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The turbulence-induced quasi-linear particle flux of a highly charged, collisional
impurity species is calculated from the electrostatic gyrokinetic equation including
collisions with the bulk ions and the impurities themselves. The equation is solved
by an expansion in powers of the impurity charge number Z. In this formalism, the
collision operator only affects the impurity flux through the dynamics of the impurities
in the direction parallel to the magnetic field. At reactor-relevant collisionality, the
parallel dynamics is dominated by the parallel electric field, and collisions have a
minor effect on the turbulent particle flux of highly charged, collisional impurities.
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1. Introduction
Impurities are always present in fusion plasmas, either due to unavoidable plasma–

wall interaction, or through deliberate impurity injection. In the edge of a tokamak or
stellarator, impurities can be beneficial, as they radiate energy and thus can mitigate
the heat load on plasma-facing components. However, their ability to radiate energy is
detrimental in the core of the plasma. It is thus crucial to understand how impurities
are transported so that they do not accumulate in the core of the device.

There is a large body of theoretical research on the neoclassical transport of
impurities in stellarators (Helander et al. 2017; Velasco et al. 2017; Calvo et al.
2018), which we shall not describe in detail. Far less has been done to study
turbulent particle transport – either of impurities or of the bulk ions and electrons
– and most of these studies rely on quasi-linear transport theory (Mikkelsen et al.
2014). Recently, however, there have been direct numerical simulations of turbulence
in impure stellarator plasmas using gyrokinetic codes (Nunami et al. 2020).

Recent measurement in the stellarator Wendelstein 7-X indicate that the impurity
transport is dominated by turbulent diffusion (Langenberg et al. 2018; Geiger et al.
2019). Diffusion coefficients two orders of magnitude larger than those calculated from
collisional transport have been measured for iron impurities (Geiger et al. 2019), and
the impurity confinement time appears to be insensitive to the impurity charge number
(Langenberg et al. 2020) – in contradiction to predictions for collisional transport
(Helander & Sigmar 2005).
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On the other hand, the experimental observations may be consistent with recent
theoretical calculations of the transport due to electrostatic turbulence (Helander &
Zocco 2018), which, for heavy species, give transport coefficients independent of the
impurity charge and mass (Angioni et al. 2016; Helander & Zocco 2018). However,
the calculation by Helander & Zocco (2018) does not include collisions, which
could have a significant effect on heavy impurities due to their high charge and
high collision frequency. The present paper addresses this shortcoming by including
collisions in the calculation of the quasi-linear impurity flux.

Previous analytical work has shown that collisions with the impurities themselves
do not significantly affect the impurity flux in tokamaks (Pusztai et al. 2013). This
calculation can be generalized, without additional complications, to also apply to
stellarators, which is done in § 3.1. However, Pusztai et al. (2013) considered
non-trace impurities, which allowed them to neglect the collisions between impurities
and bulk ions, which could, in principle, modify the impurity flux. In § 3.2, we show
that impurity–ion collisions provide only a small correction to the previous results
unless the charge number of the impurities is comparable to the inverse bulk-ion
collisionality. Our result thus strengthens the conclusions of Helander & Zocco
(2018) and Pusztai et al. (2013) for low collisionality plasmas, and generalizes parts
of the calculation of Pusztai et al. (2013) to stellarator geometry.

2. Equation for heavy impurities
The linearized electrostatic gyrokinetic equation for impurities is

iv‖∇‖ĝz(l, v, λ)+ (ω−ωdz)ĝz(l, v, λ)− iC[ĝz(l, v, λ)] = (ω−ωT
∗z)

ZeJ0φ̂

Tz
fMz, (2.1)

where gz is the non-adiabatic part of the perturbed impurity distribution function,
gz = fz − (1− Zeφ/Tz)fMz, fz the full impurity distribution function, fMz a Maxwellian
with temperature Tz and density nz,

fMz(v)= nz

(
mz

2πTz

)3/2

e−(mzv
2/2Tz), (2.2)

with mz the mass of the impurity, φ the fluctuating electrostatic potential and e the
elementary charge. Both gz and φ have been written as gz = ĝz(l)e−iωt+iS, where (in
ballooning space) S satisfies B · ∇S= 0 and ∇S= k⊥, where B is the magnetic field
and l is the arc length along B. The magnetic field is written as B=∇ψ ×∇α, and
the wave vector as k⊥= kψ∇ψ + kα∇α. The drift frequency is ωd = k⊥ · vd, where vd
is the drift velocity

vdz =
v2
⊥

2Ωz
b×∇ ln B+

v2
‖

Ωz
b× (b · ∇b) , (2.3)

where b = B/B, B = |B|, Ωz = ZeB/mz; v‖ and v⊥ are the speeds in the directions
parallel and perpendicular to B. The collision operator C will be specified explicitly
in § 3. The diamagnetic frequency is ωT

∗z = ω∗z(1 + ηz[x3
− 3/2]), where ω∗z =

(kαTz/Ze) d ln nz/dψ , ηz = d ln Tz/d ln nz and x = v/vTz with vTz =
√

2Tz/mz. J0 =

J0(k⊥v⊥/Ωz), where J0 is the zeroth-order Bessel function of the first kind. In (2.1) and
throughout the rest of this paper, gradients are taken with λ= v2

⊥
/(Bv2) and v fixed.
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Effects of collisions on impurity transport driven by electrostatic modes 3

The derivation of (2.1) assumes that the electrostatic potential perturbations have low
amplitude, in the sense that Zeφ̂/Tz � 1, and that the deviation of the background
potential from a flux function is similarly small. If these conditions are violated,
the potential variations would cause nz to vary on the flux surface, and (2.1) would
not be valid. Such large variations in the background potential have been observed
experimentally and studied theoretically for both tokamaks (Fülöp & Moradi 2011;
Reinke et al. 2012) and stellarators (Pedrosa et al. 2015; García-Regaña et al. 2017),
but will not be considered here.

Given a solution to (2.1), we calculate the quasi-linear impurity flux using (Helander
& Zocco 2018)

Γz =−kαI
〈∫

d3v φ̂∗J0ĝ
〉
, (2.4)

where I denotes the imaginary part and the brackets denote a flux-surface average

〈X〉 = lim
L→∞

∫ L

−L
X

dl
B

/∫ L

−L

dl
B
. (2.5)

2.1. Expansion in powers of Z−1

Like Pusztai et al. (2013), we solve (2.1) for a highly charged impurity species by
expanding the equation in powers of Z. We assume

Z2 nz

ne
� 1, (2.6)

Z1/2
� 1, (2.7)

mz

mi
∼ Z� 1, (2.8)

corresponding to a highly charged, heavy trace impurity species. As the impurities are
only a trace, they will not affect the electrostatic potential, which is set by the bulk
ions and electrons. Thus, we assume that the impurities merely respond to ion-scale
turbulence, and that ω is comparable to the ion diamagnetic frequency ω∗i. We order
the impurity frequencies in powers of Z by relating them to the corresponding bulk-ion
frequencies

ωbz ∼ Z−1/2ωbi, (2.9)
ωdz ∼ Z−1ωdi, (2.10)

where we order the bulk-ion frequencies as similar ωbi∼ωdi. Here, ωba is the bounce
or transit frequency of species a, v‖∇‖ga ∼ ωbaga. The collision operator is ordered
as

C[gz] ∼ω∗igz. (2.11)

As the turbulence is set by the bulk species, k⊥ is independent of Z and k⊥v⊥Ωz thus
scales as Z−1.

We expand ĝz and (2.1) in powers of Z−1,

ĝz = ĝ(0)z + ĝ(1/2)z + ĝ(1)z + · · · , (2.12)

where ĝ(n)z /ĝ
(0)
z ∼ Z−n.
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The Z0-order equation becomes

ωĝ(0)z − iC[ĝ(0)z ] =ω
Zeφ̂
Tz

fMz, (2.13)

which has the solution ĝ(0)z = (Zeφ̂/Tz) fMz, and gives no impurity flux when inserted
into (2.4).

The Z−1/2-order equation is

ωĝ(1/2)z − iC[ĝ(1/2)z ] =−iv‖∇‖ĝ(0)z , (2.14)

so that also ĝ(1/2)z yields no flux when inserted into (2.4), since∫
d3v C[gz] = 0, (2.15)

for collisions that preserve the number of impurities.
The Z−1-order equation is

ωĝ(1)z − iC[ĝ(1)z ]

=ωdzĝ(0)z − iv‖∇‖ĝ(1/2)z −ωT
∗z

Zeφ̂
Tz

fMz −ω
k2
⊥
v2
⊥

4Ω2
z

Zeφ̂
Tz

fMz, (2.16)

where we have expanded the Bessel function J0. The corresponding particle flux
receives contributions from all but the last term on the right-hand side

Γz =−kαI
〈∫

d3v φ̂∗

(
ωdz

ω
ĝ(0)z −

iv‖
ω
∇‖ĝ(1/2)z −

ωT
∗z

ω

Zeφ̂
Tz

fMz

)〉
. (2.17)

The terms in this expression are fluxes due to magnetic curvature, parallel compressi-
bility (Angioni & Peeters 2006) and ordinary diffusion. The curvature and diffusion
terms were also found by Helander & Zocco (2018), along with a thermodiffusion
term, which is smaller in Z−1 and thus absent to this order. The parallel compressibility
term is absent in the calculation of Helander & Zocco (2018), since no distinction
was made between the smallness of the impurity bounce and drift frequencies, but
our results otherwise agree with those of Helander & Zocco (2018).

In (2.17), collisions give no direct contribution to the flux, but will affect the
flux indirectly through g(1/2)z in the parallel compressibility term. To quantify the
effects of collisions, we thus have to solve (2.14) for g(1/2)z , which we do in the next
section. Once an expression for g(1/2)z has been obtained, we can then estimate the
importance of collisions by comparing the flux due to the parallel compressibility
with the ordinary diffusive flux.

3. Solving for ĝ(1/2)z

Before solving (2.14), we note that only the part of ĝ(1/2)z that is odd in v‖ will
contribute to the flux (2.17). We thus split (2.14) into an odd and even part, where
the odd part is

ωĝ(1/2)−z − iC−[ĝ(1/2)z ] =−iv‖∇‖ĝ(0)z , (3.1)

where the ‘−’ superscript indicates the part of ĝz and C[ĝ(1/2)z ] that is odd in v‖.
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To solve (3.1), we need an explicit expression for the collision operator. We write

C[ĝz] =Czz[ĝz] +Czi[ĝz], (3.2)

where Czz and Czi are the impurity–impurity and impurity–ion collision operators,
respectively. In the limit where finite Larmor-radius effects can be neglected, we can
use the expressions for the Fokker–Planck collision operator from collisional transport
theory directly on ĝz. This is easily justifiable for the impurities, which have a small
Larmor radius due to their large charge. For the reminder of this paper, we thus
simplify the notation by omitting the hats on gz and φ.

The relative size of the impurity–impurity and impurity–ion operators is (Helander
& Sigmar 2005)

Czz[gz]

Czi[gz]
∼

√
mz

mi
Z2 nz

ne
, (3.3)

and will be taken to be O(1) in our orderings. For purely illustrative purposes, it is
nevertheless instructive to consider the limit where Czz[gz] � Czi[gz], to demonstrate
why impurity–impurity collisions cannot affect the impurity flux.

3.1. Impurity–impurity collisions only

For C[g(1/2)z ] ≈ Czz[g(1/2)z ], g(1/2)z ∝ v‖ fM is in the null space of the collision operator
(Helander & Sigmar 2005), in the sense that Czz[v‖ fM] = 0. The solution to (3.1) then
becomes

g(1/2)−z =−
i
ω
v‖

ZefMz

Tz
∇‖φ. (3.4)

This result, previously found by Pusztai et al. (2013), would also have been obtained
from (3.1) without the collision operator, and is thus not affected by impurity–impurity
collisions.

Inserting (3.4) into (2.17) and writing ω = ωr + iγ , the parallel compressibility
contribution to the particle flux becomes

Γ comp
z = kαI

Ze
Tz

〈∫
fMz
v‖

ω2
∇‖
(
v‖∇‖φ

)
φ∗d3v

〉
= −kα

Ze
mz

nz
〈
|∇‖φ|

2
〉
I

1
ω2
.

=
2ωrγ kα
(ω2

r + γ
2)2

Ze
mz

nz
〈
|∇‖φ|

2
〉
. (3.5)

The right-hand side of (3.5) follows from 〈B∇‖X〉 = 0 for any single valued X; also
recall that λ and v are kept fixed when evaluating ∇v‖. We compare this flux to the
flux due to ordinary diffusion. From the last term in (2.17), the diffusive flux is of
the size

Γ D
z ∼−

k2
α

ω

〈
|φ|2
〉 dnz

dψ
, (3.6)

whereupon the relative contribution of (3.5) to the flux becomes

Γ comp
z

Γ D
z

∼
Ze
mz

k2
‖

kαω
dln nz

dψ

∼

(
k‖a
k⊥ρi

)2

, (3.7)
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where we have used ∇‖φ ∼ k‖φ, recalled ω ∼ ω∗i ∼ k⊥ρivTi/a, used kα ∼ k⊥a and
d ln nz/dψ ∼1/(Ba2). Here, a is the minor radius. For a stellarator with N field periods
and major radius R, we can use the rough estimate

k‖ ∼
N
2R
, (3.8)

based on the picture of φ as a standing wave on each period of the stellarator
(Kornilov et al. 2004; Helander et al. 2012). The ratio (3.7) thus scales as the inverse
aspect ratio squared. For parameters typical of ion-temperature-gradient turbulence in
Wendelstein 7-X (k⊥ρi∼10−1 to 100; k‖a∼2.5×10−1), the ratio (3.7) is approximately
5 to 5× 10−2, where the larger value corresponds to turbulence with smaller k⊥ρi.

We thus conclude that parallel compressibility could contribute significantly to the
impurity flux. In the next section, we show how this contribution is modified by
impurity–ion collisions.

3.2. Effects of impurity–ion collisions
We have shown that impurity self-collisions have no effect on the quasi-linear particle
flux of highly charged impurities. This result is applicable in the limit where highly
charged impurities are a trace Z2nz/ni� 1 with exceptionally large mass,

√
mz/mi�

ni/(Z2nz), and hinges on the fact that the solution to (3.1) without impurity–impurity
collisions is in the null space of Czz. To generalize these results to impurities without
exceptionally large mass, we need to include the effects of impurity–ion collisions.

Neglecting finite Larmor-radius effects, the impurity–ion collision operator is (to
lowest order in

√
mi/mz) (Calvo et al. 2019)

C−zi [g
(1/2)
z ]

=
4

3
√

π

√
mi

mz
ν̂zi

(
K[g(1/2)−z ] +

mzv‖A
Tz

fMz

)
; (3.9)

where

K[g] =
Tz

mz
∇v ·

[
fMz∇v

(
g

fMz

)]
, (3.10)

with ∇v the gradient operator in velocity space; and

A=
3
√

πT3/2
z

√
2nim

3/2
i

∫
v‖

v3
fi(v)d3v, (3.11)

where fi is the bulk-ion distribution; A can be interpreted as the flow velocity the
impurities would reach due to collisions with the bulk ions, in the absence of other
forces (Calvo et al. 2019). The collision frequency is

ν̂ab =
Z2

aZ2
bnb

m1/2
a T3/2

a

e4lnΛ
23/24πε2

0
, (3.12)

with lnΛ the Coulomb logarithm and ε0 the permittivity of vacuum. To simplify the
notation, we also introduce the modified impurity–ion collision frequency

ν ′zi =
4

3
√

π

√
mi

mz
ν̂zi. (3.13)
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Scenario Ti/keV ni/10−20 m−3 ν̂iia/vTi Zu

W7-X 1.1 0.3 1.5× 10−3 200
TJ-II 0.1 0.07 17× 10−3 18
LHD 1.5 0.4 1.2× 10−3 250

TABLE 1. Collisionality ν̂iia/vTi calculated for different scenarios. Zu ≡ 0.3vTi/(ν̂iia) refers
to the charge number at which impurity–ion collisions are expected to have an order-unity
effect on the flux due to parallel compressibility (3.17). The parameters are taken form
the following scenarios: W7-X – LBO impurity study (Langenberg et al. 2020); TJ-II –
LBO impurity study (Zurro et al. 2014); LHD – TESPEL impurity study (Tamura et al.
2016). In Zu we used k‖a∼ k⊥ρi ∼ 0.3 to obtain one estimate for both (3.15) and (3.16).

The operator (3.9) is a mass-ratio expanded Fokker–Planck operator; the general
Fokker–Planck operator implemented in several gyrokinetic codes (Candy, Belli &
Bravenec 2016; Pan & Ernst 2019) should thus reduce to the above operator in the
appropriate limit.

With C=Czz +Czi in (3.1), the ansatz g(1/2)−z ∝ v‖ fMz(v) yields

g(1/2)−z =−
iv‖
Tz

fMz

ω+ iν ′zi

(
Ze∇‖φ − ν ′zimzA

)
, (3.14)

where we have used Czz[v‖ fMz]=0 and K[v‖fMz]=−v‖ fMz. Note that impurity–impurity
collisions again have no effect, as the solution is in the null space of Czz. Impurity–ion
collisions, on the other hand, both modify the response to the parallel electric field,
and provide a new source for g(1/2)−z through the friction force between the impurities
and bulk ions.

The relative size of the ion–impurity friction and the electric field terms in (3.14)
is, assuming eφ/Tz ∼ ρi/a, A∼ ρivTi/a (appropriate since A is a flow velocity),

ν ′zimzA
Ze∇‖φ

∼ Z
aν̂ii

vTi

1
(k‖a)

, (3.15)

which is essentially Z times the bulk-ion collisionality divided by k‖a. As any fusion
reactor will be in a low collisionality regime aν̂ii/vTi�1, the above ratio will likely be
small. However, it can be significant in smaller fusion experiments, such as TJ-II, as
shown in table 1. Likewise, the effect of the iν ′zi in the denominator can be estimated
as

ν ′zi

ω
∼ Z

ν̂iia
vTi

1
(k⊥ρi)

, (3.16)

which again scales as Z times the bulk-ion collisionality. Thus, in the limit where
Γ comp

z is significant (the ratio (3.7) is large, k‖a > k⊥ρi), the collisional modification
of the response to ∇‖φ in (3.14) is more important than the drive due to ion–impurity
friction, but both of these modifications are likely small in the Large Helical Device
and Wendelstein 7-X, and will be yet smaller in a fusion reactor.

Including both of the impurity–ion collisional modifications, the parallel compressi-
bility flux becomes

Γ comp
z =−kαI

1
ω(ω+ iν ′zi)

Zenz

m

〈
|∇‖φ|

2
+ A∇‖φ∗

〉
. (3.17)
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It is difficult to draw any detailed conclusions from this expression, as the A∇‖φ∗ term
causes the flux to both depend on the phase of the imaginary φ and the ion–impurity
friction force, which are beyond the scope of this work.

4. Summary and conclusions
We have included impurity–ion collisions in the calculation of the quasi-linear

particle flux of highly charged impurities. The lack of collisions was thought to be
one of the main shortcomings of previous analytical calculations (Helander & Zocco
2018), and it can indeed affect the impurity flux if the bulk-ion collisionality times
the charge number of the impurity is not small. This effect could thus be significant
in present day experiments, in particular experiments with low ion temperature, such
as TJ-II, but is not expected to be important in a fusion reactor or in larger fusion
experiments.

As this result was based on an expansion in the largeness of the impurity charge
number, it is not applicable to species with low charge – such as carbon – at least
not in a quantitative sense. Indeed, for electrons, collisions can have a large effect
on the electron particle transport (Angioni et al. 2005; Fülöp, Pusztai & Helander
2008), especially at low kyρi-values (Angioni et al. 2009), if the electron–ion collision
frequency is comparable to the mode frequency and/or drift frequency. However, for
a highly charged species, the distribution function is predominantly set by the local
value of the electrostatic potential and its parallel derivative, and collisions have a
small effect.

There are a few extensions to this work that may modify the above conclusion.
Firstly, if the impurities are not a trace, their distribution would affect the

electrostatic potential fluctuation through the quasi-neutrality equation, and the
potential would have to be expanded in Z−1. However, the effect of collisions
would then be smaller, as impurity self-collisions would dominate over ion–impurity
collisions, according to (3.3). Thus, the conclusions of this paper apply even more
strongly to highly charged non-trace impurities, as noted in Pusztai et al. (2013). Of
course, impurities would also affect the turbulence itself, but such effects are beyond
the scope of the present paper.

Secondly, if the background impurity density were to vary on the flux surface,
the Maxwellian in (3.4) and (3.14) would weight different parts of the flux surface
differently, which could affect the relative importance of the impurity–ion friction
and the parallel electric field.

Lastly, collisions also play an important role in saturating nonlinear gyrokinetic
turbulence (Krommes 1999; Schekochihin et al. 2008), which has not been considered
in this work.
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