Orbital Trends of Binary Pulsars

Tapan Chatterjee

University of Puebla (FCC), Apartado Postal 1316, Puebla, Mexico

Abstract. We try to understand the eccentricity of high-mass binary pulsars using some methods of statistical mechanics.

1. Introduction

There is a high abundance of binaries among pulsars characterized by short spin periods and low magnetic fields, such that binarity seems to be a characteristic of their formation and birth properties (e.g., see Verbunt 1990). High mass binary pulsars (HMBPs) are believed to originate from massive binary systems; during the violent formation epoch some combinations of recoil velocities and masses can leave two neutron stars, of comparable mass, bound in a relative orbit. An analysis of orbital parameters on the basis of statistical mechanics and energy minimization should be conducted to determine the expected eccentricity; further, on the basis of the same characteristics, the orbital evolution should be studied. This will throw light on the formation of such systems. Observations indicate younger HMBPs (e.g., B2303+46 with an age ~ 3 × 10⁷ yr) have very eccentric orbits ($e \approx 0.7$; Thorsett et al. 1993), while older ones (e.g., B1543+12 with an age ~ 2 × 10⁸ yr) have less eccentric orbits ($e \approx 0.3$; Wolszczan 1991). This is indicative of a circularization process in progress to minimize the energy of the system.

2. Orbital Dynamics and Distribution of Eccentricity

Chatterjee & Magalinsky (2000) consider the problem of the dynamics of two compact bodies (which in this context can be considered as a binary pulsar) with two degrees of freedom, corresponding to their separation and effective size using a condition which favors energy minimization and implies gravity softening. On the basis of statistical mechanics, considering the bound binary to be a subsystem in a microcanonical ensemble, we determine the equilibrium distribution of system parameters. The distribution of the eccentricity, for a given energy, has the form

$$W(\epsilon;\epsilon_m) = Q^{-1}\epsilon^2 (1-\epsilon^2)^{-1} (\epsilon_m^2 - \epsilon^2)^{-1/2},$$
(1)

with $Q = (\pi/2)[(1 - \epsilon_m^2)^{-1/2} - 1]$, ϵ being the eccentricity and ϵ_m its maximum value for a given energy. Thus the equilibrium distribution function is a monotonically increasing function of eccentricity, limited by its maximum value for a given energy. This is such that (after the initial violent phase) binary pulsars are

expected to have eccentric orbits. A point to be noted is that the distribution is almost insensitive to the orbital and spin angular momentum.

Analytical results on the basis of statistical mechanics (Magalinsky & Chatterjee, in preparation) indicate that the orbit will circularize in the adiabatic regime on a large timescale; ultimately, circularization will take place in an effort to minimize the energy of the system (e.g., Lynden-Bell & Pringle 1974).

References

Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603

- Magalinsky, V. B., & Chatterjee, T. K. 2000, Astron. Astrophys. Trans., 18, 807
- Thorsett, S. E., Arzoumanian, Z., McKinnon, M. M., & Taylor, J. H. 1993, ApJ, 405, L29

Verbunt, F. 1990, in Neutron Stars and their Birth Events, ed. W. Kundt, (Dordrecht: Kluwer), p. 179

Wolszczan, A., 1991, Nature, 350, 688