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abstract

White (2015) proposes an a priori justication of the reliability of inductive predic-
tion methods based on his thesis of induction-friendliness. It asserts that there are
by far more induction-friendly event sequences than induction-unfriendly event
sequences. In this paper I contrast White’s thesis with the famous no free lunch
(NFL) theorem. I explain two versions of this theorem, the strong NFL theorem
applying to binary and the weak NFL theorem applying to real-valued predictions.
I show that both versions refute the thesis of induction-friendliness. In the conclu-
sion I argue that an a priori justication of the reliability of induction based on a
uniform probability distribution over possible event sequences is impossible. In the
outlook I consider two alternative approaches: (i) justication externalism and (ii)
optimality justications.

1. introduction: white on the problem of induction

The thesis of induction-friendliness asserts that there are by far more induction-friendly than
induction-unfriendly event sequences. White (2015) proposed an a priori justication of the
reliability of inductive prediction methods based on this thesis. In this paper I contrast
White’s account with the famous no free lunch (NFL) theorem. I will explain two versions
of this theorem, the strong NFL theorem applying to binary and the weak NFL theorem
applying to real-valued predictions. I will show that both versions refute the thesis of
induction-friendliness and, thus, White’s account of the problem of induction. In conclusion
an a priori justication of the reliability of induction based on a uniform probability distri-
bution over possible event sequences turns out to be impossible. In the outlook I will consider
two alternative approaches: (i) justication externalism and (ii) optimality justications.

White’s (2015) paper consists of two parts. In the rst part White claries what the prob-
lem of induction consists in− this part is devoted to the “problem of the problem of induc-
tion”, the title of the paper. White argues that the problem of induction− the question of how
we can justify induction− becomes epistemologically signicant if one assumes the following

Reliability principle:
If a person S considers whether the methods or rules she followed in concluding P are reli-
able and she is not justied in believing that they are reliable, then she is not justied in
believing P.
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White gives convincing arguments in favor of the reliability principle, to which I have
nothing substantial to add. In what follows I will simply assume this principle is correct.
The second part of White’s paper is devoted to the “problem of induction” which, accord-
ing to the reliability principle, consists in justifying the reliability of inductive inferences.
My critical discussion focuses on this second part of White’s paper. White proposes that a
justication of the reliability of induction can be given based on the following claim,
which I call the

Thesis of induction-friendliness (White’s thesis): There are by far more induction-
friendly event sequences (or ‘states of the world’) than induction-unfriendly event
sequences.

In the next section I will explicate White’s thesis in the required detail and introduce some
necessary terminology. In section 3, I contrast the thesis with a famous result from
machine learning− the no free lunch (NFL) theorem−which asserts the exact opposite.
In section 4, I draw the conclusion that an a priori justication of the reliability of induc-
tion based on a uniform probability distribution over all possible event sequences is
impossible. In the outlook I point towards two alternative approaches: (i) justication
externalism and (ii) optimality justications.

2. white’s thesis explicated: prediction games and success
measures

Like White I focus here on predictive (inductive) inferences of binary events, coded by 0
and 1. Given are possibly innite event sequences (e) =def (e1,e2,. . .,en,. . .) with each en
being either 0 or 1 (en [ {0,1}) and at each point in time or ‘round’ n (n≥ 0), the task
is to deliver a prediction of the next event, abbreviated as predn+1. I assume that the com-
pared prediction methods are non-clairvoyant, i.e., the prediction predn+1 is only a func-
tion of the (observed) past events (e1,. . .,en), but not a function of future events. Let (e1−n)
abbreviate (e1,. . .,en), predn+1(M) denote the prediction of a given method M at time n,
and ω be the set of natural numbers. Then each prediction method M is dened by a func-
tion fM mapping (e1−n) into a prediction predn+1 for each n [ ω, that is, predn+1(M) =
fM((e1−n)). A pair ((e),{M1,. . .,Mq}) consisting of an event sequence and a nite set of pre-
diction methods is also called a prediction game (Schurz 2008).

We have to distinguish two sorts of prediction games with corresponding measures of
predictive success:

– Games with binary predictions: Here at each time a denite yes-no prediction of the
next event must be delivered, i.e., predn+1 [ {0,1} for all nϵw. For binary predictions
the straightforward measure of the predictive success of method M at a given time n is
the truth-frequency of correct prediction until time n: sucn(M) = (number of correct
predictions)/n.

– Games with real-valued predictions (including binary predictions as a special case):
Here the prediction may be any real-valued number between zero and one (rounded
up to a nite accuracy), i.e., predn+1 [ [0,1] (the closed interval of reals between 0
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and 1). The natural scoring function for real-valued predictions is the absolute distance
between prediction and event: score(predi,ei) = 1−|predi−ei| (“|predi−ei|” is called the
natural loss function). The predictive success rate of method M at time n, abbreviated
as sucn(M), equals the sum of scores of method M until time n, divided by n, sucn(M) =
Σ1≤i≤nscorei(M)/n. The above truth-frequency measure is a special case of this success
measure for binary predictions because the score of a binary prediction predi is 1 if
predi = ei and 0 otherwise.

Proper real-valued predictions of binary events are needed for several purposes, e.g., for
probabilistic forecasters computing an estimated subjective probability (P) of the next
event and predicting this probability, i.e., predn+1 = P(en+1 | (e1−n)). In this paper, real-
valued predictions are introduced to account for White’s assumption that a prediction
method may refrain from making a prediction, for example if the so-far observed event
sequence is so ‘unorderly’ that no inductively projectable pattern can be discerned
(White 2015: 285). Thus, in White’s setting the value space of possible prediction,
Valpred, includes the three elements 1, 0 and n (no prediction delivered), Valpred = {1,0,n}.
The question is how to measure the predictive success of a non-prediction. Surely it has
to be measured somehow, since otherwise a method could ‘boost’ its success simply by
refraining from delivering a prediction whenever the predictive task is not extremely
easy. Curiously, in his reply to White, Cariani (2015: 295) designs a method that tries
to prevent its own failure by refraining from making predictions whenever its success
rate drops below a critical level. Cariani adds that “of course [he is] not suggesting that
such a method defeats scepticism about induction”. In other words, a successful prediction
method must not only have a high success rate when making a prediction, but must also
have a high rate of applicability. The most straightforward way to account for this is to
assign to non-predictions the same score as that of a random guess, which is 0.5 in binary
games (this method is also applied, for example, by Martignon and Hoffrage 1999). This
means that a non-prediction can equally be identied with a real-valued prediction of 0.5,
because a prediction of 0.5 is also guaranteed to have a score of 0.5.1

Note that with real-valued predictions we can also model more ne-grained effects of
non-predictions. For example, an incorrect non-prediction may lead to a higher loss when
the event is 1 than when it is 0; we can model this case by identifying a non-prediction
with the prediction of a value r < 0.5.

The difference between binary and real-valued predictions is important for the problem
of induction. In the case of binary predictions one can construct, for every method M, a
‘demonic’ event-sequence (e) that ‘conspires’ against M and produces, for every time n,
exactly the opposite event of what M predicts (this observation goes back to Putnam
1965 and is mentioned by Cariani 2015: 29). In contrast, if real-valued predictions are
allowed, a success rate of 0.5 can be guaranteed by always predicting 0.5. In what follows,
I call this method “averaging”, abbreviated as Av (i.e., for all n[w, predn+1(Av) = 0.5).
We shall see in the next section that it is for this reason that a strong NFL theorem can
be proved for games with binary predictions, while for games with real-valued predictions

1 Long after I submitted my paper I discovered a related critique of White’s account by Barnett and Li
(2018). The overlap of their paper (which refers to Schurz 2017) with this paper is small. They
prove that the prediction rule “fool me once”− a version of Cariani’s prediction method− has the
same expected score as random guessing (however, they use a different scoring rule).
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only aweakNFL theorem holds. Unfortunately this does not bring much hope for White’s
account because, as we will see, the weak NFL is strong enough to refute the thesis of
induction-friendliness.

With that said, White’s thesis can be identied with the following pair of assertions:

Thesis of induction-friendliness, explication 1: There are signicantly more [less] binary
sequences (of a given length) for which inductive prediction methods have a high [low]
success rate than there are sequences for which counter-inductive or non-inductive predic-
tion methods have a high [low] success rate.

I understand the notion of high [low] success relative to a given success-threshold t >
0.5. Thus, sucn(M) is regarded as ‘high’ if it is at least as great as t and is regarded as ‘low’

if it is smaller than 1− t. Note that the unbracketed and the bracketed version of the thesis
of induction-friendliness are two distinct assertions and that the thesis is obviously meant
to entail both.

Explication 1 of White’s thesis hides a subtle difculty, namely what an inductive pre-
diction method is. The standard understanding is a prediction method in the explained
sense of a ‘method’ (mapping each observed event history into a prediction), based on
the inductive projection of some specic pattern (this is also Cariani’s understanding in
2015: 204). In contrast, several passages of White’s support the conclusion that by
“inductive method”, he means the entire family of inductive methods, based on the induct-
ive projection of some pattern. For example, White writes that the inductive method can-
not only be applied to sequences 1111. . ., which by projecting the pattern ‘1-iterated’ to
the future leads to predictions of 1s, but also to more complicated sequences such as
11001100. . ., which by projecting the more complex pattern ‘1100-iterated’ leads to iter-
ated predictions of the form 1100.

Prima facie, the family of all induction methods is not even well-dened, because the
class of ‘all possible’ patterns is not recursively enumerable. Even if this problem is solved
(by a suitable restriction of the notion of ‘possible patterns’), the problem that the predic-
tions of this family of methods are not well-dened remains, for two reasons: there exist
event sequences (i) for which two different inductive methods lead to opposite predictions,
and (ii) for which a counter-inductive method leads to precisely the same prediction as an
inductive method. In order to illustrate these facts, I introduce a couple of simple predic-
tion methods.

– Majority-induction “M-I” predicts the event that so far has been in the majority
and predicts 1 initially and in the case of ties. Formally, predn+1(M-I) = 1 if n = 0 or
freqn(1)≥ 0.5, else predn+1(M-I) = 0 (where “freqn(e)” denotes the relative frequency
of event e until time n).

– Majority counter-induction “M-CI” predicts the opposite of M-I, i.e., predn+1(M-CI) = 0
if n = 0 or freqn(1)≥ 0.5, else predn+1(M-CI) = 1.

More generally, each inductive method has a counter-inductive dual which predicts the
opposite of the method. In what follows e* denotes the opposite of a binary event e,
thus 1* = 0 and 0* = 1. Note that M-I and M-CI are binary prediction methods (i.e.,
they always predict either 1 or 0).
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First, consider the event sequence

(e)1 = 11111111 . . . = 1− iterated.

M-I predicts 1111. . . and has perfect success in application to (e)1, while M-CI predicts
0000. . . and has perfect failure: sucn(M-I) = 1 and sucn(M-CI) = 0 for every nϵw. Not
only White, but also many other philosophers have doubted that a counter-inductive
method can be perfectly successful,2 but this impression is illusionary: all oscillatory
sequences are friendly to counter-induction. Take, for example, the alternating sequence

(e)2 = 01010101 = 01− iterated.

It is easy to see that M-CI predicts 0101. . . and is perfectly successful for this sequence,
while M-I predicts 1010. . . and fails completely: sucn(M-CI) = 1 and sucn(M-I) = 0 for
every n[w.

White would point out that there is a more rened method of induction which achieves
perfect success if applied to the sequence (e)2, by recognizing the inductive regularity
“01-forever” and predicting this sequence with equally perfect success as M-CI. Let us
call this method “2-block-majority-induction”, abbreviated as “2b-M-I”. With these sim-
ple observations we have proved the above claim: (i) we have two inductive methods, M-I
and 2b-M-I, which in application to the sequence (e)2 lead to opposite predictions, and (ii)
we have the inductive method 2b-M-I and the counter-inductive method M-CI, which in
application to (e)2 yield the same perfect success.

A precise denition of the 2-block majority method (with an initial guess that is true for
the sequence (e)2) is the following: The method 2b-M-I divides the sequence of events in
consecutive blocks of two and tracks the frequencies of all four possible 2-block pattern
ordered as follows: 01, 10, 00,11. The method delivers a 2-block prediction (predn+1,
predn+2) at all even times n as follows: If at least one 2-block pattern has a so-far frequency
of at least 0.5, the method 2b-M-I predicts the 2-block pattern that has maximal frequency
(its initial 2-block prediction is “01” and in the case of ties it choses the rst best pattern in
the given ordering). Otherwise, it refrains from making a prediction for the two next
times, which means that it delivers the 2-block prediction (0.5, 0.5). Based on its
2-block prediction (predn+1, predn+2) the method predicts predn+1 at time n and predn+2
at time n + 1 (independently from the event en+1).

Like M-I, 2b-M-I applies not only to strict but also to weak inductions. For example,
the 12-membered sequence 010111010001 contains the two underlined 2-blocks that do
not follow the regular pattern “01-iterated”; so f12(01) = 2/3 holds for this sequence,
whence 2b-M-I predicts pred13 = 0 and pred14 = 1. Note that, unlike M-I, 2b-M-I is no
longer a binary prediction method; if all four frequencies are smaller than 0.5, it predicts
(by convention) 0.5. However, we can also dene a binary variant of 2b-MI, call it
2b-M-Ibin, which uses M-I as its fall-back method whenever 2b-M-I predicts 0.5.

The dialectics between induction and counter-induction can be replicated at the level of
2-block methods. Dene 2-block majority-counter-induction, 2b-M-CI, in the explained
way, predicting the exact opposite of 2b-M-I, where the opposite of a sequence of binary

2 Cf., e.g., van Cleve (1984: 561), or the entry “counterinduction” in The Oxford Dictionary of
Philosophy (Blackburn 2016).
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events is dened as the sequence of opposites, e.g., (101)* = (010) (etc.). Consider the
‘doubly oscillating’ sequence

(e)3 = 10011001 = 1001− forever.

2b-M-I applied to (e)3 predicts 01100110. . . and fails completely, while 2b-M-CI applied
to (e)3 predicts 10011001. . . and succeeds perfectly.

Again it can be pointed out that the 4-block variant of majority-induction would detect
the 4-block regularity and achieve the same success as the 2-block majority counter-
induction. But obviously, the same dialectics may be repeated based on the 8-block oscil-
lating sequence 10010110-forever (etc.).

Be aware that m-block (counter-)inductive majority methods do by no means exhaust
the space of all inductive and corresponding counter-inductive prediction methods of arbi-
trary complexity; this space is neither computationally tractable nor even well-dened. At
least, the class of m-block (counter-)inductive methods can be reasonably dened, in pre-
cise analogy to 2-block methods (note that M-I is a 1-block prediction method).3 These
methods are sufcient for explaining the philosophical problems connected with
White’s thesis.

There are many more kinds of prediction methods. For example, there are the
past-independent methods, whose predictions are independent from the event patterns
observed in the past, but possibly dependent on the given point in time. A subcase of
these are the constant methods that always predict the same constant (binary or real-
valued) number. More importantly, there are (as explained) binary versus real-valued
methods. Recall that all m-block methods for m≥ 2 are real-valued because they predict
0.5 (i.e., refuse to predict) in certain cases. More interesting cases of real-valued predic-
tions are, for example,

– Cautious majority induction methods: they predict the majority-event only if the major-
ity is sufciently high, or formally: predn+1 = e if freqn(e)≥ t > 0.5 where t is a suitably
chosen threshold and e is 0 or 1. The same modication is possible for all m-block
majority methods.

– Average induction, which predicts the so-far observed frequency of 1s, predn+1(1) =
freqn(1).

– Logico-probabilistic induction methods, for example, Carnap’s (1950) c* system which
predicts predn+1(c*) = (freqn(1) + 1)/(n + 2) in the binary case (and many more).

What all this shows is that in order to make sense, White’s thesis has to be applied to par-
ticular inductive prediction methods and not to ‘induction in general’, because different
induction methods may deliver opposite predictions (the same goes for counter-inductive

3 Here is the full denition: An m-block majority-inductive method, mb-M-I, does the following: (i) It
assumes a given ordering among all possible m-block patterns P1,. . .,Pq, with q = 2m, and initially pre-
dicts the rst pattern in this ordering, (ii) at any time n = k·m (for integer-valued k≥1), it predicts as its
m-block prediction (predn+1,. . .,predn+m) the rst pattern in this ordering whose so-far observed fre-
quency is≥ 0.5 and is not smaller than the so-far observed frequency of any other m-block pattern;
if there is no such pattern, its m-block prediction is “0.5 m-times”, and (iii) at any given time n, it pre-
dicts that event whose number in the predicted m-block equals “n+1 moulo m” (this is the remainder
after dividing n+1 through m).
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and past-independent prediction methods). Thus the straightforward explication of
White’s thesis is the following:

Thesis of induction-friendliness, explication 2: For every inductive prediction method (of
a given family of methods) there are signicantly more [less] binary sequences (of a given
length) for which it has a high [low] success rate than there are sequences for which the
corresponding counter-inductive method or some past-independent method has a high
[low] success rate.

As explained, the underlying “family” must be clearly characterized; every one of the
families described above, or any union of them, would be suitable.

Based on the previous discussion, an alternative explication of White’s thesis suggests
itself which refers to an entire family of inductive methods and asserts induction-
friendliness to the set of event sequences for which at least one of the methods of this
family is successful. But since the methods of the family produce opposite predictions
for various sequences and points in time, it is not possible to dene a prediction method
that is successful whenever some method of this family is successful. I will return to this
question at the end of the next section. Now, I turn to explication 2 of White’s thesis
and confront it with the NFL theorem(s).

3. the strong and weak no free lunch (nfl) theorem

The NFL theorem is a deepening of Hume’s inductive skepticism developed in machine
learning, a branch of computer science.NFL theorems have been formulated in different ver-
sions,4 a most general formulation is found in Wolpert (1996). Wolpert’s NFL theorem
comes in a strong and aweak version; it is formulated in a highly abstract mathematical lan-
guage, hardly understandable for non-mathematicians. In this section I introduce a version
of the NFL theorems for prediction games and try to explain their proofs in a simple way.

The strong NFL theorem applies to binary and the weak NFL theorem to real-valued
prediction methods. Both NFL theorems assume binary events (for graded events,
restricted NFL theorems are possible). Consider the space of all possible binary event
sequences of a given xed length N, abbreviated as SEQN; the case of countably innite
N (N=ω) is admitted. (Formally SEQN = {0,1}N and SEQN contains 2N sequences.) Both
NFL theorems presuppose a prior probability distribution P over SEQN that assigns the
same probability to every sequence; in what follows I call such a distribution a
state-uniform probability distribution.

I rst explain the strong NFL theorem:

Theorem 1. Strong NFL theorem: Given a state-uniform P-distribution over SEQN, the
probability that a prediction method M has a certain success rate k

n after n rounds (1≤
n≤N) is the same for all binary prediction methods over binary events (whether ‘induct-
ive’, ‘counter-inductive’, ‘past-independent’ or whatever) and is given by the binomial for-
mula: P(sucn(M) = k

n) =
n
k

( )· 1
2

( )k · 1
2

( )n−k = n
k

( )
/2n.

4 Cf. Wolpert (1992, 1996), Schaffer (1994), Giraud-Carrier and Provost (2005).
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Note that n
k

( )
, “n-over-k”, is the number of possibilities to select k distinct elements out of

n elements and is given as n!
k!·(n−k)!, with n! =def 1·2·. . .·(n− 1)·n. Theorem 1 asserts, in

other words, that the state-uniform probability of method M predicting k out of n times
correctly equals the probability of throwing k out of n heads with a regular coin. Here is a
simple proof:

Proof of theorem 1: Let M be any binary prediction method. We evaluate M’s success
rate for sequences of length n. There are n

k

( )
possible sequences of M-scores− denoted

as (s) =def (score1(M), . . ., scoren(M))−with k 1s in them. Since M’s prediction function
fM is deterministic (i.e., fM maps each possible past history (e1−i) into a prediction 0 or 1)
it follows that each score sequence (s) can be realized by exactly one event sequence (e),
which is recursively constructed from (s) as follows: ei+1 = fM((e1−i)) if scorei+1(M) = 1,
else ei+1 = (fM((e1−i)))*. Thus there are as many event-sequences that give M a success

rate of kn after n rounds as there are score sequences, namely n
k

( )
. Since every event sequence

has the same probability, namely 1/2n, the result follows.
Q.E.D.

Wolpert (1996: 1349) proves a strong NFL theorem that is more general in two respects: It
applies (i) not only to deterministic but to probabilistic prediction methods, which predict
1s or 0s with certain probabilities, and (ii) not only to binary-valued but to discrete-valued
prediction games whose loss function is ‘homogeneous’, which amounts to the require-
ment of a zero-one loss: loss(pred,e) = 1 if pred = e, else loss(pred,e) = 0. For philosophical
purposes these generalizations are not needed and the above version of the strong NFL
theorem is sufcient.

The strong NFL theorem implies, among other things, that for each pair of prediction
methods, the number− or in the innite case the probability− of event sequences in
which the rst method outperforms the second is precisely equal to the number (or prob-
ability) of event sequences in which the second method outperforms the rst. More gen-
erally, the success prole−which consists of the number of sequences for which various
success rates are achieved− is the same for all methods. It is obvious that this result
destroys any hope for explication 2 of White’s thesis.

So far, however, we restricted our attention to binary methods, while White’s frame-
work allows for methods that refuse to make predictions. As explained in section 2, this
possibility is integrated in our account by allowing for real-valued predictions (which
have several other advantages). It is easy to recognize that the strong NFL theorem
does not hold for real-valued predictions. For example, for sequences of length 10
the success prole of every binary prediction method is computed by theorem 1 as
follows (see Table 1):

Table 1 Number of event sequences of length 10 for which every binary prediction
method achieves a certain success rate. Ă

Success rate k
n: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No. of sequ. n
k

( )
: 1 10 45 120 210 252 210 120 45 10 1
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In contrast, the constant method Av (which always predicts 0.5) achieves a success
rate of 0.5 for all 210=1024 binary sequences; it never has a success higher or lower
than average. Therefore its success prole for sequences of length 10 has the following
numbers in the line “No. of sequ.” of Table 1: 0,0,0,0,0,1024,0,0,0,0,0. This fact can
be generalized: More cautious prediction methods that tend to predict values close to
0.5 will not have extreme success rates (either ‘high’ or ‘low’) as often as risky methods.
However, it turns out that according to a state-uniform distribution these two effects
precisely compensate each other, so that the state-uniform expectation value of a
real-valued prediction method is always the same− and this is the content of the weak
NFL theorem:5

Theorem 2. Weak NFL theorem: Given a state-uniform P-distribution over SEQN, the
expectation value of the success rate after n rounds (1≤ n≤N) is the same for all real-
valued prediction methods over binary events (whether ‘inductive’, ‘counter-inductive’,
‘past-independent’ or whatever), namely one half: ExpP(sucn(M)) = 0.5.

The easiest way to understand the proof of theorem 2 is by means of the following
‘infamous’ but well-known theorem in probability theory:

Theorem 3. Induction-hostile state-uniformity (Carnap 1950: 564–6; Howson and
Urbach 1996: 64–6):

Assume the probability (density) distribution P is uniform over the space SEQN. Then
P(en+1=1|(e1−n)) = 1/2 for every possible next event en+1 (n + 1≤N≤ ω) and sequence of
past events (e1−n). Thus, P satises the properties of a random distribution over {0,1}.

The proof of theorem 3 is incredibly simple: At any time n there are as many continua-
tions of the past event sequence (e1−n) that continue with 1 as continuations that continue
with 0, and since every continuation has the same (state-uniform) probability, it follows
that P(1|(e1−n)) = P(0|(e1−n)) = 1/2.

Theorem 3 provides us with an easy proof of the weak NFL theorem:

Proof of theorem 2: If a real-valued prediction method M predicts a value r in [0,1] for
time n + 1, then its score is r if the event en+1 is 1 and (1− r) if the event is
0. According to theorem 3, at any time n the state-uniform probability that en+1 = 1 equals
1/2, independent of the past. Therefore whatever a real-valued method M predicts, the
state-uniform expectation value of its score is 1/2, because for every real value r in
[0,1], 0.5·r + 0.5·(1− r) = 0.5. Since expectation values are additive, these expected
scores add up; dividing their sum through the number of rounds gives 0.5 for the expect-
ation value of sucn(M) for every n[w.
Q.E.D.

The weak NFL theorem disproves explication 2 of White’s thesis for real-valued predic-
tions. To see this, consider rst the extremely incautious (binary) method M-I in

5 Wolpert (1996) mentions the weak no free lunch theorem only in one paragraph on p. 1354; for our
purpose this version of his theorem is even more important.
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comparison to the most cautious method Av. M-I has a high success rate (at least as high
as some threshold t > 0.5) for more event sequences than Av, but theorem 2 assures us that
in compensation (since the expected success is the same) M-I must also have a low success
rate (at least as low as 1− t) for more sequences than Av.

The same goes for methods whose ‘cautiousness’ is intermediate between M-I and Av.
As an example, consider the inductive weak majority method, abbreviated as WM-I,
which is like M-I except that it predicts 0.5 initially and in the case when the so-far
observed event-average is 0.5. Analogously, we dene the weak counter-inductive
majority method, WM-CI. The success prole of the two methods is remarkably differ-
ent: WM-I can have very high success rates but cannot have very low sequences.
Reversely, WM-CI can have very low success rates, but cannot have very high success
rates. The reason for this initially surprising effect is that WM-I is very good in predict-
ing sequences with extreme event frequencies and WM-CI in predicting highly oscilla-
tory sequences, but the number of frequency ties (in which case the method predicts
0.5) is much higher in highly oscillatory sequences than in sequences with extreme fre-
quencies. In compensation, the number of sequences in which WM-CI does just a little
better than average is higher than the corresponding number of sequences for WM-I,
and reversely for number of sequences in which WM-I’s success is just a little below
0.5. WM-CI’s success prole is the precise mirror image of that of WM-I, reected at
the middle point 0.5 (see Table 2).

More generally, whenever one real-valued prediction methodM1 has high success values
more often than another method M2, it must also have low success values more often,
because the state-uniform expected success of both methods is the same. The consequence
for explication 2 of the thesis of induction-friendliness is this: Whenever an inductive
method M satises the rst (unbracketed) part of the thesis, in comparison to some other
non-inductive method M’, then it violates the second (bracketed) part of the thesis.

Also, the weak NFL theorem tells us that according to a state-uniform P-distribution,
one cannot say that more rened induction methods are ‘better’ than simple induction
methods. For example, one would expect that the longer the patterns that a m-block
method checks for repetitiveness in the past, the more ‘successful’ this method is, but
this expectation is wrong because the expected success rates of rened induction methods
are precisely the same as those of simple induction methods.

Let us nally consider the alternative explication of White’s thesis mentioned at the end
of section 2, which refers to an entire family of inductive methods, for example the family of
m-block majority induction methods. As explained, since the methods of this family pro-
duce opposite predictions for various sequences and points in time, one cannot have a pre-
dictionmethod that is successful whenever somemethod of this family is successful. In order
to turn an entire family of inductive methods into a ‘most general’ inductive method, one
needs rules of preference between inductive methods in case they deliver contradicting pre-
dictions. This is of course possible, for example by the following denition: The generalized
m-bounded majority induction method Genm-M-I (for a xed m that is signicantly smaller
than N) does at each time n[w the following: (i) It scans through all k≤m and k-block
patterns and searches for the smallest k≤mand k-block pattern of size k that has amaximal
so-far frequency which is at least as great as 0.5; (ii) if such a pattern is found, it predicts
according to the k-block majority induction method; (iii) otherwise it predicts 0.5.

One would expect the so dened generalized inductive method to be superior to all par-
ticular m-block induction methods, but that is an illusion: since it is a prediction method
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Table 2 Number of event sequences of length 10 for which the two real-valued prediction methods WM-I and WM-CI achieve certain success rates
(“SucRate”); average success “Av” on the left. (Computer simulation performed by Paul Thorn.)Ă

SucRate: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 Av:
WM-I: – – – – – 32 64 104 136 140 128 132 80 104 28 54 4 16 1 1 – 0.5
WM-CI: – 1 1 16 4 54 28 104 80 132 128 140 136 104 64 32 – – – – – 0.5

t
h
e
n
o

f
r
e
e
l
u
n
c
h

t
h
e
o
r
e
m

e
p
ist

e
m
e
v
o
l
u
m
e
18

–1
41

https://doi.org/10.1017/epi.2018.54 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/epi.2018.54


(in the explained sense), the weak NFL theorem applies to it. Thus, Genm-M-I’s
state-uniform expectation value is equal to that of any other method, be it as ‘dumb’ as
you wish. In conclusion, there is no hope to validate White’s thesis by moving on to gen-
eralized inductive methods which select for each sequence and time a particular inductive
method out of a well-dened family of inductive methods.

Even if there is no method which is successful over all sequences for which at least one
inductive method is successful, one might nevertheless be interested in the truth value of
White’s thesis for the existential quantication over methods. So let us consider the follow-
ing explication:

Thesis of induction-friendliness, explication 3: There are signicantly more [less] binary
sequences (of a given length) for which some m-block inductive prediction method (for
m≤N) has a high [low] success rate than there are sequences for which the corresponding
counter-inductive m-block method or some past-independent m-block method has a high
[low] success rate.

Conjecture: Explication 3 of the induction-friendliness thesis is false.

Unfortunately, I could not nd a proof of this conjecture, not even for its restriction to
binary prediction methods (recall that each m-block method has a binary completion
mb-M-Ibin, which predicts according to M-I whenever mb-M-I predicts 0.5). The difculty
can be illustrated as follows. Consider the binary 1-block and 2-block inductive methods
and let highseq(M) be the number of sequences of a xed length N for which a given
method M has a success rate of at least t (for a given threshold t > 0.5); moreover let high-
seq(M1 or M2) be the number of sequences for which at least one of the two methods M1

or M2 has a success rate of at least t. Then the strong NFL theorem entails that

highseq(M-Ibin) = highseq(M-CIbin)

highseq(2b-M-Ibin) = highseq(2b-M-CIbin),

but one cannot conclude from this that highseq(M-Ibin or 2b-M-Ibin) = highseq(M-CIbin or
2b-M-CIbin-), because the sequences for which the two methods have high success rates
may intersect and I did not nd a way to prove that these intersections have equal cardinality.6

Thus I leave the question of White’s thesis in its third explication as an open problem.
Note, however, that even if it were true and our conjecture false, it would not be of much
help to the problem of justifying the reliability of induction, because no inductive method
(be it as ‘general’ as you wish) can be successful over all sequences for which ‘some’
inductive method is successful.

4. conclusion and outlook

The deeper reason for why a state-uniform P-distribution is so devastating for our hopes
to justify induction is revealed by theorem 3: it is the most induction-hostile distribution

6 If highseq(M-1bin and 2b-M-Ibin) < highseq(M-CIbin and 2b-M-CIbin) would hold, then highseq(M-Ibin
or 2b-M-Ibin) > highseq(M-CIbin or 2b-M-CIbin) would follow.
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one can imagine. A proponent of this distribution believes with probability 1 that the
event sequence to be predicted is an identically and independently distributed (IID) ran-
dom sequence. This implies for innite sequences that the proponent is a priori certain
that the event sequence has (a) a limiting frequency of 0.5, and (b) is non-computable.
Condition (a) follows from theorem 3 and the (strong) law of large numbers and condition
(b) from the fact that there are uncountably many sequences, but only countably many
computable ones. However, the sequences for which a non-clairvoyant prediction method
can be better than random guessing in the long run are precisely those that do not fall into
the intersection of classes (a) and (b). Summarizing, an epistemic agent with a
state-uniform prior distribution is a priori certain that the world is completely irregular
so that ‘intelligent’ prediction methods cannot have a chance to be better than ‘unintelli-
gent’ ones.

The law of large number reects a deep property of the binomial distribution that is
crucial to understanding the induction-hostile nature of a state-uniform P-distribution.
The binomial distribution with probability p = 0.5, n

k

( )·pk·(1− p)n−k = k
n·0.5n, has its

maximum over the point k = n/2, where the frequency equals the probability (or comes
as close as possible to it). More importantly, this maximum increases, in comparison to
the neighboring frequencies, the larger n gets, and it becomes an innitely sharp peak
for n�∞. Since the irregularity (or entropy) of a non-computable sequence is the higher
the closer its probability comes to 0.5, this means that among all sequences there are much
more irregular than regular ones, and the share of the irregular sequences approaches
100% when their length n grows to innity. Having this in mind, it is no longer surprising
that based on a state-uniform P-distribution the expected chances of induction to be better
than random guessing are zero.

A state-uniform distribution over innite sequences assigns a probability of 0 to every
frequency limit that is different from 0.5. Thus it is extremely biased in regard to the dis-
tribution over possible limiting frequencies. It is well-known that if one assumes a prior
distribution that is not state-uniform but frequency-uniform, i.e., attaches the same prob-
ability to all possible frequency limits p[[0,1] of binary sequences, then one validates

Laplace’s rule of induction, P(en+1 = 1 | freqn(1) = k
n) =

k+1
n+2. In computer science, the idea

underlying frequency-uniform distributions has been generalized by Solomonoff (1964:
§4.1), who proves that a distribution P is uniform over the possible frequencies iff the
prior probability of sequences, P(s), decreases exponentially with their algorithmic or
‘Kolmogorov’ complexity, K(s): P(s)� 2−K(s). This means in more informal words that
according to a frequency-uniform distribution, regular sequences are overwhelmingly
more probable than irregular sequences.

These considerations tell us that the requirement of a ‘uniform probability distribution’
is seriously ambiguous. Its effects depend crucially on the given partition of the relevant
possibility space: possible sequences versus possible frequencies. Which prior distributions
are more ‘natural’, state-uniform ones or frequency-uniform ones? In my eyes, there is no
objective answer to that question, because all prior distributions are subjective and biased
in some respect. An objective justication of the reliability of induction− one that does
not depend on whether one assumes a certain prior distribution and not another− is
not in sight.

In conclusion it seems impossible to give a non-circular justication of the reliability of
induction. So far, Hume’s skeptical conclusion appears to be correct; but that is not the
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end of the story. As an outlook I mention two major escape routes from Humean skepti-
cism that one still can take, given that (i) this conclusion is accepted and (ii) the notion of
epistemic justication is ‘goal-externalist’ in the sense of being oriented towards the goal
of truth-conduciveness:

– One possible escape route is justication-externalism. This position abandons White’s
reliability principle explained in section 1. According to this position it is sufcient
for being justied in believing in the conclusion of an inductive inference that the infer-
ence is de facto reliable, without the believing person or anybody else having to be able
to justify it (cf. van Cleve 1984, 2003). This shift in the meaning of “justication”
relieves us of the burden of searching for a justication of induction. However, as
White’s excellent arguments in the rst part of his paper make clear, the epistemic
price of this move is very high, since not only induction but also counter-induction or
God-guided clairvoyance could possess an externalist justication, at least in principle.

– The second possibility are optimality justications, as introduced in Schurz (2008, 2009,
2019). This position maintains White’s reliability principle and an (access-)internalistic
understanding of the notion of justication. Optimality justications do not attempt to
‘prove’ that induction is reliable, but rather, that it is optimal, i.e., that it is the best that
we can do in order to achieve predictive success. Reichenbach (1949: sec. 91) was the
rst philosopher who suggested an optimality account. His account failed because
results in formal learning theory show that no prediction method can be universally
optimal at the level of object-induction, that is, of induction applied at the level of events
(Kelly 1996: 263). In contrast, the account proposed in Schurz (2008, 2009, 2019) is
based on meta-induction, i.e., induction applied on the meta-level of competing predic-
tion methods. Based on results in machine learning it is shown that there is a real-valued
strategy, called attractivity-weighted meta-induction (AMI), that is universally optimal
among all prediction methods accessible to the epistemic agent. AMI predicts a weighted
average of the predictions of these methods, using weights being a (delicately chosen)
function of their so far achieved success rates. AMI is provably predictively optimal
in the long run (n�∞) among all accessible methods in strictly all possible worlds,
even in worlds whose event and success frequencies don’t converge but are oscillating
forever, and even if clairvoyant methods are admitted. According to the author, this
result provides us with a weak a priori justication of meta-induction that does
not contradict the weak NFL theorem.7 Moreover, this a priori justication of
meta-induction may provide us with an a posteriori justication of object-induction
in our real world, insofar− and to the extent that− object-induction has turned out
to be, so far, the most successful prediction strategy. This argument is no longer circular,
because it is based on a non-circular justication of meta-induction.

7 A contradiction with the NFL theorem is avoided, because the state-uniform prior distribution that is
assumed by the NFL theorem assigns a probability of zero to all innite event sequences for which strat-
egy AMI enjoys “free lunches” (cf. Schurz 2017).
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