112029 0.108658 0.112466
5 0.0963274 0.0928590 0.0947189 0.0947052 0.0911054 0.0947924
6 0.0615487 0.0610080 0.0625437 0.0625913 0.0595251 0.0624119
7 0.0690221 0.0654270 0.0669503 0.0670024 0.0639431 0.0668063
8 0.0548171 0.0545768 0.0556304 0.0556748 0.0535273 0.0555076
9 0.0431471 0.0413208 0.0418356 0.0418689 0.0407741 0.0417435

10 0.0301073 0.0305794 0.0306723 0.0306936 0.0304320 0.0306124
11 0.0235292 0.0233079 0.0231400 0.0231499 0.0234149 0.0231106
12 0.0182824 0.01834380 0.0180375 0.0180376 0.0185947 0.0180345
13 0.0125093 0.0131494 0.0127405 0.0127325 0.0135121 0.0127596
14 0.00871076 0.00921800 0.00876679 0.00875461 0.00963364 0.00879785
15 0.00591165 0.00650426 0.00606548 0.00605269 0.00691867 0.00609903
16 0.00415190 0.00459553 0.00420229 0.00419105 0.00497493 0.00423258
17 0.00271505 0.00317641 0.00284151 0.00283267 0.00350619 0.00286608
18 0.00174094 0.00212341 0.00184783 0.00184149 0.00240025 0.00186613
19 0.00111736 0.00141386 0.00119392 0.00118991 0.00163906 0.00120617
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other and also similar to the zeroth order (= first order) compound binomial
approximation, for both errors. For ||·||-error, the compound negative bino-
mial first order approximation is slightly better than the other two, whereas for
sup-error, the compound binomial zeroth order is slightly better than the other
two first order approximations. Table 2 shows that these general conclusions
do not necessarily hold for each k-value.

We compare our approximations with Hipp’s first order approximation h (1),
which is considered for this Gerber portfolio in Hipp (1986). We recall from
§3.1 that h(1) is intrinsically more complicated than our rather simple first order
approximation, in that h (1) requires yi

*2 for each i = 1, …, m. As might be
expected, h(1) is a much more accurate appproximation, with ||·||-error 0.0017
and sup-error 0.000295.

The Gerber 100 portfolio is obtained from the above portfolio by multi-
plying all the numbers in the body of Table 1 by 100, resulting in a portfolio
of 3100 policies (see Kuon et al. (1993)). The errors for the various approxi-
mations for this portfolio are given in Table 4. We see again that the first order
approximations are improvements on the zeroth order ones. For this example,
the zeroth order compound binomial approximation is better than all others
in the table for ||·||-error, but for sup-error, both the first order compound
Poisson and negative binomial approximations improve on the zeroth order
compound binomial. Hence, as a general conclusion from these two examples,
perhaps it is worth considering (a) compound binomial approximations, and
(b) the simple first order approximations for the compound Poisson and the
compound negative binomial.

For the Gerber 100 portfolio, we see again, as expected, that the Hipp first
order approximation does very much better, with ||·||-error 0.00013 and sup-error
0.000017.
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TABLE 3

GERBER PORTFOLIO: ERRORS FOR THE ZEROTH AND FIRST ORDER COMPOUND POISSON,
COMPOUND BINOMIAL AND COMPOUND NEGATIVE BINOMIAL APPROXIMATIONS

Poisson Binomial Negative Binomial

zeroth first zeroth/first zeroth first

||·||-error 0.0263 0.0118 0.0118 0.0479 0.0117
sup-error 0.0084 0.0022 0.0021 0.0161 0.0026

TABLE 4

GERBER 100 PORTFOLIO: ERRORS FOR THE ZEROTH AND FIRST ORDER COMPOUND POISSON,
COMPOUND BINOMIAL AND COMPOUND NEGATIVE BINOMIAL APPROXIMATIONS

Poisson Binomial Negative Binomial

zeroth first zeroth/first zeroth first

||·||-error 0.0244 0.00481 0.00439 0.0435 0.00611
sup-error 0.0063 0.0012 0.0011 0.0112 0.0016
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Rolski et al. (page 144) compare the (zeroth order) compound Poisson,
compound binomial and compound negative binomial approximations given
in (1.1), (1.2) and (1.3) respectively for a different small portfolio of 29 policies,
and they find that, in terms of relative error, the compound binomial is better
than the compound Poisson, which is in turn better than the compound neg-
ative binomial. This is in line with the results for the zeroth order approxima-
tions for the two examples above. They also find that Hipp’s first and second
order approximations give much smaller relative errors.

For an example involving continuous random variables, we consider an
example from Klugman et al. (1998), page 373, of a portfolio of 900 policies
which divide into three groups, where for an individual in the i th group, the
claim amount distribution is xi = (1 – qi)d0 + qi yi, where yi corresponds to an
exponential distribution with mean bi, see Table 5.

The true total claim amount distribution has a mass at zero and a density
over (0,∞). The densities for the true total claim amount distribution, the
zeroth order normal approximation, and the first order normal approximation
in (3.8) are shown in Figure 1. The first order approximation does a better job
than the zeroth order approximation of capturing the shape of the true den-
sity. For the zeroth order approximation, the ||·|| and sup-errors are 0.088 and
0.023 respectively, and the corresponding errors for the first order approxima-
tion are 0.022 and 0.0039.

5. STOP-LOSS PREMIUMS

In considering compound distribution approximations for the individual model,
several authors also compare the resulting approximations for stop-loss pre-
miums (for example, Hipp (1986), Kuon et al. (1993), De Pril and Dhaene
(1992), Dhaene and Sundt (1997)). In this section, we extend our functional
approach to stop-loss premiums, and we obtain new first order approximations
that are refinements of the existing approximations in the literature.

In this section we restrict for simplicity to non-negative random variables
and we consider elements of A that are concentrated on [0,∞). For a non-nega-
tive total claim amount S with distribution function FS we suppose �(S) < ∞.
Then the stop-loss premium with retention y (> 0) is

( ) ( ) ,� S y x y F dx F x dx1
y

S S
y

- = - = -
3 3

+
# #^_ ^ ^h i h h
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TABLE 5

EXAMPLE FROM KLUGMAN ET AL.

Age group No. of policies qi bi

18-35 400 0.03 5
36-50 300 0.07 3
51-65 200 0.10 2
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FIGURE 1. True (solid line), zeroth order normal approximation (dotted line) and first order normal
approximation (broken line) for the example from Klugman et al.

where x+ = max{x,0}. This last expression motivates our choice of functional,
but first we define a relevant space.

Let A1 = {a ∈ A : a is concentrated on [0,∞), t# |a| (dt) < ∞}, where |a| is as
in §2. For a in A1, put ||a||1 = ( )t1 +# |a| (dt) = ||a|| + a

0

3
# ((t,∞)) dt. It is readily

checked that (A1, ||·||1) is a Banach space, and that for a,b ∈ A1, their convolu-
tion product a * b is also in A1, with ||a * b ||1 ≤ ||a ||1 ||b ||1. For (a1, …, am) in A1

m,
we have that F(a1, …, am) = a1 * … * am is in A1.

For a in A1 and y > 0, define Ty(a) by

( ) , .T a a t dty
y

3=
3

# ]^ gh

The condition that a is in A1 ensures that |Ty(a)| < ∞. When a is a probability
measure, then Ty(a) is the stop-loss premium with retention y.

Thus we have the stop-loss functional, Ty ° F : A1
m → �, where

, ..., ... , .a a a a x dxm m
y

1 17 3
3

* *#^ ]^h gh

When xi = (1 – qi)d0 + qi yi as in §3, we have that Ty ° F(x1,…,xm) is �((S – y)+)
where S is the total claim amount for the individual model. When F(a1, …, am)
is one of the approximations to this total claim amount distribution given in
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§3, then the corresponding stop-loss premium Ty ° F(a1,…,am) is the resulting
zeroth order approximation to the true stop-loss premium.

For a first order approximation, we need the Fréchet derivative of Ty. It is
easy to check that Ty is linear and bounded, and that hence Ty is Fréchet dif-
ferentiable at s in A1, with derivative T�y,s = Ty at s. Using the chain rule for
Fréchet derivatives (Cartan (1971), Theorem 2.2.1 in Chapter 1), we see that
the stop-loss functional is Fréchet differentiable at a = (a1, …, am) with deriva-
tive given by

(Ty ° F)�a (h) = Ty ° F�a (h)

where h = (h1, …, hm). This leads to first order approximations for the stop-loss
premium with retention y which are obtained by applying Ty to the previous
first order approximations for F(x1, …, xm).

We apply this for the Gerber portfolio of 31 policies. Table 6 gives the maxi-
mum absolute error for the stop-loss approximations for retention values y = 0,
…, 50.

6. MISCELLANEOUS REMARKS

1. The first order approximations (3.1) and (3.3) may be relevant for other areas
of applied probability where sums of independent random variables are of inter-
est. In the insurance context, the functional approach is not limited to the specific
approximations given in §3. For example, an even simpler and cruder approx-
imation is obtained if we rescale the claim sizes so that one unit is �(S) /m
and so �(S) = m. Taking ai = d1, i = 1, …, m, gives a zeroth order approxima-
tion dm for the distribution of S. From (3.3), the first order approximation is

.s x md d1i
i

m

m m
1

1. - -
=

-*!d ]n g

2. Error bounds are an important aspect of the literature on approximations for
the individual risk model. The functional approach does indeed give rise to error
bounds on the zeroth order approximations via the Mean Value Theorem (see
Proposition 3.3.1 of Chapter 1 in Cartan (1971)). Suppose that a = (a1, …, am)
and x = (x1, …, xm) are in Am, and that the ai’s and the xi’s are probability
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TABLE 6

GERBER PORTFOLIO: ERRORS FOR THE STOP-LOSS APPROXIMATIONS

Poisson Binomial Negative Binomial

zeroth first zeroth/first zeroth first

max abs error 0.0380 0.0071 0.0069 0.0683 0.0078
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distributions (as they are in our applications). Then the Mean Value Theorem
error bound for using F(a) = a1 * … * am as an approximation for F(x) = x1 *
… * xm implies

( ) ( ) ,x a x aF F i i
i

m

1

#- -
=

! (6.1)

so that the bound is not new, but recovers an existing known bound, see Feller
(1971), page 286, and also Dhaene and Sundt (1997).

3. Higher order derivatives give rise to higher order approximations. Consider
a general map C : U ⊆ B1 → B2 where U is an open subset of B1 and (Bi, ||·||i),
i = 1,2, are Banach spaces. The second derivative of C at a is a bounded bilin-
ear map C�a (·, ·) from B1 ≈ B1 to B2, and is identifiable with the derivative of
the map a 7 C�a , U → L (B1,B2), where L (B1,B2) denotes the set of bounded
linear operators from B1 to B2 (§5.1 in Chapter 1 of Cartan (1971)). For our
convolution product map F, this leads to a second order approximation

F(x) = F(a) + F�a(x – a) +
2
1 F�a (x – a, x – a),

see Theorem 5.6.2 in Cartan (1971). Following a similar approach to that of
Proposition 2, we find that

F�a (x – a, x – a) = ( )x a
!

i i
i j

-! * (xj – aj) * a
! ,

k
k i j

% ,

for a = (a1, …, am) and x = (x1, …, xm) in Am. For the stop-loss functional, we
use the fact that (Ty ° F)�a (x) = Ty (F�a (x)) (see §5), and that Ty is linear and
bounded, to see that

(Ty ° F)�a (x – a, x – a) = Ty j j .x a x a a
!! ,

i i k
k i ji j

- -* * %!^ _e h i o

Even when a1 = … = am, both these second derivatives still involve the sum
j!i j x xi *! . For calculation via fast Fourier transform, in general this gives no

simplification over direct calculation of x1* … *xm. For higher order approxi-
mations, the computational burden increases. Thus the main practical gain of
the present approach is achieved by the first order approximations arising from
the first derivative, and there seems little further benefit from going on to higher
order approximations beyond the first.

4. The second derivative also provides an upper bound on the ||·||-error of the
first order approximations. This bound is given by

|| F(x) – F(a) – F�a(x – a) || ≤ sup F
2
1

( )
t

t a tx
0 1

1
# #

- +
� ||x – a ||2,
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where a = (a1, …, am) and x = (x1, …, xm) are in Am (Theorem 5.6.2 in Chap-
ter 1 of Cartan (1971)). If the ai’s and xi’s are all probability distributions,
then sup 0 ≤ t ≤ 1||F�(1 – t)a + tx || ≤ 1, and so we obtain the following bound on the
error for the new first order approximation to F(x)

|| F(x) – F(a) – F�a(x – a) || ≤
2
1 ||x – a ||2 = .x a

2
1

i i
i

m

1

2

-
=

!d n (6.2.)

For the stop-loss functional, we find

||Ty ° F(x) – Ty ° F(a) – (Ty ° F)�a (x – a) || ≤
2
1 ||Ty || ||x – a ||2 ≤ ,x a

2
1

i i
i

m

1

2

-
=

!e o

because ||Ty || ≤ 1.

5. The error bounds in Remarks 2 and 4 above are not necessarily the best
bounds that can be achieved in particular cases. Together, (6.1) and (6.2) tell
us what we might have expected: if xi is sufficiently close to ai for each i, then
the zeroth order approximation is close to the true distribution, and the first
order approximation is even closer. However, these bounds do not preclude the
possibility of good zeroth and first order approximations even when the right-
hand sides of (6.1) and (6.2) are not small. Different approaches from the
functional approach considered here may well give rise to better error bounds. Nev-
ertheless, the numerical examples in §§4 and 5 demonstrate that the functional
approach can provide useful and relatively easily calculated approximations
that are improvements upon the known zeroth order approximations in the
compound Poisson, the compound negative binomial, and in the normal case.
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