Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

Marios Karouzos¹, Myungshin Im¹, Markos Trichas², and the AKARI-NEP team

¹CEOU-Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea email: mkarouzos@astro.snu.ac.kr

²Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

Abstract. We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.

Keywords. galaxies: active, galaxies: evolution, galaxies: starburst

1. The Project and Results

We construct broad-band SEDs (UV to 24μ m; Fig. 1) for 48 radio sources at 1.5GHz with optical spectra in the AKARI-NEP field (Lee *et al.* 2009). Following Trichas *et al.* (2012), we fit an AGN and a starburst component additively to each SED. The fractional contribution and luminosities of both components are derived.

We see a trend for decreasing contribution of active nuclei with increasing radio luminosity (3σ difference between lowest and highest luminosity bins; Fig. 1). The most radio-loud systems show hints for lower star-formation activity than otherwise expected.

Figure 1. Example SED (left). Fractional contribution of AGN (red) and starburst (blue) components versus radio luminosity (right), for individual (symbols) and average values (lines).

References

Lee, H. M., Kim, S. J., Im, M., et al. 2009, PASJ, 61, 375 Trichas M., Green P., Silverman J. D., et al. 2012, ApJS, 200, 17

270