
Canad. J. Math. 2025, pp. 1–47
http://dx.doi.org/10.4153/S0008414X25000069
© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/
licenses/by-ncsa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the same Creative Commons licence is included and the original work is properly
cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Pseudo-trisections of four-manifolds with
boundary
Shintaro Fushida-Hardy
Abstract. We introduce the concept of pseudo-trisections of smooth oriented compact 4-manifolds
with boundary. The main feature of pseudo-trisections is that they have lower complexity than rela-
tive trisections for given 4-manifolds. We prove existence and uniqueness of pseudo-trisections, and
further establish a one-to-one correspondence between pseudo-trisections and their diagrammatic
representations. We next introduce the concept of pseudo-bridge trisections of neatly embedded
surfaces in smooth oriented compact 4-manifolds. We develop a diagrammatic theory of pseudo-
bridge trisections and provide examples of computations of invariants of neatly embedded surfaces
in 4-manifolds using said diagrams.

1 Introduction

Trisections of oriented compact 4-manifolds were introduced by Gay and Kirby in
[7], who established existence and uniqueness in the closed setting. In the relative
setting—that is, for oriented compact 4-manifolds with boundary—a relative trisec-
tion induces an open book decomposition on the boundary. Gay and Kirby show
existence of relative trisections inducing any given open book on the boundary,
and uniqueness (up to stabilization) given a fixed open book on the boundary. This
uniqueness result was improved in Castro’s PhD thesis [2] by the introduction of rel-
ative stabilizations. Castro–Islambouli–Miller–Tomova [6] obtained a full uniqueness
result by introducing relative double twists.

In this article, we introduce pseudo-trisections, an alternative framework for study-
ing 4-manifolds with boundary. Rather than inducing open book decompositions
on the boundary, they induce 3-manifold trisections in the sense of Koenig [12].
Since Heegaard splittings induce 3-manifold trisections in a canonical way, pseudo-
trisections can be thought of as an interpolation between Heegaard splittings of
boundary 3-manifolds and classical trisections of 4-manifolds. We prove an analogous
existence result to the aforementioned result of Gay–Kirby.

Theorem 1.1 Let X be a compact oriented smooth 4-manifold with non-empty con-
nected boundary Y. Let τ be a trisection of Y. Then there is a pseudo-trisection of X
which restricts to τ on the boundary.
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2 S. Fushida-Hardy

On the other hand, we define three types of stabilization (internal, boundary, and
Heegaard) for pseudo-trisections, two of which extend notions of stabilization defined
for 3-manifold trisections. We show uniqueness of pseudo-trisections up to these
moves.

Theorem 1.2 Let X be a compact oriented smooth 4-manifold with non-empty con-
nected boundary. Any two pseudo-trisections of X are equivalent up to internal, bound-
ary, and Heegaard stabilization.

The main feature of pseudo-trisections is that they are general enough to exist with
lower complexity than relative trisections. Complexity is an analog of trisection genus
and is defined in Section 3. Pseudo-trisections of complexity at most 1 are classified and
observed to be richer than relative trisections of equal complexity. Example 3.30 shows
that c(♮�(S2 × D2)) ≤ � among pseudo-trisections, whereas we expect that c(♮�(S2 ×
D2)) ≥ 3� among relative trisections. (The latter would be true if relative trisection
genus were additive under connected sum.)

We also introduce pseudo-trisection diagrams as a method for representing pseudo-
trisections, analogously to trisection diagrams [7] and relative trisection diagrams
[24]. In each of these settings, diagrams are shown to be in one-to-one correspondence
with (relative) trisections when modding out by appropriate moves. We obtain an
analogous result:

Theorem 1.3 The realization map

R ∶ {pseudo-trisection diagrams} → {pseudo-trisections}
diffeomorphism

induces a bijection

{pseudo-trisection diagrams}
band and torus stabilization,

handleslide, isotopy

	→
{ compact oriented 4-manifolds

with one boundary component}

diffeomorphism
.

Combined with the seeming lower complexity of pseudo-trisections, this results
in a diagrammatic theory for 4-manifolds with boundary with lower complexity than
relative trisection diagrams. Along the way, we introduce triple Heegaard diagrams
to represent trisections of closed 3-manifolds, and the calculus thereof. This dia-
grammatic calculus incorporates moves inspired by Heegaard theory and plumbing
of open books. A pseudo-trisection diagram of a pseudo-trisected 4-manifold has
the convenient property of restricting to a triple Heegaard diagram of the induced
trisection on the boundary 3-manifold. Consequently, pseudo-trisection diagrams
can also be thought of as combining the theory of trisection diagrams and (roughly)
Heegaard diagrams.

In the final section of the article, we extend our diagrammatic calculus from 4-
manifolds with boundary to pairs (X ,K) where K is a surface embedded in X in
pseudo-bridge position. This generalizes the theory of bridge trisections introduced
by Meier–Zupan [18] in the closed setting, and by Meier [17] in the relative setting.
Pseudo-bridge trisections are defined to be compatible with pseudo-trisections, in
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Pseudo-trisections of four-manifolds with boundary 3

much the same way that relative bridge trisections are compatible with relative
trisections. Consequently we can define pseudo-shadow diagrams, which consist of
an underlying pseudo-trisection diagram to encode the ambient 4-manifold, and
additional arcs to encode the embedded surface.

We finish by exploring several examples of pseudo-shadow diagrams, such as a
Möbius strip in CP

2 − B4, and a slice disk of a trefoil knot in CP
2 − B4. Through

these examples we demonstrate how to compute some invariants from pseudo-shadow
diagrams, namely Euler characteristic, orientability, and homology class.

1.1 Conventions

Hereafter Y refers to connected closed smooth 3-manifolds, and X to compact smooth
oriented 4-manifolds with one boundary component. The boundary of X is denoted
by Y. The indices i and j are taken to be in Z/3Z. Bolded symbols such as k and y
represent triples of three non-negative integers k1 , k2 , k3, or y1 , y2 , y3. We write ∣k∣ to
mean the 1-norm, which in this case is just the sum of the k i . We also write δ and α to
represent certain collections of loops. The loops themselves are unbolded, for example
δ1 or α.

We say N ⊂ M is neatly embedded if ∂N ⊂ ∂M, and N is transverse to ∂M. Unless
otherwise stated, any arcs in surfaces with boundary or 3-manifolds with boundary are
assumed to be neatly embedded. We write K to denote a connected compact surface
with boundary neatly embedded in X. The boundary of K is a link L in Y.

1.2 Organization of the article

In Section 2, we review 3-manifold trisections and introduce triple Heegaard dia-
grams. In Section 3, we introduce pseudo-trisections, three notions of stabilization,
and prove Theorem 1.2. Further, pseudo-trisection are compared with relative trisec-
tions. In Section 4, we introduce pseudo-trisection diagrams, and prove Theorems 1.1
and 1.3. In Section 5, we introduce pseudo-bridge trisections and pseudo-shadow
diagrams, and study several examples.

2 Trisections of 3-manifolds

In this section, we summarize some definitions concerning trisections of 3-manifolds,
introduced by Dale Koenig [12]. In particular, we describe stabilizations and Koenig’s
result that (almost all) 3-manifold trisections are stably equivalent in this more
general sense. Next, we introduce Heegaard stabilizations, inspired by stabilizations
of Heegaard splittings. We show that any two trisections for any 3-manifold are
equivalent up to stabilization and Heegaard stabilization. Next, we introduce triple
Heegaard diagrams, an analog of Heegaard diagrams for trisections of 3-manifolds.
Finally we briefly discuss complexity of 3-manifold trisections.

2.1 3-manifold trisections and stabilization

In this subsection, we review the theory of 3-manifold trisections introduced in [12].
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4 S. Fushida-Hardy

Figure 1: The components of a trisection of a 3-manifold Y.

Definition 2.1 [12] A (y, b)-trisection of a 3-manifold Y is a decomposition Y = Y1 ∪
Y2 ∪ Y3 such that
• each Yi is a handlebody of genus y i ,
• each Σ i = Yi−1 ∩ Yi is a compact connected surface with some genus p i and bound-

ary B, and
• B = Y1 ∩ Y2 ∩ Y3 is a b-component link.
The link B ⊂ Y is the binding of the trisection. See Figure 1 for a schematic for how the
pieces fit together.

Proposition 2.2 3-manifold trisections satisfy the following properties:
(1) Each y i is given by p i + p i+1 + b − 1. In particular, y i is bounded below by b − 1.
(2) The genera p i of the surfaces Σ i are given by 1

2(y i−1 + y i − y i+1 − b + 1).
Proof The first fact follows from the fact that Yi is a handlebody with boundary
Σ i ∪ Σ i+1, where the surfaces are identified along their boundaries. The second fact is
obtained by solving the simultaneous equations in the first fact. ∎
Example 2.3 The trivial trisection is a decomposition of S3 into three 3-balls, with
any two balls meeting along a common disk. The triple intersection of these balls is an
unknot.

Example 2.4 Every 3-manifold admits a trisection: one construction is to start with
a Heegaard splitting Y = H1 ∪H2. Then consider a contractible loop γ on Σ = ∂H1.
This bounds a disk D in Σ, and a neatly embedded parallel disk D′ in H1 (by isotoping
D). The surface D ∪ D′ bounds a ball B in H1. Now

(H1 − B, B, H2)
is a trisection of Y, with B = γ.

Another recipe to construct trisections is to start with an open book decomposi-
tion. Details for this example (and further examples) are provided in [12].

Example 2.5 There is a (non-unique) connected sum of trisected 3-manifolds. Specif-
ically one can delete a standard neighborhood of a point in the binding of two trisec-
tions. Now each 3-manifold has spherical boundary, and the spheres have induced
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Pseudo-trisections of four-manifolds with boundary 5

Figure 2: A stabilization of a trisection of a 3-manifold.

decompositions into three wedges. An (oriented) connected sum along these spheres
respecting the decomposition into wedges produces a trisection of the connected sum
of the 3-manifolds.

Definition 2.6 Given a trisection (Y1 , Y2 , Y3) of a 3-manifold Y, a stabilization is a
new trisection (Y ′1 , Y ′2 , Y ′3) constructed as follows:
(1) Choose a neatly embedded non-separating arc α in Σ i for some i ∈ {1, 2, 3}. (Such

an arc exists provided Σ i is not a disk.)
(2) Let N(α) be a tubular neighborhood of α in Y, and define

• Y ′i+1 = Yi+1 ∪ N(α),
• Y ′i = Yi − N(α),
• Y ′i−1 = Yi−1 − N(α).

See Figure 2 for a schematic of stabilization, given a non-separating arc α in Σ1.
Notice that stabilization increases y i+1 by 1 while leaving y i and y i−1 unchanged. On

the other hand, b increases by 1 if both endpoints of α are in the same component of B,
and decreases by 1 if the endpoints are in different components. See [12] for examples
of stabilizations.

Remark 2.7 Provided Y is not S3, any trisection of Y can be stabilized, since at least
one Σ i must not be a disk. In Section 2.2, we introduce a second notion of stabilization
to deal with the S3 case.

We say that two trisections T and T′ of Y are isotopic if there is a diffeomorphism
from Y to itself, isotopic to the identity, sending the ith sector of T to the ith sector
of T′. Further, we say a trisection is a stabilization of another if it can be obtained
by a finite sequence of stabilizations up to isotopy. Two trisections are said to be
equivalent up to stabilization or stably equivalent if there is a third trisection which
is a stabilization of each of the other two.

Theorem 2.8 (Koenig [12]) Let T,T′ be two trisections of a closed orientable 3-
manifold Y. If Y is the 3-sphere, assume neither trisections are the trivial trisection. Then
T and T′ are equivalent up to stabilization.
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6 S. Fushida-Hardy

Figure 3: A Heegaard stabilization of a trisection of a 3-manifold.

2.2 Heegaard stabilization

In this subsection, we introduce Heegaard stabilization.

Definition 2.9 Given a trisection (Y1 , Y2 , Y3) of a 3-manifold Y, a Heegaard stabi-
lization is a new trisection (Y ′1 , Y ′2 , Y ′3) constructed as follows:
(1) Choose a neatly embedded boundary parallel arc α in Yi , with both endpoints

on Σ i .
(2) Let N(α) be a tubular neighborhood of α in Y, and define

• Y ′i+1 = Yi+1,
• Y ′i = Yi − N(α),
• Y ′i−1 = Yi−1 ∪ N(α).

See Figure 3 for a schematic of Heegaard stabilization, given a non-separating arc
α in Y1 with endpoints on Σ1. Requiring α to be boundary parallel ensures that each
new sector is a 3-dimensional 1-handlebody.

Heegaard stabilization increases y i and y i−1 by 1 while leaving y i+1 and b
unchanged.

Proposition 2.10 Any two trisections of a closed orientable 3-manifold are equivalent
up to stabilization and at least one Heegaard stabilization.

Proof If a trisection is trivial, Heegaard stabilizing once produces a non-trivial
trisection. This means that applying at most one Heegaard stabilization, the trisections
can be assumed to be non-trivial. The trisections are now equivalent up to stabiliza-
tion, by Theorem 2.8. ∎

2.3 Triple Heegaard diagrams

In this subsection, we introduce triple Heegaard diagrams, which are diagrams for 3-
manifold trisections adapted from Heegaard diagrams. Given a (y, b)-trisection of a
3-manifold, a triple Heegaard diagram will consist of ∣y∣ closed curves on surfaces,
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Pseudo-trisections of four-manifolds with boundary 7

with each set of y i curves determining a handlebody. This is analagous to Heegaard
diagrams requiring g + g closed curves, with each set of g curves determining a
handlebody.

Definition 2.11 A cut system of curves on a closed surface Σ of genus g is a collection
of g disjoint simple closed curves that cut Σ into a sphere with 2g boundary compo-
nents.

Definition 2.12 A (y, b)-triple Heegaard diagram consists of the data
(Σ1 , Σ2 , Σ3 , δ1 , δ2 , δ3) such that:
(1) The Σ i are surfaces with genus p i = 1

2(y i−1 + y i − y i+1 − b + 1) and b boundary
components.

(2) There is an identification of the boundaries of all three of the Σ i . In particular,
Σ i ∪ Σ i+1 is a closed surface of genus y i .

(3) Each δ i is a collection of disjoint neatly embedded arcs and simple closed curves
on Σ i and Σ i+1, which glues to a cut system of y i curves on Σ i ∪ Σ i+1.

In other words, a triple Heegaard diagram consists of three surfaces with boundary,
and curves and arcs of two colours on each surface. For notational brevity, we
frequently write (Σ i , δ i) instead of (Σ1 , Σ2 , Σ3 , δ1 , δ2 , δ3).
Proposition 2.13 Triple Heegaard diagrams determine trisected 3-manifolds up to
diffeomorphism. In particular, a triple Heegaard diagram whose surfaces have genera
p1 , p2 , p3 and b boundary components determines a (y, b)-trisection with y i = p i +
p i+1 + b − 1.

Proof For each i, the cut system on Σ i ∪ Σ i+1 are instructions for gluing p i + p i+1 +
b − 1 disks into Σi ∪ Σ i+1. A 3-ball now glues into the remaining cavity to produce
a handlebody Yi of genus y i = p i + p i+1 + b − 1. The handlebodies Yi and Yi+1 glue
along Σ i+1. Gluing all three handlebodies together in this way produces a trisected
closed 3-manifold. To see that the resulting trisected 3-manifold is unique up to
diffeomorphism, we use that Diff(Bn rel ∂) is contractible for n = 2 and n = 3 [9, 23].
Suppose Y and Y ′ are built from a given triple Heegaard diagram as above. We will
incrementally build a diffeomorphism Y → Y ′ preserving the trisection structure.
First, consider the identity map on ∪i Σ i . The first steps in building Y and Y ′ was
to glue disks along curves in the cut system. Since Diff(B2 rel ∂) is contractible, the
aforementioned map extends to ∪i Σ i ∪ {disks} independent of how these disks are
glued in. The final step is to glue in three 3-balls, and again, the map extends, since
Diff(B3 rel ∂) is contractible. This guarantees that we can build a diffeormophism
Y → Y ′, and moreover that the diffeomorphism preserves the trisection structure.
That is, Y and Y ′ are diffeomorphic as trisected 3-manifolds. ∎
Example 2.14 Figure 4 is an example of a triple Heegaard diagram of T3. By noting
identifications of some boundary components in Σ1 and Σ2, we see that all three of
Σ1 , Σ2 and Σ3 share the same S1 boundary. Inspecting the pairs (Σ i ∪ Σ i+1 , δ i), one
can verify that these are cut systems on closed surfaces.

We observe that this is a diagram of T3 by passing through the standard genus-
3 Heegaard splitting of T3 (see [5, Example 3.5]). The standard Heegaard splitting
of T3 has diagram (Σ1 ∪ Σ2 , δ1 , δ2 ∪ δ3). To verify that the triple Heegaard diagram
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8 S. Fushida-Hardy

Figure 4: A triple Heegaard diagram of T3 .

of Figure 4 builds the same 3-manifold, it suffices to observe that the cut systems
(Σ3 ∪ Σ1 , δ3) and (Σ2 ∪ Σ3 , δ2) together determine the same handlebody as (Σ1 ∪
Σ2 , δ2 ∪ δ3). Indeed, the two former cut systems determine handlebodies with a
common disk boundary Σ3, and gluing the handlebodies along Σ3 results in the
handlebody determined by the latter cut system.

Example 2.15 An open book decomposition (Σ, φ) (where Σ is a page of genus g
and b boundary components, and φ is the monodromy) induces a trisection of the
ambient 3-manifold. The trisection is represented by a (2g + b − 1, 2g + b − 1, 0, 1)-
triple Heegaard diagram as follows:
(1) The open book decomposition induces a genus 2g Heegaard splitting (Σ ×
[0, 1/2]) ∪ (Σ × [1/2, 1]), where Σ × {0} is identified with Σ × {1} by the mon-
odromy map.

(2) The Heegaard splitting is encoded by a Heegaard diagram (Σ′ , α, β) which can
be determined by φ. Reference [10, Section 2] describes how to obtain such a
diagram.

(3) Let D be a disk in Σ′ disjoint from α and β. Then (Σ′ − D, D, D, α,∅, β) is a triple
Heegaard diagram of a trisection induced by the open book decomposition. (This
follows the construction in Example 2.4, and is a special case of the procedure in
Example 2.14.)

A more symmetric construction is to take an open book (Σ, φ) and immediately tri-
sect the ambient manifold as (Σ × [0, 1/3]) ∪ (Σ × [1/3, 2/3]) ∪ (Σ × [2/3, 1]), again
identifying Σ × {0} and Σ × {1} by the monodromy map. However, this results in a
(2g + b − 1, 2g + b − 1, 2g + b − 1, b)-trisection, and such a trisection can be obtained
by stabilizing the (2g + b − 1, 2g + b − 1, 0, 1)-trisection described above.
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Pseudo-trisections of four-manifolds with boundary 9

Figure 5: Stabilization of triple Heegaard diagrams.

Remark 2.16 The data of a triple Heegaard diagram doesn’t explictly describe how
the binding B is knotted—that is to say, the boundary B = ∂Σ i can be depicted in a
diagram as an unlink. However, Proposition 2.13 shows that the isotopy class of the
link B is nevertheless determined by triple Heegaard diagrams.

Proposition 2.17 Every 3-manifold is described by a triple Heegaard diagram.
Proof Every 3-manifold admits a trisection, as in Example 2.4. Moreover, every
trisection is induced by a triple Heegaard diagram. This is because every sector of
the trisection is a handlebody, and every handlebody is determined by a cut system
on the boundary surface. A collection of three cut systems for each sector is precisely
the data of a triple Heegaard diagram. ∎
Example 2.18 Figure 5 depicts stabilization along a non-separating arc in Σ1. Stabi-
lizing a diagram has three steps:
(1) Identify the non-separating arc α in some Σ i along which the stabilization occurs.

Thicken the arc to a band in Σ i . (The thickening is unique in the sense that the
framing is determined by Σ i .)

(2) The new surfaces Σ′i , Σ′i+1 , Σ′i+2 are obtained by subtracting the band in Σ′i , and
attaching the band to both Σ′i+1 and Σ′i+2.

(3) The curves on Σ i intersecting α are cut and pasted in the new surfaces, as shown by
the change from δ to δ′ in Figure 5. A single new curve is added to δ i+1, consisting
of an arc in each band in Σ′i+1 and Σ′i+2. This is γ in Figure 5, and corresponds to
a meridian of the handle glued to Yi+1 in the stabilization.

Example 2.19 Figure 6 depicts Heegaard stabilization along an arc in Y1 with end-
points on Σ1. It is evidently diagrammatically similar to stabilization of Heegaard split-
tings. In this example, since the arc has endpoints on Σ1, the sector Y2 is unchanged
while Y1 and Y3 increase in genus. Therefore the two new curves η and γ in Figure 6
belong to δ1 and δ3, respectively.
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10 S. Fushida-Hardy

Figure 6: Heegaard stabilization of triple Heegaard diagrams.

Figure 7: A handleslide in the context of triple Heegaard diagrams.

Example 2.20 Handleslides and isotopies of triple Heegaard diagrams are the same
as those for Heegaard diagrams. More explicitly, given a Heegaard diagram (Σ, α, β),
handleslide and isotopy moves are defined one handlebody at a time, i.e., on (Σ, α) and
(Σ, β). In the case of a triple Heegaard diagram (Σ i , δ i), handleslides and isotopies
are defined on the pairs (Σ1 ∪ Σ2 , δ2), (Σ2 ∪ Σ3 , δ3), and (Σ3 ∪ Σ1 , δ1).

Note that isotopies and handleslides of families of curves on Σ i ∪ Σ i+1 can change
how they intersect their common boundary, as shown in Figure 7.

Lemma 2.21 Fix a trisection (Y1 , Y2 , Y3) of a 3-manifold Y. Any two triple Heegaard
diagrams (Σ i , δ i), (Σ′i , δ′i) of (Y1 , Y2 , Y3) are diffeomorphic after a sequence of han-
dleslides and isotopies. (That is, there are diffeomorphisms φ i ∶ Σ i → Σ′i rel boundary
sending δ i ∩ Σ i and δ i−1 ∩ Σ i to δ′i ∩ Σ i and δ′i−1 ∩ Σ i , respectively.)

Proof Johannson [11] defines a meridian-system to be a pair (M ,D) where M is
a 3-manifold with boundary and D is a collection of neatly embedded disks such
that M − D is homeomorphic to a 3-ball. Reference [11, Corollary 1.6] shows that
meridian-systems of handlebodies (which are considered up to isotopy) are unique
up to handleslides. Given a sector Yi of the trisection, (Σ i , Σ i+1 , δ i) induces a unique
meridian-system. It follows that, up to some diffeomorphism of (Y1 , Y2 , Y3), the triple
Heegaard diagram is unique up to isotopy and handleslides. Finally, diffeomorphisms
of the trisection descend to diffeomorphisms of triple Heegaard diagrams. ∎
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Proposition 2.22 Any two triple Heegaard diagrams of a given 3-manifold are dif-
feomorphic after a sequence of stabilizations, Heegaard stabilizations, handleslides, and
isotopies.
Proof By Lemma 2.21, any two triple Heegaard diagrams of a fixed trisection are
diffeomorphic after a sequence of handleslides and isotopies. By Proposition 2.10,
any two trisections of a given 3-manifold are equivalent up to stabilization and
Heegaard stabilization. (Examples 2.18 and 2.19 show how stabilization and Heegaard
stabilization descend to triple Heegaard diagrams.) The result follows by applying each
of these results. ∎
Remark 2.23 Proposition 2.22 is a trisection version of the Reidemeister–Singer
theorem [21, 22] for Heegaard splittings, which states that Heegaard diagrams of a
given 3-manifold are diffeomorphic after a sequence of stabilizations, handleslides,
and isotopies. (Strictly speaking the Reidemeister–Singer theorem refers to the result
that Heegaard splittings are stably equivalent, but both original proofs were at the
diagrammatic level.)

2.4 Complexity of 3-manifold trisections

This subsection introduces a notion of complexity for 3-manifold trisections, which
will be used later to study the complexity of pseudo-trisections.
Definition 2.24 The complexity of a (y, b)-trisection T of a 3-manifold Y is the
integer c(T) = ∣y∣. The minimum complexity among all trisections of Y is denoted
c(Y).
Example 2.25 The trivial trisection of S3 has complexity 0. It follows that c(S3) = 0.
Proposition 2.26 Complexity of 3-manifold trisections satisfies the following proper-
ties:
(1) Recalling that p i denotes the genus of the surface Σ i in the trisection T,

c(T) = 2∣p∣ + 3b − 3.

(2) Stabilization increases complexity by 1, Heegaard stabilization increases complexity
by 2.

(3) Writing gH(Y) to denote the minimum genus of a Heegaard splitting of Y,

c(Y) ≤ 2gH(Y).
Proof Item (1) is immediate from Proposition 2.2. Item (2) follows from earlier
observations about how stabilization and Heegaard stabilization affect each y i . Finally
item (3) follows from the fact that a genus g Heegaard splitting induces a (g , g , 0; 1)-
trisection. ∎
Example 2.27 (Koenig [12, Example 8]) The trisection of (S1 × S2)#(S1 × S2)
depicted in Figure 8 has complexity 3. One can show that any trisection with complex-
ity at most 2 is necessarily induced by a Heegaard splitting of genus at most 1, and such
3-manifolds are lens spaces or (S1 × S2). It follows that c((S1 × S2)#(S1 × S2)) = 3.
Moreover, gH((S1 × S2)#(S1 × S2)) = 2, so this example shows that the inequality
c(Y) ≤ 2gH(Y) can be strict.
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12 S. Fushida-Hardy

Figure 8: Triple Heegaard diagram of (S1 × S2)#(S1 × S2) with complexity 3.

3 Pseudo-trisections

In this section, we introduce pseudo-trisections, which are a generalization of relative
trisections of compact 4-manifolds with connected boundary. We also describe several
notions of stabilization, and prove that pseudo-trisections are stably equivalent.
Finally we introduce complexity of pseudo-trisections and use it to compare pseudo-
trisections and relative trisections.

3.1 Pseudo-trisections and their properties

In this subsection, we define pseudo-trisections and inspect some of their properties.

Definition 3.1 An n-dimensional 1-handlebody of genus k is a manifold with bound-
ary diffeomorphic to ♮k(S1 × Bn−1).

Definition 3.2 A (g , k; y, b)-pseudo-trisection of a compact connected oriented
smooth 4-manifold X with one boundary component Y = ∂X is a decomposition
X = X1 ∪ X2 ∪ X3 such that
(1) each X i is a 4-dimensional 1-handlebody of genus k i ,
(2) each H i = X i−1 ∩ X i is a 3-dimensional 1-handlebody of genus h i for some h i ,
(3) each Yi = X i ∩ ∂X is a 3-dimensional 1-handlebody of genus y i ,
(4) ΣC = X1 ∩ X2 ∩ X3 is a connected surface of genus g with b boundary compo-

nents,
(5) each Σ i = Yi−1 ∩ Yi is a connected surface of some genus p i and b boundary

components,
(6) and B = X1 ∩ X2 ∩ X3 ∩ ∂X is a b-component link.
See Figure 9 for a schematic of how the various pieces fit together.

Definition 3.3 We fix some terminology: a sector of a pseudo-trisection is any of
the X i . The binding of a pseudo-trisection is the link B (considered as a link in
∂X). Finally, the 3-skeleton of a pseudo-trisection is the union of all 3-dimensional
pieces, H1 ∪H2 ∪H3 ∪ ∂X; and the 2-skeleton of a pseudo-trisection is the union of
all 2-dimensional pieces, ΣC ∪ Σ1 ∪ Σ2 ∪ Σ3. We avoid the term spine, although it is
commonly used to refer to the 3-skeleta of closed 4-manifold trisections.

Proposition 3.4 Pseudo-trisections satisfy the following properties:
(1) The restriction of a (g , k, y, b)-pseudo-trisection of X to ∂X = Y is a (y, b)-

trisection of Y.
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Figure 9: The components of a pseudo-trisection of a 4-manifold X with boundary Y.

(2) The genera p i of the surfaces Σ i are given by

p i = 1
2(y i−1 + y i − y i+1 − b + 1).

(3) The genera h i of the handlebodies H i are given by

h i = g + p i + b − 1 = g + 1
2(y i−1 + y i − y i+1 + b − 1).

(4) χ(X) = g − ∣k∣ + 1
2(∣y∣ + b + 1).

Proof The first fact is immediate from the definition,specifically, items (3), (5), and
(6) are exactly necessary properties for (Y1 , Y2 , Y3) to be a trisection of Y. The second
fact is from Proposition 2.2, restated for completeness. The third fact follows from the
fact that H i has boundary Σ i ∪ ΣC . Finally, the Euler characteristic formula is derived
by repeated applications of the difference formula χ(A∪ B) = χ(A) + χ(B) − χ(A∩
B). Note that ∣y∣ + b is odd because ∣y∣ + b = 2∣p∣ + 4b − 3, so in each of the last three
properties, no half-integers appear. ∎

3.2 Relative trisections

Pseudo-trisections are morally generalizations of relative trisections, described in
detail in [2]. We formalize the relationship between relative trisections and pseudo-
trisections in Proposition 3.18. Here we review the definition of relative trisections and
some fundamental results concerning relative trisections.

In order to define relative trisections, we must first fix notation for some standard
model pieces—we use notation as in [25]. A relative trisection will then be defined in
terms of these standard pieces.

Let g , k, p, b be non-negative integers with g ≥ p and g + p + b − 1 ≥ k ≥ 2p + b −
1. Let Zk = ♮k S1 × B3, and Yk = ∂Zk = #k S1 × S2. Next we describe a decomposition
of Yk into three pieces, two corresponding to intersections of sectors in the relative
trisection, and the other corresponding to a third of the boundary of the manifold.
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14 S. Fushida-Hardy

Let D = {(r, θ) ∶ r ∈ [0, 1], θ ∈ [−π/3, π/3]}. Write

∂D = ∂−D ∪ ∂0D ∪ ∂+D,

where ∂−D and ∂+D are the edges with θ = −π/3 and θ = π/3 respectively, and ∂0D
is the arc. Next, let P be a surface of genus p with b boundary components, and define
U = D × P, with

∂U = ∂−U ∪ ∂0U ∪ ∂+U , ∂±U = ∂±D × P, ∂0U = (∂0D × P) ∪ (D × ∂P).

Let V = ♮k−2p−b+1 S1 × B3. Notice that ∂V has a standard Heegaard splitting. Let ∂V =
∂−V ∪ ∂+V be the splitting obtained by stabilizing the standard Heegaard splitting
exactly g − k + p + b − 1 times.

Since (k − 2p − b + 1) + (2p + b − 1) = k, there is an identification Zk = U ♮V . In
particular, the boundary connect sum can be taken so that the decompositions of the
boundaries align, giving

Y±g ,k ;p,b = ∂±U ♮ ∂±V , Y 0
g ,k ;p,b = ∂0U .

Definition 3.5 [2] A (g , k; p, b)-trisection or (g , k; p, b)-relative trisection of a com-
pact connected oriented 4-manifold X with connected boundary is a decomposition
X1 ∪ X2 ∪ X3 such that:
(1) there is a diffeomorphism φ i ∶ X i → Zk for each i, and
(2) φ i(X i ∩ X i+1) = Y−g ,k ;p,b , φ i(X i ∩ X i−1) = Y+g ,k ;, p,b , and φ i(X i ∩ ∂X) = Y 0

g ,k ;p,b .

Remark 3.6 The indices used in the theory of relative trisections are (g , k; p, b), as
opposed to (g , k; y, b) for pseudo-trisections. First note that relative trisections as
introduced here are balanced, so each of the k i and p i are independent of i. A more
significant difference is that in pseudo-trisections we’ve chosen to work with y i rather
than p i , that is the genera of Yi rather than the genera of Σ i . This is so that we can easily
read off that the boundary is (y, b)-trisected. We also know how to convert between
indices by Proposition 3.4.

Proposition 3.7 (Gay–Kirby [7]) A relative trisection of a 4-manifold restricts to an
open book on the boundary.

This proposition hints at a connection between relative trisections and pseudo-
trisections, as we’ve shown that trisections of 3-manifolds are generalizations of open
books, and pseudo-trisections restrict to 3-manifold trisections on their boundaries.

Theorem 3.8 (Castro–Islambouli–Miller–Tomova [6]) Any two relative trisections of
a given 4-manifold X are equivalent up to interior stabilizations, relative stabilizations,
and relative double twists.

Proof The reader is directed to [2] for a description of relative stabilization, and a
proof that any two relative trisections of 4-manifolds are equivalent up to internal
and relative stabilizations, provided the induced open books on the boundary are
equivalent up to Hopf stabilization. Reference [20, Theorem 3.5] shows that all open
books of a given 3-manifold are equivalent up to Hopf stabilization and the ∂U move
(described in [20]). The ∂U move is extended to the relative double twist move of
relative trisections in [6], completing the proof. ∎
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In Section 3.5, we establish the analogous result for pseudo-trisections.

Proposition 3.9 [25] Every relative trisection is uniquely encoded by a relative trisec-
tion diagram. (The diagrams are unique up to handleslides and diffeomorphism.)

We do not elaborate on the definition of a relative trisection diagram, but the key
takeaway is that relative trisections are encoded by diagrams of curves on a surface.
We show analogously in Section 4.1 that pseudo-trisections are uniquely encoded by
pseudo-trisection diagrams.

3.3 ⋆-trisections

Another generalization of relative trisections are ⋆-trisections, due to Aranda and
Moeller [4]. We do not fully define them here, but the idea behind the definition is
as follows:
(1) For each i ∈ {1, 2, 3}, define standard 4-dimensional sectors Z(C0

i , C1
i , Call

i )
which depend on compression bodies C∗i . These are analogous to but more
general than the sectors Zk introduced in the definition of relative trisections.
In particular, they are typically not 4-dimensional 1-handlebodies.

(2) A compact connected oriented 4-manifold X with connected boundary is ⋆-
trisected if there is a decomposition X = X1 ∪ X2 ∪ X3 such that each X i is diffeo-
morphic to Z(C0

i , C1
i , Call

i ), and the diffeomorphism sends pairwise intersections
of the X is to appropriate compression bodies C∗i .

The underlying motivation behind ⋆-trisections is to generalize the intrisic topology
of the sectors as much as possible, while maintaining a gluing theorem (which also
holds for relative trisections).

Theorem 3.10 (Aranda–Moeller [4]) (Informal.) Let X , X′ be ⋆-trisected 4-manifolds
with boundary W , W ′. Suppose there is a homeomorphism f ∶W → −W ′ preserving
the induced circular handle decompositions. Then the ⋆-trisections on X and X′ glue to
a trisection of the closed manifold X ∪ f X′.

Conversely, the original motivation behind pseudo-trisections was to generalize
the definition of relative trisections as much as possible while maintaining the intrinsic
topology of the sectors. Consequently, neither pseudo-trisections nor ⋆-trisections
can be thought of as generalizations of one-another.

Remark 3.11 While relative trisections restrict to open books on the boundary [7]
and pseudo-trisections restrict to trisections on the boundary (Proposition 3.4), ⋆-
trisections restrict to circular handle decompositions (specifically with three thin
levels, where thin levels are defined in [13]) on the boundary [4]. Open books
canonically induce both 3-manifold trisections and circular handle decompositions,
but 3-manifold trisections do not generalize to circular handle decompositions or vice
versa. (This is essentially because some 3-manifolds require arbitrarily many levels in
circular handle decompositions, while trisections always exist.)

3.4 Examples of pseudo-trisections

In this subsection, we describe several examples of pseudo-trisections.
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16 S. Fushida-Hardy

Figure 10: A schematic of how the sectors are glued together in Example 3.13.

Example 3.12 The trivial trisection of B4. Let X1 , X2 , X3 each be 4-balls. The bound-
ary of each X i further admits the trivial trisection (in the context of 3-manifolds). We
denote these sectors of ∂X i by Yi , j . Gluing X i to X i+1 by identifying Yi ,2 and Yi+1,3
produces B4. Explicitly, the pseudo-trisection consists of:

• X1 , X2 , X3 as described,
• H i = Yi−1,2 = Yi ,3,
• Yi = Yi ,1,

and the lower dimensional pieces are obtained by appropriate intersections. Note that
this is also a relative trisection.

Example 3.13 A pseudo-trisection of B3 × S1 which is not a relative trisection. Let
X1 , X2 = B3 × S1, and X3 = B4. X1 and X2 have boundary S2 × S1. Consider the tri-
section of S2 × S1 induced by its genus 1 Heegaard splitting, as well as the standard
trisection of S3. We denote these sectors by Yi , j , where Y1,1 , Y1,2 , Y2,1 , Y2,3 are solid
tori, and Y1,3 and Y2,2 are solid balls. Let Y3, j be the sectors of the trivial trisection of
the boundary of X3.

We claim that gluing X i to X i+1 by identifying Yi ,2 and Yi+1,3 produces B3 × S1. To
see this, observe that X1 and X2 are glued along a copy of D2 × S1 in their boundaries.
This is a boundary connected sum in the first entry, so the resulting manifold is still
B3 × S1. Next, X3 is glued to X1 ∪ X3 along two 3-balls, but these two 3-balls also
meet along a disk. The result is another boundary connected sum. It follows that the
resulting manifold is B3 × S1.

The sectors of the pseudo-trisection are all labeled consistently with Example 3.12.
See Figure 10 for a schematic of the pseudo-trisection. Note that this pseudo-trisection
is not a relative trisection because the boundary doesn’t inherit an open book struc-
ture.

Example 3.14 A pseudo-trisection of B2 × S2 which is not a relative trisection. Let each
of X1 , X2 , X3 be a 4-ball. Writing X1 and X2 as B2 × B2, the genus 1 Heegaard splittings
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of their boundaries can be written as (S1 × B2) ∪ (B2 × S1). These induce trisections

∂X1 = (Y1,1 , Y1,2 , Y1,3) = ((S1 × B2) − B, B2 × S1 , B),

∂X2 = (Y2,1 , Y2,2 , Y2,3) = ((S1 × B2) − B, B, B2 × S1).

In the above descriptions, B is a ball removed from a sector of the Heegaard splitting to
produce a trisection, as described in Example 2.4. Let the boundary of X3 be a trivially
trisected S3 as in Example 3.13.

Gluing the three sectors as in Examples 3.12 and 3.13, we obtain a pseudo-trisection
of B2 × S2. To see this, notice that X1 and X2 are two copies of B2 × B2 being glued
along B2 × S1, which produces B2 × S2. As in the previous example, gluing X3 does not
alter the topology. Again, the sectors are labeled consistently with previous examples.

Example 3.15 A pseudo-trisection of CP2 − B4. There is a standard genus 1 trisection
T of CP2 as seen for example in [7]. A neighborhood of a point in the central surface
of T is a trivially trisected B4. Removing this ball produces a relative trisection of
CP

2 − B4 (which is also a pseudo-trisection).

Example 3.16 Given pseudo-trisections (X1 ,T1) and (X2 ,T2), there are pseudo-
trisections of the form T1 ♮T2 on X1 ♮X2. These are called boundary connected sums
of the pseudo-trisections, and restrict to a connected sum of the boundary trisections
as described in Example 2.5. These are not unique—there are generally 3b1b2 distinct
boundary connected sums, where b1 and b2 are the number of components of the
bindings of T1 and T2, respectively.

Explicitly, we build the boundary connected sum as follows:
(1) Choose points q1 and q2 in the bindings B1 and B2 of T1 andT2 respectively. These

each have standard neighborhoods N(q1), N(q2) in their respective pseudo-
trisections, diffeomorphic to the trivial trisection. Let M(q1) and M(q2) denote
the restriction of these neighborhoods to ∂X1 and ∂X2. Note that we have made
one of b1b2 choices in specifying q1 and q2.

(2) The neighborhoods M(q1) and M(q2) are trivially trisected in the sense that each
is a 3-ball with an induced decomposition into three 3-balls, pairwise meeting
along disks, with total-intersection an arc. These inherit labels (Y 1

1 , Y 1
2 , Y 1

3 ) and
(Y 2

1 , Y 2
2 , Y 2

3 ), respectively. We take the boundary connected sum of X1 and X2 by
identifying M(q1) with M(q2) while further respecting the decompositions of
the balls into sectors.

(3) There are three choices we can make, since the identification can send Y 1
1 to any

one of Y 2
i , and this determines the rest of the identification. In total, this means

we have built one of 3b1b2 possible boundary connected sums.

Remark 3.17 The boundary connected sum of pseudo-trisections is distinct from the
plumbing of relative trisections by Murasugi sum described in [6, Theorem 3.20].
Specifically, a boundary connected sum of two relative trisections will generally not
be a relative trisection.

Proposition 3.18 A relative trisection of a 4-manifold with one boundary component
is a pseudo-trisection, provided the binding of the induced open book on the boundary
is non-empty.
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Proof It must be shown that relative trisections as above satisfy all six of the defining
properties of pseudo-trisections from Definition 3.2. Property 1 is immediate, since
the definition of relative trisections requires that each sector X i is diffeomorphic to a
standard piece Zk . Properties 4, 5, and 6 are exactly observations 1, 2, and 3 at the start
of [24, Section 4]. This leaves properties 2 and 3.

In a relative trisection, H i = X i ∩ X i−1 is necessarily diffeomorphic to a standard
piece Y+g ,k ;p,b . This is a compression body from Σg ,b to Σp,b obtained by compressing
along g − p simple closed curves. In the proposition statement, we require that the
binding of the induced open book in the boundary is non-empty, which is equivalent
to requiring that b is at least 1. A compression body of this form is diffeomorphic to a
handlebody of genus g + p + b − 1, verifying that property 2 is satisfied.

Finally we must verify that property 3 is satisfied. In the notation of [24], we have
that X i ∩ ∂X is diffeomorphic to a standard piece Y 0

g ,k ;p,b , which is itself equal to (D ×
∂Σp,b) ∪ (I × Σp,b), where D is a wedge of a disk and I is the intersection of D with
the boundary of the underlying disk. Topologically the union corresponds to gluing
b solid tori to I × Σp,b along their longitudes, and thus Y 0

g ,k ;p,b is diffeomorphic to
I × Σp,b . Again since b ≥ 1, the latter is a handlebody (of genus 2p + b − 1). ∎

Remark 3.19 The restriction to (g , k, p, b)-relative-trisections with b ≥ 1 is not a
strict condition. Firstly, any relative trisection can be Hopf-stabilized [2] to increase b.
Secondly, the usual recipe to construct a relative trisection is to first fix an open book
on the boundary 3-manifold, and this open book can be chosen to have non-empty
binding.

Corollary 3.20 Every compact connected oriented smooth 4-manifold with connected
boundary admits a pseudo-trisection.

Proof Every such 4-manifold admits a relative trisection [2]. In particular, the bind-
ing can be chosen to be non-empty. This relative trisection is a pseudo-trisection. ∎

3.5 Stabilizations and uniqueness of pseudo-trisections

We recall internal stabilization, and introduce two more notions of stabilizations of
pseudo-trisections supported near the boundary. We then show that any pseudo-
trisections of a given compact 4-manifold with connected boundary are equivalent
under these three notions of stabilization.

In [2], it is shown that relative trisections of a given 4-manifold with boundary X are
stably equivalent, provided their boundaries are stably equivalent. More precisely, two
notions of stabilization are used: internal stabilization, which doesn’t affect the open
book on the boundary, and Hopf stabilization which stabilizes the open book in the
boundary by adding a Hopf band. However, not all open books of a given 3-manifold
are equivalent under Hopf stabilization.

In the context of pseudo-trisections, the boundary 3-manifold is equipped with
a trisection rather than an open book, and all trisections of a given 3-manifold are
related by appropriate notions of stabilization. This allows us to define a set of moves
so that for any given 4-manifold, all pseudo-trisections of the manifold are stably
equivalent, without conditioning over the boundary.
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Figure 11: From left to right: schematics of internal stabilization, boundary stabilization, and
Heegaard stabilization.

Definition 3.21 Given a pseudo-trisection (X1 , X2 , X3)of a 4-manifold X, an internal
stabilization is a new pseudo-trisection (X′1 , X′2 , X′3) of X constructed as follows:
(1) Choose a neatly embedded boundary parallel arc α in H i = X i ∩ X i−1 for some i,

with endpoints on ΣC = X1 ∩ X2 ∩ X3.
(2) Let N(α) be a tubular neighborhood of α in X supported away from ∂X, and

define
• X′i+1 = X i+1 ∪ N(α),
• X′i = X i − N(α),
• X′i−1 = X i−1 − N(α).

See Figure 11 (left) for a schematic of internal stabilization.
Notice that stabilization increases the handlebody genus k i+1 of X i+1 by 1, while

leaving k i and k i−1 unchanged. The genus g of ΣC also increases by 1. This move is
essentially “one third” of the usual notion of stabilization for balanced trisections of
closed 4-manifolds.

Definition 3.22 Given a pseudo-trisection (X1 , X2 , X3) of a 4-manifold X with
boundary Y, a boundary stabilization is a new pseudo-trisection (X′1 , X′2 , X′3) of X
constructed as follows:
(1) Choose a neatly embedded non-separating arc α in Σ i . (Such an arc exists

provided Σ i is not a disk.)
(2) Let N(α) be a tubular neighborhood of α in X, and define

• X′i+1 = X i+1 ∪ N(α),
• X′i = X i − N(α),
• X′i−1 = X i−1 − N(α).

See Figure 11 (middle) for a schematic of boundary stabilization.
The definition looks very similar to that of internal stabilization—one way to

differentiate them is that internal stabilization is defined with an arc α in H i that is
far from Σ i = H i ∩ ∂X, while boundary stabilization is defined with an arc α that lives
entirely in ∂X.

We make the following observations:
(1) The restriction of N(α) to Y is a tubular neighborhood of α in Y. Therefore the

restriction of (X′1 , X′2 , X′3) to Y is a stabilization (in the sense of Definition 2.6) of
the restriction of (X1 , X2 , X3) to Y. (More succinctly, the restriction of a boundary
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stabilization is a 3-manifold stabilization of the restriction.) In particular, if
(X1 , X2 , X3) was a (g , k; y, b)-pseudo-trisection of X, then in the stabilization
y and b change as described in Section 2.1.

(2) The genera k of the 4-dimensional sectors change in the same way as y. That is,
k i+1 increases by 1, while k i and k i−1 are unchanged.

(3) The genus g of ΣC increases by 1 if the endpoints of α lie in different components
of B, and is unchanged if the endpoints of α lie in the same component. This
can be seen directly, as boundary stabilization descends to a band attachment on
ΣC , but it can also be deduced using the Euler characteristic formula for pseudo-
trisections in Proposition 3.4.

Definition 3.23 Given a pseudo-trisection (X1 , X2 , X3) of a 4-manifold X with
boundary Y, a Heegaard stabilization is a new pseudo-trisection (X′1 , X′2 , X′3) of X
constructed as follows:
(1) Choose a neatly embedded boundary parallel arc α in Yi = X i ∩ ∂X for some i,

with both endpoints on Σ i .
(2) Let N(α) be a tubular neighborhood of α in X i , and define

• X′i+1 = X i+1,
• X′i = X i − N(α),
• X′i−1 = X i−1 ∪ N(α).

See Figure 11 (right) for a schematic of Heegaard stabilization.
We make the following observations:

(1) Analogously to boundary stabilizations restricting to stabiliations of the bound-
ary, a Heegaard stabilization of a pseudo-trisection restricts to a Heegaard stabi-
lization of the 3-manifold trisection of the boundary Y. In particular, a Heegaard
stabilization of a pseudo-trisection changes y i and y i − 1 by 1, while leaving y i+1
and b unchanged.

(2) The sector X i−1 gains a 1-handle in the stabilization, so k i−1 increases by 1. On
the other hand, N(α) being carved out of X i does not change the topology of X i ,
since N(α) runs along the boundary of X i . Therefore k i and k i+1 are unchanged.

(3) The central surface ΣC is unchanged, so b is unchanged. One can verify that all of
these index changes are compatible with the Euler characteristic formula.

Internal stabilization and Heegaard stabilization are unified into the single notion
of torus stabilization at the diagrammatic level, introduced later in Definition 4.7.

Theorem 1.2 Let X be a compact connected oriented smooth 4-manifold with one
boundary component. Any two pseudo-trisections of X are equivalent up to internal,
boundary, and Heegaard stabilization.

Proof There are two steps: first we stabilize the pseudo trisections to agree on the
boundary, and then stabilize the interior.

Let T,T′ be pseudo-trisections of X. Their restrictions τ, τ′ to Y = ∂X are tri-
sections of Y. By Proposition 2.10, τ and τ′ are stably equivalent. This means there
is a trisection σ of Y and arcs {α}, {α′} such that stabilizations and Heegaard
stabilizations of τ along {α} produces σ , and similarly stabilizations and Heegaard
stabilizations of τ′ along {α′} produces σ .
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We now return to 4-dimensions: Boundary stabilizing and Heegaard stabilizing T

along {α} produces a pseudo-trisection S which restricts to the 3-manifold trisection
σ on Y. On the other hand, boundary and Heegaard stabilizingT′ along {α′} produces
a pseudo-trisection S′ which also restricts to σ on Y. We have successfully stabilized
our pseudo-trisections to agree on the boundary.

Next we turn to the interior. We proceed as in the proof of the analogous result for
closed trisections in [7]. To that end, we require a cobordism structure on X, which
we obtain by first turning our boundary trisection into a Heegaard splitting.

Consider the sectors X1 and X′1 in S and S′ respectively. These restrict to Y1 = Y ′1 on
the boundary. Choose a maximal collection of non-separating arcs in Σ3. Boundary
stabilizing the two pseudo-trisections along these arcs produces two new pseudo-
trisections (which we still call S and S′). However, the restricted trisection on the
boundary now has that Σ3 is a disk. This means Y2 ∪ Y3 now glues along a disk, so
it is itself a handlebody. In summary, the decomposition Y1 ∪ (Y2 ∪ Y3) is a Heegaard
splitting.

Next we view X as a cobordism from Y2 ∪ Y3 to Y1. Formally, we do this by con-
sidering a tubular neighborhood N of the Heegaard splitting surface Σ1 ∪ Σ2, so that
Y is of the form (Y1 − N) ∪ N ∪ (Y2 ∪ Y3 − N). The theorem now essentially follows
from [7, Theorem 21]: there are relative handle decompositions (equivalently, Morse
functions), induced by the pseudo-trisections and compatible with the cobordism
structure. Cerf theory tells us that the handle decompositions are related by a series
of moves which correspond to internal stabilization. In summary, after a sequence of
internal stabilizations, our pseudo-trisections are isotopic. ∎

Remark 3.24 The proof of Theorem 1.2 doesn’t involve Heegaard stabilization unless
one of the original trisections of X restricts to the trivial open book on Y. For example,
if the boundary of X is not a sphere, the above theorem holds using only boundary and
internal stabilizations.

3.6 Complexity of pseudo-trisections and relative trisections

This subsection introduces a notion of complexity for pseudo-trisections, which also
applies to relative trisections. It can be considered a generalization of the genus of a
trisection (of a closed manifold). We show that each notion of stabilization increases
complexity by 1. The minimal complexity of a pseudo-trisection of a given 4-manifold
with boundary is bounded above by the minimal complexity of a relative trisection
(since relative trisections are pseudo-trisections), but we see with some examples that
these minimal complexities do not generally agree.

Definition 3.25 The complexity of a (g , k, y, b)-pseudo-trisection T of a 4-manifold
X with boundary ∂X is the integer

c(T) = χ(X) + ∣k∣ − 1.

Further, we write c(∂T) to denote the complexity of the induced trisection on ∂X, and
c(T, ∂T) to denote c(T) + c(∂T). We write c(X) to denote the minimum complexity
among all pseudo-trisections of X, and c(X , ∂X) to denote the minimum value of
c(T, ∂T) among all pseudo-trisections of X.
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Remark 3.26 It is immediate that c(X , ∂X) is at least c(X) + c(∂X), but it is not
known whether or not they are always equal.

Proposition 3.27 Complexity satisfies the following properties:
(1) Recalling that p i denotes the genus of the surface Σ i of the pseudo-trisection,

c(T) = g + 1
2
(∣y∣ + b − 1) = g + ∣p∣ + 2b − 2.

(2) The three types of stabilization for pseudo-trisections increase complexity by 1.
(3) Write β i for the Betti numbers of X.

(a) For T a relative trisection, c(T) ≥ β1 + β2.
(b) For T a pseudo-trisection, c(T, ∂T) ≥ β1 + β2.

(4) Given pseudo-trisected manifolds (X1 ,T1), (X2 ,T2), complexity is additive in the
sense that c(T1 ♮T2) = c(T1) + c(T2).

Proof In item (1), the first equality is an application of the last item in Proposition 3.4.
The second equality is an application of the second item in the aforementioned
proposition.

For item (2), we use the observation that each of the three types of stabilization for
pseudo-trisections increases one of the k i by 1, while leaving the other two unchanged.

For item (3), we require several steps. In step 1, we establish a general homological
statement about 4-manifolds with boundary. In step 2 we establish bounds for β1 in
terms of ∣k∣ (and ∣y∣) for relative trisections (and pseudo-trisections).

Step 1. In the long exact sequence H4(X , ∂X) i	→ H3(∂X) j	→ H3(X)
k	→

H3(X , ∂X), the map k is necessarily injective because i is an isomorphism.
Combining this fact with the isomorphism H1(X) ≅ H3(X , ∂X), we have

β1 = rank H1(X) = rank H3(X , ∂X) ≥ rank H3(X) = β3 .

On the other hand, χ(X) = 1 − β1 + β2 − β3, so

χ(X) − 1 ≥ β2 − 2β1 .

Step 2. Suppose T is either a relative trisection or pseudo-trisection. Let γ be a neatly
embedded loop in X. Then γ meets each X i along a set of arcs whose endpoints lie
in ∂X i . Since each X i is a handlebody, the arcs can be homotoped rel boundary to
lie in ∂X i . We do this in every sector, to obtain a loop γ′ contained entirely within
the 3-skeleton of T. Next we repeat this step a dimension lower: γ′ intersects each
H i or Yi along an arc with endpoints in ∂H i or ∂Yi respectively. These arcs can
again be homotoped rel boundary to lie within ∂H i and ∂Yi respectively. Doing this
in every 3-dimensional sector, we obtain a loop γ′′ contained entirely within the 2-
skeleton of T.

The proof now diverges for pseudo-trisections and relative trisections. In the
former case, notice that γ′′ can be viewed as loop in X i ∪ Σ i−1 for any i. This means
π1(X i ∪ Σ i−1) surjects onto π1(X). Taking into account how Σ i−1 is glued to X i , it
follows that 2p i−1 + b − 1 + k i ≥ β1. This holds over each i, giving

∣k∣ + ∣y∣ = 2∣p∣ + 3b − 3 + ∣k∣ ≥ 3β1 .
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Figure 12: Complexities of some simple 4-manifolds. When not known, the interval of possi-
bilities is written.

Combining this with the result from step 1 gives

c(T) + c(∂T) = χ(X) + ∣k∣ − 1 + ∣y∣ ≥ 3β1 + β2 − 2β1 = β1 + β2 .

In the case of relative trisections, the boundary is an open book. Therefore the arcs
γ′′ ∩ Σ i can be homotoped rel boundary to any Σ j via the fibration defining the open
book. It follows that γ′′ can be homotoped to lie entirely within any one of the X i . It
follows that ∣k∣ ≥ 3β1, and therefore that c(T) ≥ β1 + β2.

Finally, for item (4), we have that

c(T1 ♮T2) = χ(X1 ♮X2) + ∣kT1+T2 ∣ − 1
= χ(X1) + χ(X2) − 1 + ∣kT1 ∣ + ∣kT2 ∣ − 1 = c(T1) + c(T2)

as required. ∎
Remark 3.28 Proposition 3.27 implies that c(X1 ♮X2) ≤ c(X1) + c(X2). It is not
known if this inequality is ever strict. This is analogous to the question of whether
or not trisection genus is additive under connected sum.

Example 3.29 Figure 12 lists the minimum complexities of some relative trisections
and pseudo-trisections. It demonstrates that even for simple 4-manifolds complex-
ities of relative trisections tend to be much greater than the lower bound given in
Proposition 3.27. On the other hand, complexities of pseudo-trisections appear to be
equal to β1 + β2. This suggests that relative trisections tend to have significantly higher
complexity than pseudo-trisections.

The five (minimal) pseudo-trisections in Figure 12 are presented in Examples 3.12,
3.13, 3.14, and 3.15 and below in Figure 13. Since any pseudo-trisection with complexity
0 is the trivial pseudo-trisection, it is automatic that the given pseudo-trisections for
S1 × B3 and S2 × D2 must be minimal. Next, one can see that any pseudo-trisection
with complexity 1 must have boundary a lens space or S1 × S2. It follows that the
given pseudo-trisection for (S2 × D2) ♮(S2 × D2) is also minimal. Another minimal
pseudo-trisection of (S2 × D2) ♮(S2 × D2) is given by the boundary connected sum
of a complexity 1 pseudo-trisection with itself.

For relative trisections, it is again clear that the trivial trisection of B4 is minimal,
and any other trisection has complexity at least 1. Therefore the relative trisection
given in Example 3.15 is minimal. Any relative trisection with complexity 1 must have
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Figure 13: A pseudo-trisection diagram of (S2 × D2) ♮(S2 × D2).

boundary S3. It follows that a relative trisection of S1 × B3 with complexity 2 would
be minimal. Such a relative trisection exists—it is prescribed by the relative trisection
diagram consisting of an annulus (and no curves). Moreover, this is the only relative
trisection with complexity 2 and boundary not a sphere, as can be seen by enumerating
diagrams.

From here, it follows that any relative trisection of S2 × D2 with complexity 3 must
be minimal. However, the author could not find such an example, or rule out its
existence. To the author’s best knowledge, the smallest known relative trisection of
S2 × D2 has complexity 4—see [3, Example 2.9].

Finally, one can show again by enumerating diagrams that any relative trisection of
(S2 × D2) ♮(S2 × D2)must have complexity at least 4. To the author’s best knowledge,
the smallest known relative trisection of (S2 × D2) ♮(S2 × D2) has complexity 8, by
taking the “plumbing” of a relative trisection of S2 × D2 with itself (in the sense of
[6, Theorem 3.20]). Note that it is not known whether or not relative trisection genus
(equivalently, complexity) is additive under boundary connected sum [1].
Example 3.30 For pseudo-trisections, c(♮�(S2 × D2)) ≤ �. This is because we can
iteratively take the boundary connected sum of the complexity 1 pseudo-trisection in
Example 3.14 with itself, and complexity is subadditive. On the other hand, restricting
to relative trisections and assuming additivity of relative trisection genus, c(♮�(S2 ×
D2)) ≥ 3� by Example 3.29.
Remark 3.31 In Examples 3.29 and 3.30, we reference the question of whether or
not relative trisection genus is additive under boundary connected sum. Evidence for
the additivity of relative trisection genus is presented in a recent preprint of Takahashi
[26]. Note that additivity of relative trisection genus would imply additivity of (closed)
trisection genus, which in turn implies the Smooth Poincaré conjecture in dimension
4 [14].
Remark 3.32 The author is unaware of manifolds X for which c(X) < β1 + β2 or
c(X , ∂X) = β1 + β2 , c(∂X) > 0. It appears likely that the bound given in Proposi-
tion 3.27 for pseudo-trisections can be improved.
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Remark 3.33 To better measure the extent to which pseudo-trisections have lower
complexity than relative trisections, we would need a sufficiently tight upper bound on
the complexity of pseudo-trisections. This corresponds to further refining existence
results in a way which is not done here.

3.7 Classification of low complexity pseudo-trisections

In this subsection, we determine which 4-manifolds admit pseudo-trisections with
complexity at most 1. Consequently, we show that additivity of pseudo-trisection
complexity under boundary connected sum would imply that disk bundles over S2

are standard. We start by recalling a similar result in the closed setting.

Proposition 3.34 (Meier–Lambert–Cole, [14, Proposition 1.7]) If trisection genus
is additive under connected sum, then there is no exotic S4 ,CP2 , S1 × S3 , S2 ×
S2 ,CP2#CP2, nor CP2#CP2.

If trisection genus is additive, a theorem of Wall [27] implies that trisection genus
is a homeomorphism invariant of smooth manifolds. It remains to classify the closed
4-manifolds of given trisection genera, and indeed the above list corresponds to those
with trisection genera at most 2.

Proposition 3.35 Let X be a compact connected oriented smooth 4-manifold with one
boundary component.
• If c(X) = 0, then X is B4. Conversely, B4 admits a unique pseudo-trisection up to

diffeomorphism with complexity 0.
• If c(X) = 1, then X is either B4 ,CP2 − B4 , S1 × B3, or a disk bundle over S2. Con-

versely, each of these manifolds admits a unique pseudo-trisection up to diffeomor-
phism with complexity 1.

Proof The proof structure is to determine all possible pseudo-trisection diagrams
with complexity 0 or 1 up to handleslides and isotopies. This proof depends on
Section 4 and in particular Lemma 4.6, but we have placed it here for thematic reasons.

It is immediate that a pseudo-trisection with complexity 0 is the trivial pseudo-
trisection.

Next, suppose X is pseudo-trisected with complexity 1. By Proposition 3.27, b = 1
is fixed, and exactly one of ΣC , Σ1 , Σ2 , Σ3 has genus 1 while the rest are disks.

Case 1: ΣC has genus 1, and each Σi is a disk. Then identifying the boundary of X
with the boundary of a trivially trisected B4 produces a trisection of a closed manifold
with trisection genus 1. By [7] this trisection is the unique trisection of CP2 up to
diffeomorphism, and consequently X isCP2 − B4, also trisected up to diffeomorphism
with complexity 1.

Case 2: Without loss of generality, Σ1 has genus 1, and each of ΣC , Σ2 , Σ3 is a
disk. Then there is a pseudo-trisection diagram of the pseudo-trisection of X con-
sisting of three simple closed curves α1 , δ1 , δ3 on Σ1. The triple Heegaard diagrams
(ΣC , Σ3 , Σ1 ,∅, δ3 , α1) and (ΣC , Σ1 , Σ2 , α1 , δ1 ,∅) must encode either S3 or S1 × S2,
which corresponds to the intersection numbers α1 ⋅ δ1 and δ3 ⋅ α1 being 0 or 1.

Suppose α1 ⋅ δ1 = 0 and δ3 ⋅ α1 = 0. Then the resulting pseudo-trisection is of S1 ×
B3, described in Example 3.13. Suppose α1 ⋅ δ1 = 0 and δ3 ⋅ α1 = 1. Then δ3 ⋅ δ1 = 1, and
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the resulting trisection is the Heegaard stabilization of the trivial trisection of B4. This
is diffeomorphic to the trisection obtained when α1 ⋅ δ1 = 1 and δ3 ⋅ α1 = 0. Finally,
suppose α1 ⋅ δ1 and δ3 ⋅ α1 are both 1. Then δ3 ⋅ δ1 = e for any integer e, and for each e
there is a unique configuration of α1 , δ1 , δ3 on Σ1 (up to handleslides and isotopies)
achieving the given intersections. Each such diagram encodes the disk bundle over S2

of Euler number e. In particular, when e = 0, the corresponding pseudo-trisection is
of S2 × B2, described in Example 3.14. ∎

Remark 3.36 To the best of the author’s knowledge, there is currently no (non-
trivial) list of the “simplest relative trisections”.

Corollary 3.37 If complexity of pseudo-trisections is additive under boundary con-
nected sum, then there is no exotic B4, CP2 − B4, S1 × B3, or disk bundle over S2.

Proof By Gompf ’s generalization of Wall’s theorem [8, 27], for any two home-
omorphic compact oriented smooth 4-manifolds X , X′, there exists an integer k
such that X ♮k(S2 × S2 − B4) and X′ ♮k(S2 × S2 − B4) are diffeomorphic. Additivity
of complexity would then imply that c(X) = c(X′), but Proposition 3.35 lists all
manifolds with complexity at most 1, and the list contains no exotic pairs. ∎

Note that the existence of an exotic B4 and CP
2 − B4 is equivalent to the existence

of an exotic S4 and CP
2.

4 Pseudo-trisection diagrams

In this section, we introduce pseudo-trisection diagrams. These represent pseudo-
trisections in the same way that trisection diagrams represent relative trisections. We
establish a one-to-one correspondence between pseudo-trisections diagrams (up to
diagram moves) and pseudo-trisections (up to stabilization). We also use pseudo-
trisection diagrams to prove Theorem 1.1, namely that for any 4-manifold with a
given trisection of the boundary, there exists a pseudo-trisection of the 4-manifold
extending the boundary trisection. Finally we describe some orientation conventions.

4.1 Pseudo-trisection diagrams

In this subsection, we introduce pseudo-trisection diagrams, which are diagrams for
pseudo-trisections extended from triple Heegaard diagrams (in the same fashion
that trisection diagrams are extended from Heegaard diagrams). A pseudo-trisection
diagram consists of several arcs and closed curves on four surfaces, so that restricting
to any three surfaces (and correspondingly coloured arcs) produces a triple Heegaard
diagram. This is analogous to trisection diagrams consisting of three simultaneous
Heegaard diagrams.

Definition 4.1 A (g , k, y, b)-pseudo-trisection diagram consists of the data
(ΣC , Σ1 , Σ2 , Σ3 , α1 , α2 , α3 , δ1 , δ2 , δ3), with the following constraints.
(1) Each Σ○, ○ ∈ {C , 1, 2, 3} is a surface with boundary. Specifically, ΣC has genus g

and b boundary components, while Σ i has genus p i = 1
2(y i−1 + y i − y i+1 − b + 1)

and b boundary components.
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(2) There is an identification of the boundaries of all four of the Σ○. In particular,
Σ i ∪ Σ i+1 is a closed surface of genus y i , and ΣC ∪ Σ i is a closed surface of genus
h i = g + 1

2(y i−1 + y i − y i+1 + b − 1).
(3) Each δ i is a collection of disjoint neatly embedded arcs and simple closed curves

on Σ i and Σ i+1, which glues to a cut system of y i curves on Σ i ∪ Σ i+1. Similarly,
each α i is a collection of disjoint neatly embedded arcs and simple closed curves
on ΣC and Σ i , which glues to a cut system of h i curves on ΣC ∪ Σ i .

(4) The data

(ΣC , Σ1 , Σ2 , α1 , δ1 , α2)
(ΣC , Σ2 , Σ3 , α2 , δ2 , α3)
(ΣC , Σ3 , Σ1 , α3 , δ3 , α1)

are all triple Heegaard diagrams. Each of these three triple Heegaard diagrams
encode #k i S1 × S2 respectively.

For notational brevity, we frequently write (ΣC , Σ i , α i , δ i) instead of
(ΣC , Σ1 , Σ2 , Σ3 , α1 , α2 , α3 , δ1 , δ2 , δ3).
Definition 4.2 There is a realization map

R ∶ {(g , k; y, b)-pseudo-trisection diagrams} → {(g , k; y, b)-pseudo-trisections}
diffeomorphism

defined as follows:
(1) First, glue the underlying surfaces ΣC , Σ1 , Σ2 , Σ3 along their common boundaries

to obtain the 2-skeleton W.
(2) Next, each pair of surfaces glues to a closed surface, and there is a corresponding

cut system. (For example, (ΣC , Σ2 , α2).) Each cut system describes how to glue in
a 3-dimensional 1-handlebody, as in the proof of Proposition 2.13. Gluing each of
the six 3-dimensional 1-handlebodies produces the 3-skeleton Z.

(3) By assumption, the diagrams D1 = (ΣC , Σ1 , Σ2 , α1 , δ1 , α2), D2 =
(ΣC , Σ2 , Σ3 , α2 , δ2 , α3), and D3 = (ΣC , Σ3 , Σ1 , α3 , δ3 , α1) are each triple
Heegaard diagrams of #k i (S1 × S2). These bound 4-dimensional 1-handlebodies,
which are labeled X1 , X2, and X3, respectively, and are precisely the sectors of a
pseudo-trisection.

Proposition 4.3 The realization mapR is well defined in the sense that any two pseudo-
trisections constructed by the definition of R are indeed diffeomorphic.
Proof Suppose X and X′ are pseudo-trisected 4-manifolds constructed from a given
pseudo-trisection diagram byR. Let X i and X′i be the sectors, W and W ′ the 2-skeleta,
and Z and Z′ be the 3-skeleta of X and X′ respectively. Notice that the 2-skeleta
are exactly the union of the surfaces in the pseudo-trisection diagram, so we start
with the identity map W →W ′. Next, we extend this to a map Z → Z′ by (the proof
of) Proposition 2.13. This map restricts to diffeomorphisms ∂X i → ∂X′i as trisected
3-manifolds. Finally, we apply a theorem of Laudenbach and Poénaru [15] which
states that diffeomorphisms of #k(S1 × S2) extend to diffeomorphisms of ♮k(S1 × B3).
Namely, the diffeomorphisms ∂X i → ∂X′i above each extend to maps X i → X′i . These
three extensions glue along Z to give a diffeomorphism X → X′. ∎
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Figure 14: Three pseudo-trisection diagrams (arising from three different choices of Σ1).

Example 4.4 Figure 13 is an example of a pseudo-trisection diagram, namely of (S2 ×
D2) ♮(S2 × D2). Restricting the diagram to (Σ1 , Σ2 , Σ3 , δ1 , δ2 , δ3) produces exactly
the triple Heegaard diagram of (S1 × S2)#(S1 × S2) shown in Figure 8. On the other
hand, the other triple Heegaard diagrams such as (ΣC , Σ1 , Σ2 , α1 , δ1 , α2) each describe
S1 × S2, so this is a valid pseudo-trisection diagram. One can show that the diagram
really does encode (S2 × D2) ♮(S2 × D2) by applying the realization map.

Example 4.5 Figure 14 depicts several of the simplest pseudo-trisection diagrams,
by using the same choice of ΣC , Σ2, and Σ3, but switching out Σ1 and the associated
curves.

(ΣC , Σ1 , Σ2 , Σ3 ,∅,∅,∅,∅,∅,∅) 	→ B4 ,
(ΣC , Σ′1 , Σ2 , Σ3 , α1 ,∅,∅, δ1 ,∅, δ3) 	→ S1 × B3 ,
(ΣC , Σ′′1 , Σ2 , Σ3 , α∗1 ,∅,∅, δ1 ,∅, δ3) 	→ S2 × B2 .

In fact, these three diagrams are precisely the diagrams giving rise to the pseudo-
trisections in Examples 3.12, 3.13, and 3.14.

Lemma 4.6 Fix a pseudo-trisectionT of X. Any two pseudo-trisection diagramsD and
D′ with realization T are diffeomorphic after a sequence of handleslides and isotopies.
(That is, there are diffeomorphisms φ○ ∶ Σ○ → Σ′

○
rel boundary preserving the arcs on the

surfaces.)

Proof This essentially follows from the proof of Lemma 2.21. For each sector Yi or
H i of the trisection, the corresponding meridian system (considered up to isotopy)
[11] is unique up to handleslides. A pseudo-trisection diagram is a collection of six
overlapping meridian systems. ∎

Note that handleslides and isotopies of pseudo-trisections are identical to those of
triple Heegaard diagrams, described in Example 2.20.

Next we give diagrammatic descriptions of boundary stabilization, Heegaard sta-
bilization, and internal stabilization. At the diagrammatic level, we find that Heegaard
stabilization and internal stabilization fit into the same framework, which we call torus
stabilization.
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Figure 15: An example of a torus stabilization (which is type II with the given labels). See
Definition 4.7.

Definition 4.7 Given a pseudo-trisection diagram, a torus stabilization is a new
pseudo-trisection diagram obtained by increasing the genus of one of the Σi or ΣC
by 1, and correspondingly adding three curves as shown in Figure 15. There are two
types, as follows:
• Type I. Let T2 be a torus with three curves, namely two meridians μ1 , μ2 and a

longitude γ. For a fixed j ∈ {1, 2, 3}, a type I torus stabilization of (ΣC , Σ i , α i , δ i)
is the diagram obtained by replacing Σ j with Σ j#T2, α j with α j ∪ {μ1}, δ j−1 with
δ j−1 ∪ {μ2}, and δ j with δ j ∪ {γ}.

• Type II. Let (T2 , μ1 , μ2 , γ) be as above. For a fixed j ∈ {1, 2, 3}, a type II torus
stabilization of (ΣC , Σ i , α i , δ i) is the diagram obtained by replacing ΣC with
ΣC #T2, α j with α j ∪ {γ}, α j+1 with α j+1 ∪ {μ1}, and α j−1 with α j−1 ∪ {μ2}.
One can check that torus stabilization is well defined by observing that the result

of torus stabilization is a valid pseudo-trisection diagram, and moreover that it is a
diagram of the same underlying 4-manifold.
Proposition 4.8 Torus stabilizations of pseudo-trisection diagrams correspond to Hee-
gaard stabilizations and internal stabilizations of pseudo-trisections. More precisely, the
following hold:
(1) Let D be a pseudo-trisection diagram with realization T. Let D′ be a type I torus

stabilization of D. Then the realization of D′ is a Heegaard stabilization of T.
(2) Let T′ be a Heegaard stabilization of T. Then there is a pseudo-trisection diagram

D such that its realization is T, and moreover a type I torus stabilization of D has
realization T′.

(3) Let D be a pseudo-trisection diagram with realization T. Let D′ be a type II torus
stabilization of D. Then the realization of D′ is an internal stabilization of T.

(4) Let T′ be an internal stabilization of T. Then there is a pseudo-trisection diagram
D such that its realization is T, and moreover a type II torus stabilization of D has
realization T′.

Proof Item (1) is a direct consequence of the definition of realiation. Specifically, the
connected sum of some Σ j with a torus results in the 3-dimensional 1-handlebodies
H j , Yj−1, and Yj each gaining a handle hH j , hYj−1 , and hYj respectively. The curves
added in the type I torus stabilization ensure that hH j and hYj−1 are parallel, while
the other two pairs cancel. Gluing H j ∪ hH j , Yj−1 ∪ hYj−1 , and H j−1, we obtain a 3-
manifold differing from ∂X j−1 by a connected sum with S1 × S2. This corresponds
to the boundary of the handle attached in Heegaard stabilization.
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Figure 16: An example of a band stabilisation. See Definition 4.9.

To prove item (2) one can choose any pseudo-trisection diagram D of T. The
Heegaard stabilization involves an arc α in some Yj with endpoints p, q in Σ j , with
neighborhood N(α) ⊂ Yj . Let γ1 be the arc obtained by pushing α to the boundary
of N(α), and γ2 the arc obtained by isotoping α onto Σ j and pushing the endpoints
to agree with γ1. Let γ be the closed curve γ1 ∪ γ2. Next, let μ1 and μ2 be meridians
of N(α). Create the diagram D′ by a surgery replacing disks around p and q with
an annulus corresponding to the boundary of N(α), and add new curves γ, μ1 , μ2
to the diagram as in the definition of type I torus stabilizations. After handleslides
and isotopies of γ, the resulting diagram is a type I torus stabilization of D which has
realiation T′.

Items (3) and (4) are analogous to (1) and (2) and left to the reader. ∎
Definition 4.9 Given a pseudo-trisection diagram, a band stabilization is a new
pseudo-trisection diagram obtained by the following procedure:
(1) Identify a non-separating neatly embedded arc α in some Σ i . Thicken the arc to

a band in Σ i .
(2) New surfaces Σ′i , Σ′i+1 , Σ′i+2 , Σ′C are obtained by subtracting the band in Σ′i , and

attaching the band to the other three surfaces.
(3) The preexisting curves on the surfaces are cut and pasted if they intersect the band,

as shown by the change from δ1 to δ′1 in Figure 16. Three new curves are added,
one to each of δ i+1 , α i+1, and α i+2. Each curve consists of two arcs in the diagram,
one in each corresponding surface. Each arc is a cocore of the attached band. See
Figure 16 for a depiction of the case when i = 1.

One can check that band stabilization is well defined by observing that the result is
a pseudo-trisection diagram, and moreover that it is a diagram of the same underlying
4-manifold.
Proposition 4.10 Band stabilizations of pseudo-trisection diagrams correspond to
boundary stabilizations of pseudo-trisections. More precisely, the following hold:
(1) Let D be a pseudo-trisection diagram with realization T. Let D′ be a band

stabilization of D. Then the realization of D′ is a boundary stabilization of T.
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(2) Let T′ be a boundary stabilization of T. Then there is a pseudo-trisection diagram
D such that its realization is T, and moreover a band stabilization of D has
realization T′.

Proof The proof is similar to the proof of Proposition 4.8. The equivalence is
established by viewing the surfaces of the diagram as the 2-skeleton of the pseudo-
trisection, and equating the arc α in the definition of band stabilization with the arc
used in the definition of boundary stabilization. ∎

Theorem 1.3 The realization map

R ∶ {pseudo-trisection diagrams} → {pseudo-trisections}
diffeomorphism

induces a bijection

{pseudo-trisection diagrams}
band and torus stabilization,

handleslide, isotopy

	→
{ compact oriented 4-manifolds

with one boundary component}

diffeomorphism
.

Proof This proof is analogous to that of Proposition 2.22. By Lemma 4.6, any two
pseudo-trisection diagrams of a fixed pseudo-trisection are diffeomorphic after a
sequence of handleslides and isotopies. By Theorem 1.2, any two pseudo-trisections
of a given 4-manifold are equivalent up to boundary, Heegaard, and internal stabi-
lization. By Propositions 4.10 and 4.8, band and torus stabilizations correspond to
boundary, Heegaard, and internal stabilizations. ∎

4.2 Boundary stabilization shift and relative existence

Boundary stabilization of pseudo-trisections is an extension of stabilization of 3-
manifold trisections to the entire 4-manifold. In this subsection, we show that there
is a reverse operation—destabilization of the boundary extends to the 4-manifold as
well. We use this operation to establish that any trisection of the boundary 3-manifold
of X extends to a pseudo-trisection of X. This mirrors the existence result for relative
trisections [7].

Definition 4.11 Boundary stabilization shift is an operation on pseudo-trisections
with stabilized boundary defined diagrammatically in Figure 17 which can be thought
of as exchanging a stabilization of the boundary for an internal stabilization. The
details are as follows:
(1) Let X be equipped with a pseudo-trisection T such that T∣∂X is a stabilisation of

a trisection τ′ of ∂X.
(2) Let (ΣC , Σ i , α i , δ i) be a pseudo-trisection diagram of T realizing the stabilisation

of the boundary. (This is the top row of Figure 17.) Locally, each of Σ1 , Σ2, and
Σ3 are as depicted by shading, but nothing can be said about how ΣC meets its
boundary.

(3) The boundary stabilisation shift of T is the pseudo-trisection given by the diagram
in the bottom row of Figure 17. This is obtained by band surgery on each of Σ i and
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Figure 17: A diagrammatic definition of boundary stabilisation shift, see Definition 4.11.

ΣC : a band is glued to obtain each of Σ′1 and Σ′C , with a corresponding meridian
in α1, and bands are deleted to obtain Σ′2 and Σ′3.

Lemma 4.12 Boundary stabilisation shift is well defined.

Proof Referring back to Definition 4.1, being well defined requires that each δ i
and α i must be a cut system of its corresponding surface, and that each of the
triple Heegaard diagrams induced on the three triples (Σ′C , Σ′i , Σ′i+1) are specifically
diagrams of connected sums of S1 × S2.

For the first condition, observe that the only surface-pairs whose unions have
changed in the operation are Σ′2 ∪ Σ′3 and Σ′1 ∪ Σ′C . In the former, the genus is
decreased by a surgery along a neighborhood of γ, so δ2 − {γ} is a cut system of
Σ′2 ∪ Σ′3. In the latter, the genus is increased and μ is the corresponding meridian,
so α1 ∪ {μ} is a cut system.

For the second condition, we observe that (Σ′C , Σ′1 , Σ′2 , α1 ∪ {μ}, δ1 , α2) is
a stabilisation of (ΣC , Σ1 , Σ2 , α1 , δ1 , α2). The latter is necessarily a diagram of
#k1(S1 × S2) because our operation is on a valid pseudo-trisection diagram. Con-
sequently, (Σ′C , Σ′1 , Σ′2 , α1 ∪ {μ}, δ1 , α2) is a diagram of #k1(S1 × S2). Similarly,
(Σ′C , Σ′3 , Σ′1 , α3 , δ3 , α1 ∪ {μ}) is a diagram of #k3(S1 × S2). The remaining check is that
(Σ′C , Σ′2 , Σ′3 , α2 , δ2 ∪ {γ}, α3) is locally a destabilisation of (ΣC , Σ2 , Σ3 , α2 , δ2 , α3), so
it is a diagram of #k2(S1 × S2). ∎

Proposition 4.13 Boundary stabilisation shift of T to T′ satisfies the following
properties:
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Figure 18: Proof of Proposition 4.13, item (3).

(1) T∣∂X is a stabilisation of T′∣∂X (in the sense of 3-manifold trisections).
(2) Complexity of the pseudo-trisection is invariant under boundary stabilisation shift,

while complexity of the boundary decreases by 1.
(3) Suppose T is a boundary stabilisation of a pseudo-trisection T∗. Then T′ is an

internal stabilisation of T∗.

Proof Item (1). This is an immediate consequence of the definition, by restricting
the diagram to (Σ′i , δ′i) and observing that it stabilizes to (Σ i , δ i).

Item (2). The complexity of the pseudo-trisection is unchanged since each k i is
unchanged (as was observed in the proof of Lemma 4.12.) The complexity of the
boundary decreases by 1, by Proposition 2.26.

Item (3). This is proved diagrammatically, in Figure 18. The top row shows local
regions of a pseudo-trisection diagram of T∗, and α denotes the curve along which
the boundary stabilisation occurs. Applying a boundary stabilisation along α followed
by a boundary stabilisation shift, the resulting pseudo-trisection diagram is shown
in the second row. Applying diffeomorphisms to the Σ′i and Σ′C , and isotoping the
curves, the bottom row is obtained. Applying handleslides and isotopies to μ, and a
diffeomorphism rel boundary to Σ′C , the diagram of the bottom row can be expressed
as a type II torus stabilisation of the initial diagram. The result now follows from
Proposition 4.8. ∎
Theorem 1.1 Let X be a compact oriented 4-manifold with non-empty connected
boundary Y. Let τ be a trisection of Y. Then there is a pseudo-trisection T1 of X such
that T1∣Y = τ.
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Proof Case 1: τ is the trivial trisection of Y = S3. Fill the boundary Y with a 4-ball
B4 to obtain a closed manifold X ∪ B4. There is a trisection of X ∪ B4 by the usual
existence result in the closed setting [7]. Choose any point in the central surface of
the trisection, and there is a trivially trisected neighborhood N of the point. Now X
is diffeomorphic to (X ∪ B4) − N , and the latter is equipped with a pseudo-trisection
with boundary τ.

Case 2: Y is equipped with any trisection τ other than the trivial trisection of S3.
(Y may or may not be S3.) Equip X with a pseudo-trisection T by Corollary 3.20. By
Proposition 2.10, there is a trisection τ′ of Y such that there is a sequence of stabil-
isations and Heegaard stabilisations from T∣Y to τ′, and a sequence of stabilisations
from τ to τ′. At the 4-dimensional level, there is an induced sequence of boundary
stabilisations and Heegaard stabilisations from T to some pseudo-trisection T′ with
T′∣Y = τ′. Further, there is a sequence of boundary stabilisation shifts from T′ to a
pseudo-trisection T1 with T1∣Y = τ. ∎

4.3 Orientations of pseudo-trisections

In this subsection, we outline a convention for how a pseudo-trisection diagram
determines an orientation of the corresponding 4-manifold. In general, this requires
one additional label to be added to the pseudo-trisection diagram.
(1) If the binding of the pseudo-trisection consists of one component and is depicted

as a circle in the given pseudo-trisection diagram, it is oriented counterclockwise.
Otherwise, one component of the binding must be labeled with an orientation.

(2) The orientation of the boundary component extends to an orientation of the
surfaces Σ○ , ○ ∈ {C , 1, 2, 3} by the outward-normal-first convention. (This further
induces orientations on any remaining components of the binding.)

(3) An oriented normal vector to each Σ○ is determined by the right hand rule. Pieces
of the 3-skeleton are oriented as follows:
(a) The boundary ∂Yi of Yi is oriented as (−Σ i) ∪ Σ i+1. Now Yi is oriented by the

outward-normal-first convention.
(b) The boundary ∂H i of H i is oriented as (−ΣC) ∪ Σ i . Now H i is oriented by

the outward-normal-first convention.
(4) Next, the boundaries ∂X i of the sectors are oriented as Yi ∪H i ∪ (−H i+1). The

sectors X i are oriented by the outward-normal-first convention.
(5) The 4-manifold X is oriented as X1 ∪ X2 ∪ X3. The boundary ∂X = Y is oriented

as Y1 ∪ Y2 ∪ Y3, and this orientation agrees with the induced boundary orientation
from X.

5 Pseudo-bridge trisections

In this section, we extend from considering 4-manifolds to considering pairs (X ,K)
where K is an embedded surface. In the case where X and K are closed, these pairs
are understood via bridge trisections as in [19]. In the relative case (i.e., when X is
compact with boundary ∂X, and K ⊂ X is a neatly embedded surface with boundary
L ⊂ ∂X), there is a notion of relative bridge trisections introduced in general in [17].
We summarize relative bridge trisections before introducing an analog of bridge
position for pseudo-trisections. We also introduce pseudo-bridge trisection diagrams
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and describe how some properties of the encoded surface can be read off the diagrams.
Recall the conventions for pairs (X ,K) described in Section 1—the introduction.

5.1 Relative bridge trisections

The general theory of relative bridge trisections, due to Meier [17], is reviewed here.
In the same way that relative trisections are defined to be determined by the spine

(equivalently, a diagram on the central surface), relative bridge trisections are defined
so that the embedded surface is encoded by a diagram on the central surface (without,
for example, having to describe the boundary link of the surface). This is achieved
through additional Morse-theoretic structure.

Suppose X is equipped with a relative trisection. Let N(B) be a tubular neigh-
borhood of the binding of the relative trisection. Each H′i = (X i ∩ X i+1) − N(B) has
the structure of a compression body between two surfaces with boundary, namely
Σ′C = ΣC − N(B) and Σ′i+1 = Σ i+1 − N(B). By virtue of being a compression body,
there is a standard self-indexing Morse function Φi which vanishes exactly on Σ′C
and is maximised exactly on Σ′i+1. Let τ i be a tangle in H i . It can be assumed that τ i
lies in H′i because τ i avoids B by the transversality theorem. After an isotopy of τ i , Φ i
restricted to τ i is Morse. An arc in τ i is vertical if it has no local extrema, and is flat if
it has a unique local extremum, which is a maximum.
Definition 5.1 Let τ i be a tangle in H i . This is a (b, v)-tangle if it is isotopic rel
boundary to a tangle consisting exactly of b flat arcs and v vertical arcs. The v vertical
arcs may end in separate components of ∂X, in which case the components are ordered
and we have a (b, v)-tangle where v is an ordered partition of v.

In relative trisections the compressionbodies H i are also handlebodies; the notion
of triviality above ensures that all arcs can be simultaneously isotoped to lie in the
boundary.
Definition 5.2 LetDi be a disk-tangle in X i . This is a trivial tangle if it can be isotoped
rel boundary to lie in ∂X i . In this case the boundary is an unlink in H i ∪H i−1, and
we say ∂Di is in (b, v)-bridge position if the tangles in H i and H i−1 are both (b, v)-
tangles. Given that the boundary link of ∂X i is in (b, v)-bridge position, we say that
Di is a (c, v)-disk-tangle, where c + v is the number of components of Di .
Definition 5.3 Let X be a compact 4-manifold with boundary, and K a neatly
embedded surface in X. Let b, c, v be non-negative integers, v an ordered partition of
v into non-negative integers, and c an ordered partition of c into three non-negative
integers. The surface K is in (b, c; v)-bridge trisected position in a relative trisection of
X if
(1) each Di = X i ∩K is a trivial (c i ; v)-disk-tangle in X i , and
(2) each τ i = H i ∩K is a (b; v)-tangle in H i .
Remark 5.4 The above definition requires a lot of structure, keeping track of (b, c; v).
This is essentially so that the τ i are enough to encode the surface. In the case of pseudo-
bridge trisections, we’ll introduce a more general notion of bridge position for which
the analogs of τ i aren’t enough to encode the surface, but projections of tangles onto
each surface in the pseudo-trisection diagram are enough. The overarching idea is that
we’re generalizing the notion of bridge position in such a way as to obtain conceptually
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simpler diagrams and lower diagram complexity for a fixed surface (e.g., lower bridge
index), but in exchange for diagrams with more pieces.

5.2 Pseudo-bridge trisections

Next we introduce pseudo-bridge trisections, the analog of relative bridge trisections in
the setting of pseudo-trisections. We also introduce pseudo-shadow diagrams, which
are analogous to shadow diagrams of relative bridge trisections. We show how a
pseudo-shadow diagram uniquely encodes a pseudo-bridge trisection up to isotopy.
We will immediately see that any pair (X ,K) admits a pseudo-bridge trisection by
application of the existence of relative bridge trisections.
Definition 5.5 Let X be a pseudo-trisected 4-manifold, and let K ⊂ X be a neatly
embedded surface. The surface K is in pseudo-bridge position if
(1) each Di = X i ∩K is a trivial disk-tangle in X i , and
(2) each τ i = H i ∩K and L i = Yi ∩K is a trivial tangle in H i and Yi respectively.
Note that here a tangle is trivial if it can be isotoped rel boundary to lie in the boundary
of the ambient space. A bridge point of the pseudo-bridge trisection is any point lying
on the intersection between K and the 2-skeleton of the pseudo-trisection. The data
of a pseudo-trisection together with a surface in pseudo-bridge position is termed a
pseudo-bridge trisection.
Example 5.6 The standard disk D2 in B4 admits a pseudo-bridge trisection which is
also a relative bridge trisection. See Figure 19 (A).
(1) Let B4 be the standard unit ball in R

4 expressed in {r, θ , z, w}-coordinates.
(2) The trivial pseudo-trisection of B4 3.12 (which is also a relative trisection) is given

by decomposing into sectors with 0 ≤ θ ≤ 2π/3, 2π/3 ≤ θ ≤ 4π/3, and 4π/3 ≤
θ ≤ 2π.

(3) A standard disk embedding is given by (z, w) = (0, 0). This disk intersects the
aforementioned pseudo-trisection in bridge position.

One can show that this is a relative bridge trisection of the standard disk.
Example 5.7 The standard disk in B4 also admits a simpler pseudo-bridge
trisection with less symmetry, which in particular is not a relative bridge trisection.
See Figure 19 (B).
(1) Let B4 be parametrized and trisected as in Example 5.6.
(2) Consider the cartesian parametrization of R

4, that is, (x , y, z, w) =
(r cos θ , r sin θ , z, w). The plane (x , w) = (1/2, 0) intersects B4 along a standard
disk as a pseudo-bridge trisection.

This pseudo-trisection fails to be a relative trisection for Morse theoretic reasons:
although τ1 is a trivial tangle, it has a local minimum and cannot be isopted to be
flat or vertical.
Remark 5.8 Any (X ,K) admits a pseudo-bridge trisection. First, there is a relative
trisection T of X with non-empty binding by the existence result of Gay and Kirby [7].
Such a relative trisection is necessarily a pseudo-trisection by Proposition 3.18. On
the other hand, by the existence result of Meier [17], (X ,K) admits a relative bridge
trisection whose underlying relative trisection is T. This relative bridge trisection is
necessarily a pseudo-bridge trisection.
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Figure 19: Schematics of two distinct pseudo-bridge trisections of a standard disk in B4 .

5.3 Pseudo-shadow diagrams

Shadow diagrams [17] are a diagrammatic theory of relative bridge trisections compat-
ible with relative trisection diagrams. Here we introduce pseudo-shadow diagrams, a
diagrammatic theory of pseudo-bridge trisections compatible with pseudo-trisection
diagrams. In particular, any pair (X ,K) admits a description by a pseudo-shadow
diagram.

Definition 5.9 Let K,K′ ⊂ X. The surfaces K and K′ are neatly isotopic if they are
homotopic through neat embeddings.

Proposition 5.10 A pseudo-bridge trisected surface K ⊂ X is determined up to neat
isotopy by the 3-skeleton of the pseudo-bridge trisection, that is, by the data of all the
tangles (H i , τ i), (Yi , L i), and how they intersect.

Proof The data of the 3-skeleton describes how the triples
((H i , τ i), (H i+1 , τ i+1), (Yi , L i)) glue together to produce links in the boundaries
of the sectors X i . These links are necessarily unlinks, which bound unique trivial
disk-tangles in the sectors up to neat isotopy. Compare with [19, Lemma 2.3 and
Corollary 2.4]. ∎

Consequently, we can define an analog of shadow diagrams as follows.

Definition 5.11 A pseudo-shadow diagram consists of the data
(D, τ1 , τ2 , τ3 , L1 , L2 , L3) where
(1) D = (ΣC , Σ i , α i , δ i) is a pseudo-trisection diagram.
(2) For i ∈ {1, 2, 3}, τ i is a collection of generically embedded arcs in Σ i ∪ ΣC , all

with distinct endpoints. If any two arcs in a given τ i cross, the crossing order
is indicated. The arcs intersect B = ∂Σ i = ∂ΣC transversely.

(3) Similarly, each L i is a collection of generically embedded arcs in Σ i ∪ Σ i+1
with distinct endpoints. If any two cross, the crossing order is indicated. Any
intersections with B are transverse.
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(4) For any i, τ i , L i , and L i−1 may intersect Σ i . Each of these families of arcs are
pairwise transverse in Σ i .

(5) There is a collection of points Bi ⊂ Σ i which consists precisely of the endpoints
of τ i , L i , and L i−1 that lie in Σ i . (Consequently, each point in Bi has degree 3 in a
pseudo-shadow diagram.)

(6) The above two points also hold verbatim for (ΣC , τ1 , τ2 , τ3) instead of
(Σ i , τ i , L i , L i−1).The set of endpoints of arcs in τ i lying in ΣC is denoted BC .

(7) The unions τ i ∪ τ i+1 ∪ L i form unlinks in each of the 3-dimensional manifolds
encoded by the corresponding triple Heegaard diagram in the underlying pseudo-
trisection diagram.

For notational brevity, we frequently write (D, τ i , L i) instead of
(D, τ1 , τ2 , τ3 , L1 , L2 , L3).

Definition 5.12 There is a realization map

R ∶ {pseudo-shadow diagrams} → {pseudo-bridge trisections}
diffeomorphism

extending the realization map of Definition 4.2 defined as follows:

(1) A pseudo-shadow diagram has an underlying pseudo-trisection diagram. First,
this is mapped to a pseudo-trisection by the realization map of Definition 4.2.

(2) Each collection of arcs τ i and L i lies in the 2-skeleton of the above pseudo-
trisection. Each collection is isotoped rel boundary to form a tangle in H i and
Yi , respectively.

(3) Each triple union τ i ∪ τ i+1 ∪ L i forms an unlink in ∂X i . This bounds a collection
of disks in ∂X i (uniquely up to isotopy rel boundary).

(4) The above collections of disks are isotoped rel boundary to be neatly embedded
in X i . The result is now a pseudo-bridge trisection.

Proposition 5.13 The realization map of Definition 5.12 is well defined.

Proof We must show that the map as defined truly sends a pseudo-shadow diagram
to a pseudo-bridge trisection, and that any two pseudo-bridge trisections built from
the same pseudo-shadow diagram by the map are neatly isotopic. (More precisely, after
a diffeomorphism, the embedded surfaces differ by neat isotopy.)

Let (X ,K) be the realization of a pseudo-shadow diagram D. Then each K ∩ X i
is necessarily a trivial disk tangle, because it is obtained by isotoping a collection of
disks rel boundary from ∂X i to X i . Similarly, each K ∩H i and K ∩ Yi is necessarily a
trivial tangle. It follows that (X ,K) is a pseudo-bridge trisection.

Next, suppose (X ,K) and (X′,K′) are realizations of the same pseudo-shadow
diagram D. By Proposition 4.3, the underlying 4-manifolds X and X′ and their
pseudo-trisections are diffeomorphic. Hereafter K,K′ are considered to both lie in X.
The arcs τ i and L i lift to the 2-skeleton of the pseudo-trisection of X, and are further
isotoped into H i and Yi respectively to produce exactly the 3-skeleta of (X ,K) and
(X ,K′). By Proposition 5.10, the 3-skeleta determine the surface in pseudo-bridge
position up to neat isotopy. ∎
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Figure 20: A pseudo-shadow diagram of a disk in relative bridge position in B4 .

Figure 21: The knot τ1 ∪ τ2 ∪ L1 ⊂ S3 , see Example 5.14.

Figure 22: A pseudo-shadow diagram of a disk in pseudo-bridge position in B4 .

Example 5.14 Figure 20 is a pseudo-shadow diagram. This can be verified by
inspecting the definition of a pseudo-shadow diagram. The most interesting condition
is item (7). The union τ1 ∪ τ2 ∪ L1 consists of an unknot in B3, as shown in Figure 21.

The underlying pseudo-trisection diagram of the aforementioned pseudo-shadow
diagram is that of the trivial trisection (of B4). The surface is built by applying
the realization map. Explicitly, the arcs τ1 , τ2, and L1 lift to an unknot in ∂X1 = B3.
Similarly, τ2 , τ3 , L2 lift to an unknot in ∂X2 = B3. The common intersection of these
two unknots is τ2. The two unknots next encode disks in X1 and X2 respectively, and
the union of these disks is itself a disk in X1 ∪ X2 with boundary τ1 ∪ τ3 ∪ L1 ∪ L2.
Finally, τ1 ∪ τ3 ∪ L3 lifts to an unknot in ∂X3, which bounds a disk in X3. Gluing in
this final disk produces a disk in X exactly as in Figure 19 (A).

Example 5.15 Figure 22 is a pseudo-shadow diagram of a disk in B4, namely that
depicted in Figure 19 (B).
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5.4 Resolving crossings in pseudo-shadow diagrams

When applying the realization map, arcs in the pseudo-shadow diagram are lifted from
the 2-skeleton into the 3-skeleton. Crossings between arcs are resolved in different
ways depending on the types of arcs, as well as whether or not the orientations of
the underlying surface and 3-manifold are compatible. For example, in Section 4.3,
we saw that ∂Yi = (−Σ i) ∪ Σ i+1 as an oriented union. Lifting a crossing from Σ i to Yi
may reverse it, while lifting from Σ i+1 to Yi may preserve it. The following list outlines
how to resolve any crossing when realizing a pseudo-bridge diagram.

Remark 5.16 The actual choice or convention happens when we declare how an
orientation of the binding (of a pseudo-trisection diagram) induces an orientation
of the pseudo-trisected 4-manifold. This determines exactly how arcs in a pseudo-
shadow diagram must lift to the 4-manifold. The rules being outlined below should
be thought of as “what do crossings between arcs in a pseudo-shadow diagram actually
represent, given the orientation conventions from Section 4.3?”.

(1) For each i, consider the oriented pairs (∂X i , Σ i), (∂X i , Σ i+1), (∂X i , ΣC), and
(Y , Σ i). Each of the twelve pairs is further equipped with a normal vector field
on Σ○ , ○ ∈ {i , i + 1, C} which extends the orientation of Σ○ to agree with the
orientation of the ambient 3-manifold.

(2) In a pseudo-shadow diagram, L i−1 lies above L i in the sense that any arcs of
L i−1 intersecting arcs of L i in Σ i lift to a position above L i with respect to the
aforementioned normal vector field on (Y , Σ i). Similarly, τ i lies above L i ; L i lies
above τ i+1; and τ i+1 lies above τ i . (Note that specifying two tangles in the pseudo-
shadow diagram determines a unique ambient pair (∂X i , Σ i), . . . , (Y , Σ i).)

(3) Any self-crossings, that is, crossings of L i or τ i with themselves in Σ○, necessarily
have crossing order indicated in the diagram. We say crossing orders are preserved
if the over-strand lies above the under-strand and reversed otherwise. We have:
(a) Self-crossings of L i in (Y , Σ i+1) and (∂X i , Σ i+1) are preserved; self-crossings

of L i in (Y , Σ i) and (∂X i , Σ i) are reversed.
(b) Self-crossings of τ i in (∂X i , Σ i) and (∂X i−1 , ΣC) are preserved; self-crossings

of τ i in (∂X i , ΣC) and ∂X i−1 , Σ i) are reversed.

Example 5.17 Figure 23 is a valid pseudo-shadow diagram of a neatly embedded
surface K in B4. The boundary link L1 ∪ L2 ∪ L3 = ∂K ⊂ S3 is easily seen to arise from

Figure 23: A pseudo-shadow diagram of a genus 1 surface in B4 with boundary a trefoil knot.
The boundary knot is given by L1 , L2 , and L3 .
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a knot diagram with three crossings. However, determining whether it is an unknot,
a left-handed trefoil, or right-handed trefoil requires some care.

We observe that the self-crossings are: L3 in Σ1, L1 in Σ2, and L2 in Σ3. It follows
that each of the three self-crossings are preserved. Since every crossing is a negative
crossing, it follows that the boundary knot is a left-handed trefoil.

5.5 Pseudo-shadow diagram examples and calculations

In this subsection, we provide several examples of pseudo-shadow diagrams, and show
how to compute some invariants such as orientability (of the embedded surface), the
intrinsic topology of the surface, and the homology class represented by the surface
in the ambient 4-manifold.

Proposition 5.18 A surface realizing a pseudo-shadow diagram is orientable if and
only if the graph⋃i(L i ∪ τ i) ⊂ (⋃i Σ i) ∪ ΣC can be consistently labeled such that every
vertex is either a source or a sink. (In this context the vertices are the bridge points and
the intersections of the L i and τ i with the binding.)

Proof This follows directly from the orientation convention of Section 4.3. ∎
Example 5.19 Figure 24 is a pseudo-shadow diagram of a Möbius strip in CP

2 − B4.
To see that the surface represented by the diagram is non-orientable, observe that the
vertices b1 , b2 , b3 lie in a 3-cycle γ in the graph ⋃i(L i ∪ τ i), and therefore cannot be
consistently labeled as sources or sinks. (For such a labeling to exist, any cycle must
have even length.)

Proposition 5.20 The Euler characteristic of a surface realizing a pseudo-shadow
diagram (D, τ i , L i) is given by F − ∣B∣/2, where F is the total number of components
in each of the unlinks L i ∪ τ i ∪ τ i+1 in ∂X i , and B consists of all bridge points.

Proof This follows from the usual formula of the Euler characteristic of a cellu-
lar complex. The number of 0-cells is ∣B∣, and the number of 2-cells is F. Since

Figure 24: A pseudo-shadow diagram of a Möbius strip in pseudo-bridge position inCP
2 − B4 .
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Figure 25: A slice disk of a left-handed trefoil in CP
2 , representing 2[−CP1] ∈ H2(CP

2).

bridge-points are 3-valent in a pseudo-shadow diagram, the number of 1-cells is
3∣B∣/2. The alternating sum of these quantities gives the desired result. ∎

Example 5.21 Figure 25 is a valid pseudo-shadow diagram, and represents a surface
in CP

2 − B4 with boundary a left-handed trefoil in S3. To see the trefoil, one can
proceed as in Example 5.17. The links L i ∪ τ i ∪ τ i+1 each have two components, so
F = 6 in the Euler characteristic formula. On the other hand, there are 10 bridge points,
χ(K) = 6 − 5 = 1. Since the surface has one boundary component, we know that it has
genus 0. We conclude that the pseudo-shadow diagram represents a disk in CP

2 − B4

with boundary a trefoil. (Figuring out exactly which disk up to homology takes some
more work.)

Finally we describe how the homology class [K] in H2(X) or H2(X , ∂X) may
be deduced from a pseudo-shadow diagram. The idea is to use Lefschetz duality to
convert the problem into one of computing intersections of [K]with other homology
classes in H2(X) or H2(X , ∂X). These intersections can then be computed diagram-
matically.

The details are as follows. We first define the “intersection form”

QX ∶ H2(X) ⊗H2(X , ∂X) → Z

by (α, β) ↦ α∗(β)) where α∗ ∈ H2(X , ∂X) is the lift of α to H2(X , ∂X) via the cap
product with the fundamental class, i.e.,

α = α∗ ⌢ [X].

Next we show that this intersection form is unimodular provided H1(X , ∂X) is
torsion-free. By the universal coefficient theorem, Hom(H2(X , ∂X),Z) is isomor-
phic to H2(X , ∂X). Specifically, this is because Ext1(H1(X , ∂X)) vanishes when
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Figure 26: A pseudo-shadow diagram of CP1 in CP
2 − B4 . Note that the surface has empty

boundary. Referenced in Example 5.22.

H1(X , ∂X) is torsion-free. Applying this isomorphism, the intersection form can be
expressed as

Q′X ∶ H2(X) → H2(X , ∂X),

where the map is exactly that arising in Lefschetz duality. Therefore Q′X is invertible,
and equivalently QX is unimodular.

When QX is unimodular, we can use intersection data to deduce homology classes.
Suppose e1 , . . . , en are generators of H2(X , ∂X). Then knowing each of the

QX([K], e1), . . . , QX([K], en) ∈ Z

is enough to determine [K]. The final step is to express these intersections diagram-
matically.

Suppose K, E1 , . . . , En are surfaces in pseudo-bridge position in X. Then the
intersections QX([K], [E j]) are the sums of the intersections in each X i . In each
X i , the intersections of disk tangles are equivalently the linking numbers of their
boundaries. Therefore computing the intersections reduces to computing linking
numbers of links in pseudo-shadow diagrams. This process is described in detail in
the following example.

Example 5.22 Figure 25 is a pseudo-shadow diagram of a disk K in CP
2 − B4 with

boundary a left-handed trefoil, introduced in Example 5.21. Next we determine the
homology class [K] ∈ H2(CP2 − B4) via the procedure described above. We know
that H2(CP2 − B4) ≅ H2(CP2 − B4 , S3) is generated by CP1, so our problem reduces
to computing linking numbers of links in a pseudo-shadow diagram ofCP1 with those
in Figure 25. We now describe, in detail, how to carry out this calculation in the sector
X2. (The procedure is similar for sectors X1 and X3.)
(1) Figure 26 shows a pseudo-shadow diagram of CP1. Restricting this diagram to
(ΣC , Σ2 , Σ3 , α2 , α3 , τ′2 , τ′3) produces a triple Heegaard diagram of S3, equipped
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Figure 27: Restrictions of pseudo-shadow diagrams for CP1 and a disk K to X2 , referenced
in Example 5.22. This is the first step in computing the intersection of CP1 and K (restricted
to X2).

with the data of τ′2 and τ′3. Similarly, the pseudo-shadow diagram of Figure 25
can be restricted to a triple Heegaard diagram of S3, equipped with the data of
L2 , τ2, and τ3. The realization map lifts both γ = L2 ∪ τ2 ∪ τ3 and γ′ = τ′2 ∪ τ′3 to
unlinks in S3. Our goal is to compute the linking number l k(γ, γ′). Figure 27
shows each of the aforementioned triple Heegaard diagrams overlayed as a single
diagram. There is an apparent crossing, denoted x, between γ and γ′. Subsequent
diagrammatic manipulations will determine how this crossing impacts l k(γ, γ′).

(2) To lift the curves γ and γ′ to S3, we must first build the underlying S3 from
the triple Heegaard diagram in Figure 27. To this end, we “cut and paste” the
representation of ΣC so that the curves α2 and α3 are standard axes on the torus.
The result is depicted in Figure 28.

(3) Next, we glue the various pieces of the triple Heegaard diagram together. Figure 29
shows the result of identifying the “edges” of ΣC on the left, and the result of
gluing each of Σ2 , Σ3, and ΣC along their common boundary on the right. Note
also that L2 has been lifted from Σ2 ∪ Σ3 to the sector Y2. This step is subtle: by
the orientation convention, τ2 lies above L2, and L2 lies above τ3. Indeed, they
are depicted as such in the right hand diagram, and this is consistent with the
orientations induced by the conventions of Section 4.3. Moreover, the convention
requires that the self-crossing of L2 is reversed when lifting to Y2.

(4) The arcs τ′2 lift to the sector of the trisection of S3 lying “outside” ΣC , and the arcs
τ′3 lift to the sector “inside” ΣC . The final result of lifting all arcs to the sectors
H2 , H3 , Y2 is shown in Figure 30. From here, it can be seen that l k(γ, γ′) = ±1,
where γ is an unlink with two components, γ1 and γ2. The sign of the linking
number depends on how the surface K is oriented.

In summary, we have established that l k(γ, γ′) = l k(L2 ∪ τ2 ∪ τ3 , τ′2 ∪ τ′3) = ±1.
Further, this linking number is equal to the signed intersection of K ∩ X2 with CP

1 ∩
X2. Repeating this process in X1 and X3, those linking numbers are found to be 0 and
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Figure 28: Cutting and pasting ΣC (from Figure 27) so that the curves α2 and α3 become
standard in the torus. The curve γ′ has been highlighted to differentiate it from γ. Referenced
in Example 5.22.

Figure 29: Left: identifying the “edges” of ΣC . Right: the local structure of Σ2 ∪ Σ3 ∪ ΣC .
Referenced in Example 5.22.

Figure 30: Lifting γ and γ′ to R
3 = S3 − {pt}. Referenced in Example 5.22.
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±1, respectively. Therefore QCP2([K], [CP1]) = 0 ± 1 ± 1 = ±2. Since QCP2 = (1), we
deduce that [K] = 2H where H = ±[CP1] is a generator of H2(CP2). This is consistent
with the slice disk of a left handed trefoil in CP

2 described in [16, Example 2.4]. Fixing
an orientation of the left handed trefoil would fix the sign of [K].
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