
Canad. Math. Bull. Vol. 24 (4), 1981 

ON THE COHOMOLOGICAL DIMENSION OF 
SOLUBLE GROUPS 

D . G I L D E N H U Y S A N D R. STREBEL 

ABSTRACT. It is known that every torsion-free soluble group G 
of finite Hirsch number hG is countable, and its homological and 
cohomological dimensions over the integers and rationals satisfy the 
inequalities 

hG = hdQG = hdxG < cdQG < cdxG < hG +1 . 

We prove that G must be finitely generated if the equality hG = 
cdQG holds. Moreover, we show that if G is a countable soluble 
group of finite Hirsch number, but not necessarily torsion-free, and 
if hG = cdQG, then hG = cdQG for every homomorphic image G of 
G. 

1. Introduction 
1.1. The basic inequalities. Let JR denote a commutative ring with 1 ^ 0, G a 

soluble group, hG its Hirsch number and hdRG, (cdRG) its (co)homological 
dimension over R. By a result of Stammbach one has hdQG = hG. In fact, this 
result remains true if Q is replaced by any (commutative) Q-algebra JR, for one 
has always hdQG = hdRG and cdQG = cdRG. 

If G is torsion-free soluble and of finite Hirsch number, it is countable, ([4], 
p. 100, Lemma 7.9), and one has: 

(1.1) hG = hdQG = hdXiG<cdQG<cdzG<hG + l, 

(see [4], p. 101, Th. 7.10). The problem of computing the cohomological 
dimension cdxG of a soluble torsion-free group amounts therefore to a 
characterization of those groups G with cdxG = hG<<*>. We shall prove, inter 
alia, that such a group is necessarily finitely generated. 

1.2. The main results. As motivated above, we can concentrate on countable 
soluble groups; however, in order to be more flexible, we shall replace Z by Q, 
and correspondingly allow G to have torsion. Then the following inequalities 
are still valid: 

hG = hdQG < cdQG < hG +1 . 

Our first results states that the equality cdQG = hG (~hdQG) passes to 
homomorphic images. 
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THEOREM A. Let G be a countable soluble group of finite Hirsch number. If 
cdQG = hG, then cdQG = hG for every homomorphic image G of G. 

It follows, in particular, that for G a group as in Theorem A, the abelianized 
group A = Gab = G/[G, G] is finitely generated; for, let tor A be the torsion 
subgroup of A, and let B 3 tor A be a subgroup of A such that B/tor A is free 
abelian and A/B is torsion. Then by Theorem A we have firstly that 0 = 
h(A/B) = cdQ(AIB), thus A/B is finite, ([5], p. 9, Th. C), and A -
(tor A)xZ h ( A ) , and so, similarly, tor A is finite. If, for example, G is a 
nilpotent group of arbitrary cardinality, the above argument implies that 
cdQG = hG <oo if, and only if, G is finitely generated. This generalizes a result 
of Gruenberg's ([8], p. 149, Th. 5(2)). 

The consequence of finite generation holds under weaker hypotheses than 
those of nilpotency. Indeed, by invoking a result asserted in [13], p. 79, and 
proved in the appendix, we can establish the following: 

THEOREM B. If G is nilpotent-by-abelian and cdQG = hdQG <°°, then G is 
finitely generated. 

Suppose now that G is a torsion-free soluble group of finite Hirsch number. 
Then G is nilpotent-by-abelian-by-finite, according to a result of Carin's, ([6] 
or [1], p. 559, Prop. 5.5 (a)), and hence Theorem B entails 

COROLLARY C. If G is a torsion-free soluble group and cdQG = hdQG <o°, 
then G is finitely generated. 

For certain metabelian groups, there is a connection, not clearly understood 
in general, between the property of being finitely presented and the 
cohomological dimension of the group. Let s and t be a pair of integers, 
\s\ ^ 1 T̂  |f|, and let Gst denote the semi-direct product Z[l/st] x (x), where (x) is 
infinite cyclic, and x acts on the underlying abelian group of the ring Z[l/sf] by 
multiplication by s/t. It is known that Gst is not finitely presented, and not, for 
any commutative ring JR, of type (JFP)2, (see [3]); hence the argument used in 
[7], Theorem 4, carries over to cohomology over JR, and yields cdRGst = 3. 
From Theorem A it then follows that for every torsion-free soluble group G 
of finite Hirsch number, admitting Gst as a quotient, one has cdxG = cdQG = 
hG + 1. 

2. Proofs 
2.1. Proof of Theorem A. If G = G/A for some normal subgroup A of G, 

then A is also soluble, and the form of the assertion of the theorem then makes 
it clear that it suffices to establish the assertion for A an abelian normal 
subgroup of G. Set q = hA = hdQA. If W is any left Q G-module on which A 
acts trivially, the Universal Coefficients Theorem provides isomorphisms 

a, : Hj(A, W)-=-> HomQ(HJ(A, Q), W), j > 0 , 
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relating the homology and cohomology groups of A over Q. These isomorph
isms are isomorphisms of left QG-modules, with respect to the diagonal action 
of G on the right hand side, the homology group Hj(A, Q) being considered as 
a right G-module. It follows, first of all, that Hq + 1(A, W) = 0 for every such 
module W. Next, we analyze Hq(A, Q). By choosing a series 

tor A = A 0 < A 1 < - • -<Aq=A 

of subgroups of A, with tor A the torsion subgroup and each A]IAi_1 torsion-
free of rank 1, 1 < / <q, and using repeatedly a spectral sequence argument (cf. 
[4], p. 102, Prop. 7.12), one sees that Hq(A, Q) is a QG-module, whose 
underlying Q-vector space is one-dimensional. We denote this QG-module by 
Q. As AutQ«}) — Q', (the multiplicative group of nonzero rational numbers), Q 
can at will be considered as a right or a left module, i.e. without switching from 
g to g_ 1 as it is necessary too for general G-modules. We have then a 
QG-module isomorphism 

r : Hom^Q, W) -^-* Q ® Q W 

f—*1®/(1), 

where the action by G is understood to be diagonal on both sides. Let now 
p = h(G) = hdQ(G). Then cd Q (G)<p + l, by the inequalities stated in 1.2, 
whereas, by the above, HJ(A, W) = 0 whenever j>q and W is a QG-module 
with trivial A-action. By the usual corner argument, the spectral sequence 
associated with the extension A<G-*> G, gives isomorphisms 

H p + 1 + q (G, W)^E^+u%W)^Hp+\G,H<i(A, W))-Hp + 1(G,Q(g)QW). 

Let Q - 1 denote the one-dimensional Q-vector space equipped with the inverse 
G-action, so that the diagonal action on Q® Q Q _ 1 is the trivial one. We 
conclude that for every QG-module V, 

HP+1(G, V ) - H P + 1 ( G , Q ^ Q - ^ Q V ) ) - H p + 1 + q ( G , ( T 1 ^ V). 

In particular, cdQG<p + q implies that cdQ(G)<p, as asserted. • 

2.2. Proof of Theorem B. We first notice that G is finitely generated if 
every countable subgroup U of G, with hU=hG, is finitely generated. Since 
for such a subgroup U, we have 

hU<cdQU<cdQG = hG = hU, 

it follows that it will suffice to prove the assertion under the additional 
hypothesis that G is countable. 

Let N denote the commutator subgroup [G, G] of G, and set A = Nab = 
N/[N, N]. Then, conjugation turns A into a ZGab-module. By Section 1.2 we 
know that Gab is a finitely generated abelian group. We now claim that A is a 
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finitely generated ZGab -module. To prove this, we first note that there exists a 
finitely generated ZGab -submodule Ax of A, with hAx = h A, and it suffices to 
show that B = A/At if finitely generated. Suppose B is not a finitely generated 
ZGab-module. Since B is countable, we can then write it as the union of a 
strictly increasing countable chain: 

B1<B2<-<Bn<--

of finitely generated ZGab-submodules Bn. Using the fact that every finitely 
generated ZGab-module is residually finite, ([9], pp.597 and 611-613), we 
prove, by induction on n, that there is another chain 

d < C 2 < • • • < C n < ••• 

of submodules of B, such that for all n, Cn<Bn, BJCn is finite, Cn + 1 DBn c Cn 

and Bn 4- Cn+1 ^ Bn+1. (The property of residual finiteness is applied to Bn+1/Cn 

to yield Cn+1). Let C be the union of the chain C 1 < C 2 ^ * • . Then 

(*) B i / Q >-> B2/C2 >^ B3/C3 >-* • • • 

is a strictly increasing chain of embeddings, with direct limit isomorphic to B/C. 
Let M be the inverse image of C under the projection: N-*> A-*> B. Then 
G/M is an extension of the locally finite group B/C by the finitely generated 
(abelian) group Gab, and hence locally polycyclic. As hdG/M = cdQ G/M<°°, 
the Corollary to the Theorem in section 3.3 shows that G/M is actually 
polycyclic. However, this implies that the chain (*) becomes stationary: a 
contradiction. 

So, we can find a finite set X in N, such that A is generated as a 
ZGab -module by the image of X, and a finite set Y in G, whose image in Gab 

generates this abelian group. Then X U Y is a finite set generating G. 

3. Appendix. 
3.1. Let a group G be the union of a chain G1<G2<G3<- • • of subgroups. 

Our aim is to compute cdRG in terms of the numbers cdRGn, subject to 
suitable restrictions, which hold, e.g., if the Gn are polycyclic and of fixed 
Hirsch number, and JR = Q . 

For any left KG-module W and K > 0 , the restriction maps: Hk(G, W)-> 
Hk(Gni, W)-*Hk(Gn2, W), where n1>n2, induce a canonical map 

(3k:Hk(G, W)->ljm{ > Hk(Gnr, W) - • Hk(Gn2, W)-> • • •}. 

It is always surjective, and it is injective whenever all the restrictions: 
j jk- i^Q^ ^ _^ J J k _ 1 (G n _ 1 ? W) are surjective, as can be seen from the exact 
sequence: 

(3.1) 
0 -> Hm1 Hk~\Gm W) -* Hk(G, W) - ^ ljm Hk(G„, W) -* 0, 
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involving the inverse limit lim and its derived functor lim1. (This exact 
sequence can be obtained from the explicit description of lim1 in [10], §2, and 
the Mayer-Vietoris sequence associated with the direct limit (tree product) G 
of the groups Gn ; the assertions can also be proved by using, in the manner of 
[11], the homogeneous non-normalized bar-resolutions associated with G and 
the subgroups Gn.) Assume now that the Gn all have the same cohomological 
dimension, say h = cdRGn for all natural numbers n, and that Hk(Gn, F) = 0 for 
every free .RG-module F, every n, and every k<h. Then cdRG <fi + l, (see 
e.g. (3.1)), Hk(G, F) = 0 for every free KG-module F and every k<h, and 

H h ( G , F ) - H m H K ( G n , F ) . 
n 

If Hh(G, F) can be shown to be trivial for every free jRG-module F, then cdRG 
must actually be h + 1 . 

3.2. In this section we recall some relevant facts that can be found, for 
instance, in [4], 5.1, 5.2, and 5.3. Let T be an arbitrary group, P—» JR an 
JRT-projective resolution of R, and W a left i^T-module. Then there exist 
canonical maps 

<f>k:Hk(T, RT)®RTW = Hk(P*)(g>RTW-» Hk(P*(g>RT W) -» Hk(T, W), 

(cf. [4], p. 67), where P* is short for HomRT(P, RT). If W is a free «T-module 
and P is made up of finitely generated projectives, these maps are bijective. 
Next, let S be a subgroup of finite index in T, and let 

T = St1ÙSt2Ù'"ÙStm 

be a coset decomposition of T. If V is a right and W a left .RT-module, there 
exists a transfer map: 

tr:V®RTW-*V®RSW 

taking u®w to £i vtj1®^. Moreover, the canonical projection TT.RT-^ RS, 
sending t to t if t G S, and to 0 otherwise, induces for every left jRT-module P 
an isomorphism of right RS -modules: 

<T : HomRT(P, RT) — ^ — * HomRS(P, RT) Hom(1>")> HomRS(P, RS). 

In cohomology, it yields isomorphisms 

a^s : Hk(T, RT) - ^ Hk(S, £S) 

of right .RS-modules (cf. [4], p. 73). The various maps defined above fit into a 
commutative diagram: 

Hk(T, RT)®RTW—^Hk(T, RT)®RSW^^-*Hk(S, JRS)®RS W 

Ufc Lk 

H k(T, W) > Hk(S, W) 
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3.3. Using the tools prepared in 3.1 and 3.2 we are now able to prove the 
result announced: 

THEOREM. Let G be the union of a chain of subgroups : 

(3.2) G ^ G ^ G ^ - -

such that the indices [Gn:Gn-1] are all finite, and let h be a fixed non-
negative integer. Suppose that each Gn is of type (FP), of cohomological 
dimension cdRGn = h, and such that Hk(Gn, RGn) = 0 for 0 < k < h. Then cdRG 
is h or h + 1 , depending on whether G is finitely generated or not. 

COROLLARY. Every locally polycyclic group G with cdRG = hG<<*> is finitely 
generated. 

Proof of the Corollary. As it suffices to prove that every countable subgroup 
G0 of G, with hG0 = hG, is finitely generated, we may as well assume G to be 
countable. Then G is the union of a chain: G1<G2^G3<- • • of polycyclic 
subgroups with hGn = hG for all n, and the indices [Gn : Gn^] are automati
cally finite. Because every polycyclic group of finite cohomological dimension is 
a duality group, (cf. [4], p. 140, Th. 9.2 and p. 157, Th. 9.9 and Th. 9.10), all 
the hypotheses of the Theorem are fulfilled, and we conclude that G must be 
finitely generated. • 

Proof of the Theorem. If G is finitely generated, then G = Gn for some n, 
and cdRG = h. In the contrary case we may assume that the subgroups in (3.2) 
are all distinct. Choose for each n > 2 , elements ga, a e G n _ 1 \ G n , such that 
Gn = Ù{Gn_! • ga | aGG n _ i \G n } is a coset decomposition of Gn. Similarly, 
choose for each n > l , elements h(

3
n), (3eGn\G, such that G = 

Ù{Gn • fi(3
n) | j3 6 Gn\G} is a coset decomposition of G. 

By 3.1, it suffices to prove that the inverse limit of the diagram: 

> Hh(Gn, F) -> Hh(Gn_u F)-> > Hh(G2, F) -> Hh(Gl9 F) 

is zero whenever F is a free RG-module. By 3.2, this diagram is isomorphic to 
the diagram 

>HHGn,RGJ®RGnF^HHGn_uRGn^)®RG^F > 

>Hh(G1,RG1)^RG,Fy 

where 

Tn(c(8)/) = I « , G f t _ i ( c • g ; 1 ) ) ® ^ •/. 
OL 

Let crn be short for crGnX}n_x, and let «3? be a basis for F as an KG-module. Then 
&n

 =={^3 l) ' b 113 e Gn\G, b G ££} is a basis for F as an RGn-module, and so 
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every element of Hn(Gn, jRGn)®RGnF has a unique representation of the form 

x = lt{cfi.b®h™b\hP-be2n}9 

where, of course, supp x ={h^b eS£n \ c^bj= 0} is finite. The image of x under 
rn is then 

(3.3) Tn(x) = I {o-n(c3,b • g-^gji^b | a e Gn_AGn, h^beZJ. 

Now, the gjip0 constitute a transversal of Gn_! in G, although not necessarily 
the one originally chosen. However, we see from the form of the "monomial" 
matrix, describing the change from the basis {gjt^b} to the basis {h(

3
n_1)b}, 

that the number of terms in the expression (3.3) for rn(x), associated with the 
first basis, is the same as the number of terms in the analogous expression for 
rn(x), associated with the second basis. Explicitly, 

#(supp. rn(x)) = [Gn : Gn_i].#supp. (x). 

But this then implies that all the rn are injective, and for every non-zero 
x e H ^ G i j K G ^ R ^ F , there exists an integer n0 such that x is not in the 
image of the map: 

H\Gno, RGJ®RGnF^ • • • -> Hh(G1? RGJ^F, 

whence Hm Hh(Gn, RGn)®RGnF = 0, as desired. • 
n 
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