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Abstract

Biomolecular recognition including binding of small molecules, peptides and proteins to their
target receptors plays a key role in cellular function and has been targeted for therapeutic drug
design. However, the high flexibility of biomolecules and slow binding and dissociation
processes have presented challenges for computational modelling. Here, we review the chal-
lenges and computational approaches developed to characterise biomolecular binding, includ-
ing molecular docking, molecular dynamics simulations (especially enhanced sampling) and
machine learning. Further improvements are still needed in order to accurately and efficiently
characterise binding structures, mechanisms, thermodynamics and kinetics of biomolecules in
the future.

Introduction

Biomolecular recognition plays key roles in many fundamental biological processes, including
immune response, cellular signal transduction and so on (Nooren and Thornton, 2003).
Moreover, these processes are implicated in the development of numerous human diseases
and serve as important drug targets (Ferreira et al., 2016; Scott et al., 2016). Experimental
techniques (Miura, 2018) including X-ray crystallography, nuclear magnetic resonance (NMR)
and cryo-electronmicroscopy (cryo-EM) have been applied to determine the bound structures of
protein–small molecule, protein–peptide and protein–protein complexes. The number of experi-
mental complex structures are significantly increased in recent years (Sussman et al., 1998).
However, it is still rather time consuming and resource demanding to obtain high-resolution
experimental structures. Moreover, the experimental structures often capture static pictures of
protein complexes. Intermediate conformational states that could be relevant for drug design are
usually difficult to probe using current experimental techniques.

Computational methods have been developed to model biomolecular recognition and
predict the binding free energies and/or kinetic rates, including the widely used molecular
docking (Morris et al., 2009; Wang and Zhu, 2016; Porter et al., 2017; Ciemny et al., 2018;
Vakser, 2020), Brownian dynamics (Ermak and McCammon, 1978; Gabdoulline and Wade,
2001; Spaar et al., 2006; Wieczorek and Zielenkiewicz, 2008; Votapka and Amaro, 2015) and
molecular dynamics (MD) simulations (Karplus andMcCammon, 2002; Basdevant et al., 2013;
Pan et al., 2019; He et al., 2021; Lamprakis et al., 2021).Molecular docking has been widely used
for predicting the holo structures of protein–ligand (Wang and Zhu, 2016), protein–peptide
(Ciemny et al., 2018) and protein–protein complexes (Vakser, 2020). Although significant
improvements have been achieved in developments of the molecular docking algorithms, the
accuracy of docking could be still limited, due to high system flexibility especially in docking of
the peptides and proteins. Recently, deep learning techniques have been introduced into
molecular docking to increase accuracy. One successful example is the AlphaFold-multimer
(Evans et al., 2022), which has significantly increased the accuracy of predicting protein–
protein complex structures. However, one is still not able to predict biomolecular binding
kinetics from molecular docking.

MD is a powerful technique for simulations of biomolecular structural dynamics (Karplus and
McCammon, 2002). Remarkable advances in computing hardware (e.g., the Anton supercom-
puter and GPUs) and software developments have significantly increased the accessible time
scale of conventional MD (cMD) from hundreds of nanoseconds to hundreds of microseconds
(Harvey et al., 2009; Shaw et al., 2010; Johnston and Filizola, 2011; Lane et al., 2013; Hollings-
worth and Dror, 2018; Shaw et al., 2021). Notably, the latest Anton3 (Shaw et al., 2021) has
achieved the speed of hundreds of microseconds per day for ATPase and Satellite Tobacco
Mosaic Virus (STMV) with total number of atoms ranging from 328 K to 1,067 K, which will
significantly facilitate simulations of biomolecular recognition process. The cMD simulations
have been widely applied to investigate biomolecular dynamics, including conformational
change (Jensen et al., 2012), protein folding (Lindorff-Larsen et al., 2011) and substrate binding
(Shan et al., 2011; Dror et al., 2013; Robustelli et al., 2020).
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For small-molecule ligand binding, Shan et al. (2011) observed
spontaneous binding of the Dasatinib drug to its target Src kinase
during tens of microseconds cMD simulations. However, no dis-
sociation event was observed in the cMD simulations. Pan et al.
(2017) performed tens of microseconds cMD simulations to suc-
cessfully characterise repetitive binding and dissociation of six
small-molecule fragments to the protein FKBP. Based on the large
number of binding and dissociation events in the simulations, they
were able to accurately calculate the binding free energies and
kinetic rates. Remarkably, the binding free energies calculated from
the cMD simulations agreed very well with those predicted from
free energy perturbations (FEP) calculations. It is worth noting that
the tested fragments were weak binders with affinities ranging from
200 μM to 20 mM. It is still challenging to simulate both binding
and dissociation of typical small-molecule ligands of proteins (usu-
ally with higher binding affinities and slower dissociation rates)
using cMD, although the ligand residence time (or dissociation
rate) has recently been recognised to correlate better with drug
efficacy (Schuetz et al., 2017). For protein–protein interactions, tens
of microseconds cMD simulations were able to capture barnase
binding to barstar (Pan et al., 2019). Accurate barnase binding rate
(kon) was predicted based on multiple binding events captured in a
total of ~440 μs Anton cMD simulations (Pan et al., 2019). How-
ever, it remains challenging to simulate dissociation of the barnase–
barstar model system using cMD (Pan et al., 2019).

Weighted ensemble (Saglam and Chong, 2019) and Markov
state model (MSM) (Plattner et al., 2017) have been developed to
improve the prediction of biomolecular binding thermodynamics
and kinetics based on a large number of short cMD trajectories. The
kinetic binding rate (kon) of the p53 peptide to the MDM2 protein
was accurately predicted with weighted ensemble of a total amount
of ~120 μs cMD simulations in implicit solvent (Zwier et al., 2016).
Another weighted ensemble of a total of ~18 μs cMD simulations
was able to accurately predict the barnase–barstar binding rate
constant (kon) (Saglam and Chong, 2019). However, it is still
challenging to model the slow protein/peptide dissociation pro-
cesses with weighted ensemble simulations (Zwier et al., 2016;
Saglam and Chong, 2019). MSM (Plattner and Noe, 2015; Paul
et al., 2017; Plattner et al., 2017) was able to simultaneously predict
the binding and dissociation kinetics through longer aggregated
cMD simulations. MSM built with 150 μs MD simulation data was
used to accurately predict benzamidine–trypsin binding kinetics
(Plattner and Noe, 2015). Based on a total of two millisecond cMD
simulations of barnase binding to barstar, MSM was generated to
predict intermediate structures, binding energies and kinetic rates
that were consistent with experimental data (Plattner et al., 2017).
However, these calculations required very expensive computational
resources.

Coarse-grained MD models have been developed to reduce the
demand of computational resources and extend simulation time
scales (Souza et al., 2020, 2021). Souza et al. (2020) performed
millisecond cMD simulations to capture the binding of diverse
protein–ligand systems. Accurate binding free energies were pre-
dicted through the cMD simulations without a priori information
(Souza et al., 2020). Millisecond MD simulations with a useful
coarse-grained model (PACE) were performed to characterise the
binding mechanism of the intrinsically disordered Aβ peptides
(Aβ17–42) to form Aβ fibril (Han and Schulten, 2014). In addition,
coarse-grained models could be incorporated into multiscale com-
putational approaches to improve the efficiency and accuracy of
ligand binding thermodynamics and kinetics calculations (Elber,
2020; Jagger et al., 2020; Huang, 2021). For example, simulation

enabled estimation of kinetic rates (SEEKR; Votapka and Amaro,
2015; Jagger et al., 2020) is a multiscale simulation approach
combining MD, Brownian dynamics and milestoning for calculat-
ing receptor�ligand binding and dissociation rates. SEEKR has
been shown to estimate binding kinetic rates with up to a factor
of 10 less simulation time (Jagger et al., 2020).

Enhanced sampling methods have been developed to effi-
ciently simulate biomolecular recognition. They could be gener-
ally divided into two categories depending on the usage of
collective variables (CVs). The CV-based methods include the
widely used steeredMD (Kingsley et al., 2016), umbrella sampling
(Gumbart et al., 2013; Kingsley et al., 2016; Joshi and Lin, 2019b),
metadynamics (Antoszewski et al., 2020; Banerjee and Bagchi,
2020), adaptive biasing force (ABF; Darve and Pohorille, 2001;
Darve et al., 2008) and so on. These methods often use predefined
CVs to effectively guide simulations. Thus, a priori knowledge of
the system is required in CV-based enhanced sampling. Alterna-
tively, when it is difficult to predefine CVs, CV-free enhanced
sampling methods could be useful (Kamenik et al., 2022). These
methods include replica exchange MD (Sugita and Okamoto,
1999; Sugita et al., 2019; Siebenmorgen and Zacharias, 2020),
random acceleration molecular dynamics (RAMD; Nunes-Alves
et al., 2021), tempered binding (Pan et al., 2019), integrated
tempering sampling (ITS; Yang et al., 2015; Shao and Zhu,
2019), scaled MD (Deb and Frank, 2019), accelerated MD
(aMD; Hamelberg et al., 2004), Gaussian accelerated MD
(GaMD; Miao et al., 2015b; Wang et al., 2021) and so on. The
above-mentioned methodological advances have enabled simula-
tions of millisecond or even longer time scale processes. Here, we
will briefly review recent efforts in modelling biomolecular rec-
ognition, especially characterisation of binding thermodynamics
and kinetics.

Collective variable-based enhanced sampling

During CV-based enhanced sampling simulations, a potential or
force bias is applied along certain CVs to facilitate energy barrier
crossing events among different conformational states. Typical CVs
include distances, angle, dihedral, path, eigenvectors generated
from the principal component analysis, root-mean square devi-
ation (RMSD) relative to a reference conformation (Bouvier and
Grubmuller, 2007) and so on. The bias potential applied to the
system is usually around several kcal/mol. Thus one is able to
accurately recover the original free energy profiles.

Umbrella sampling has been applied to predict the ligand/
peptide/protein binding and/or dissociation pathways and map
the associated free energy landscapes (Gumbart et al., 2013; Joshi
and Lin, 2019a; Sieker et al., 2008; You et al., 2019). Metadynamics
has been applied to investigate ligand/peptide/protein binding in
terms of the binding kinetic rates (Casasnovas et al., 2017; Sun et al.,
2017) and free energies (Saleh et al., 2017; Banerjee et al., 2018;
Raniolo and Limongelli, 2020; Wang et al., 2022a). Metadynamics
simulations (Limongelli et al., 2013; Tiwary and Parrinello, 2013)
have also been applied to investigate the thermodynamics and
kinetics of benzamidine inhibitor binding to trypsin. Multiple
metadynamics trajectories with a total of 5 μs simulations were
obtained to predict the ligand unbinding pathways and dissociation
rate constant (koff). The predicted koff (9.1 � 2.5 s�1) was smaller
than the experimental value (600 � 300 s�1). Separate funnel
metadynamics simulations predicted accurate of ligand binding
free energies (�8.5 � 0.7 kcal/mol) for the same system
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(Limongelli et al., 2013). Infrequent metadynamics simulations
with three carefully chosen CVs have successfully predicted the
peptide binding and dissociation rates for the system of p53-
MDM2 -(Zou et al., 2020). Although these methods have shown
remarkable improvements in capturing rare events that happen
over exceedingly long timescales, users often face a challenge for
defining CVs, which requires expert knowledge of the studied
systems (Abrams and Bussi, 2014; Zuckerman, 2011). Additionally,
the predefined CVs could constrain the sampling space, leading to
slow convergence of the simulations and suffering from “hidden
energy barrier” once important CVs were missed during the simu-
lation setup (Bešker and Gervasio, 2012). To accelerate the conver-
gence of simulations, replica exchange or parallel tempering
methods have been incorporated into metadynamics. For example,
bias-exchangemetadynamics simulations with eight CVs have been
performed to predict accurate binding free energy of the p53
peptide to the MDM2 protein. Parallel tempering metadynamics
simulations with well-tempered ensemble (PTMetaD-WTE) suc-
cessfully captured the binding and dissociation processes of insulin
dimer (Antoszewski et al., 2020). In summary, by carefully defining
reaction coordinates, the CV-based enhanced sampling methods
could efficiently and accurately predict binding free energies and
kinetic rates.

Enhanced sampling without predefined collective variables

In CV-free enhanced sampling methods, bias is often applied on
generalised properties of the system (such as the potential energy
and atomic forces) in the simulations. Repetitive benzamidine
binding and unbinding in trypsin were captured using the selective
ITS method (Yang and Qin Gao, 2009; Yang et al., 2015; Shao and
Zhu, 2019). Pan et al. (2019) developed the tempered binding
method, which significantly accelerates the slow protein dissoci-
ation process by dynamically adjusting electrostatic and van der
Waals interactions between different groups of protein atoms by a
factor λ. The tempered binding simulations have successfully cap-
tured repetitive binding and dissociation events for five diverse
protein–protein systems (Pan et al., 2019). In the scaled MD
simulations (Sinko et al., 2013), a scale factor ranging from 0 to
1 is introduced to smoothen the potential energy surface. Schuetz
et al. (2018) performed scaledMD simulations to accurately predict
the residence time and drug dissociation pathways of different
inhibitors of heat shock protein 90 (Hsp90). In a recent study,
Bianciotto et al. (2021) used scaled MD simulations to predict the
residence time and ligand unbinding pathways for a set of 27 ligands
of Hsp90 protein, being highly consistent with experimental data.
Deb and Frank (2019) developed a selective scaled MD simulation
method, where specific energy terms are scaled to promote dissoci-
ation of bound ligands from the protein. Particularly, ligand–water
interactions are scaled to help the ligands dissociate from its bound
state. Selective scaled MD predict accurate residence times and
associated free energy change of three inhibitor drugs bound to
cyclin-dependent kinase protein complexes. Hence, selective scaled
MD proves to be an important enhanced sampling method for
modelling biomolecular dissociation process.

In RAMD, an additional random force is applied on the ligand
to promote especially the dissociation. In one recent study, Nunes-
Alves et al. (2021) performed RAMD simulations to predict ligand
dissociation rates of T4 lysozyme. The predicted kinetic rates
agreed well with experimental values for various systems with
different ligands, temperatures and protein mutations. Moreover,

a ligand with complex dissociation pathways was often associated
with longer residence time. In another study, the same group (Kokh
and Wade, 2021) performed RAMD simulations to explore ligand
dissociation pathways and kinetics of two GPCRs, i.e., the β2
adrenergic receptor (β2AR) and M2 muscarinic acetylcholine
receptor (M2R). The ligand dissociation pathways observed in
the RAMD simulations were similar to those in long cMD and
metadynamics simulations. Additionally, RAMD revealed an allo-
steric modulation mechanism of the LY2119620 PAM in the M2R.
Dissociation of the iperoxo agonist was blocked from one of the
possible pathways and hence had increased residence time, being
consistent with the experimental data.

The aMD enhanced sampling technique works by adding a non-
negative boost potential to smooth the system potential energy
surface (Voter, 1997; Hamelberg et al., 2004). The boost potential
(ΔV) decreases the energy barrier to facilitate the system cross
different conformational states (Hamelberg et al., 2004, 2007). In
one study, Kappel et al. (2015) performed aMD simulations to
study ligand binding to M3 muscarinic receptor (M3R). Three
ligands of the receptor: full agonist Ach, partial agonist arecoline
(Arc) and antagonist tiotropium (TTP) were used to perform the
aMD simulations. Starting from the bulk solvent, aMD captured the
binding of Ach to the M3R orthosteric site in significantly less time
as compared to the cMD simulations. The Arc was also observed
binding to the orthosteric site whereas the TTP molecule bound to
the extracellular vestibule of the receptor. Moreover, all ligands
could bind to the extracellular vestibule of the receptor, suggesting
the vestibule as metastable binding site for orthosteric ligands.
However, aMD suffers from large energetic noise during reweight-
ing as the boost potential is typically on the order of tens to
hundreds of kcal/mol (Shen and Hamelberg, 2008).

GaMD is developed to apply a harmonic boost potential to
enhance sampling with significantly reduced energetic noise. The
boost potential normally exhibits a near Gaussian distribution,
which enables proper reweighting of the free energy profiles
through cumulant expansion to the second order (Miao et al.,
2015b; Wang et al., 2021). GaMD has been successfully applied
to simulate important biomolecular processes, including ligand/
protein/RNA binding (Miao et al., 2015a, 2018b; Miao and
McCammon, 2016; Pang et al., 2017; Wang and Chan, 2017;
Chuang et al., 2018; Liao and Wang, 2019; Wang et al., 2022b),
protein folding (Miao et al., 2015a; Pang et al., 2017) and protein
conformational changes (Miao and McCammon, 2016; Salawu,
2018; Zhang et al., 2018). However, it remained challenging to
simulate repetitive substrate binding and dissociation through
normal GaMD (Miao and McCammon, 2018; Wang et al., 2021).

Recently, “selective GaMD” algorithms have been developed to
allow for more efficient enhanced sampling of biomolecular bind-
ing and dissociation processes, including the Ligand GaMD
(LiGaMD) (Miao et al., 2020), Peptide GaMD (Pep-GaMD; Wang
and Miao, 2020) and protein–protein interaction – GaMD
(PPI-GaMD; Wang and Miao, 2022). For simulations of biomole-
cular binding, the system contains substrate L (e.g. small-molecule
ligands, peptides or ligand protein), protein P and the biological
environment E. Therefore, the potential energy of system could be
decomposed into the following terms: V rð Þ=VP,b rPð ÞþVL,b rLð Þþ
VE,b rEð ÞþVPP ,nb rPð ÞþVLL,nb rLð ÞþVEE ,nb rEð ÞþVPL,nb rPLð Þþ
VPE ,nb rPEð ÞþVLE ,nb rLEð Þ, where VP,b , VL,b and VE,b are the
bonded potential energies in protein P, substrate L and environment
E, respectively. VPP ,nb, VLL,nb and VEE,nb are the self non-bonded
potential energies in protein P, substrate L and environment E,
respectively. VPL,nb , VPE ,nb and VLE,nb are the non-bonded
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interaction energies between P-L, P-E and L-E, respectively. In
order to facilitate the ligand/peptide/protein binding (Fig. 1), a
boost potential is selectively added on the essential energy terms
( Vselect rð Þ) in the LiGaMD, Pep-GaMD and PPI-GaMD, respect-
ively. Presumably, ligand binding mainly involves the non-bonded
interaction energies of the ligand. LiGaMD thus selectively boosts
on the energy terms of V select rð Þ=VLL,nb rLð ÞþVPL,nb rPLð Þþ
VLE ,nb rLEð Þ. In comparison, peptide binding involves in both the
bonded and non-bonded interaction energies of the peptide
since peptides often undergo large conformational changes during
binding to the target proteins. Thus, the essential energy term in
Pep-GaMD is Vselect rð Þ=VLL,b rLð ÞþVLL,nb rLð ÞþVPL,nb rPLð Þþ
VLE ,nb rLEð Þ: While protein–protein binding and unbinding
processes mainly involve the non-bonded interaction energies
between protein partners, one can apply a selective boost to the
essential energy term V select rð Þ=VPL,nb in PPI-GaMD. In addition
to selectively boost the essential energy term Vselect rð Þ , another
boost potential could be applied on the remaining energy of the
system to facilitate substrate rebinding in a dual-boost scheme.
These new algorithms have been implemented in the GPU version
of AMBER22 (Case et al. 2022).

Repetitive binding and dissociation of small-molecule ligands
were captured in the LiGaMD simulations of host–guest and pro-
tein–ligand binding model systems (Miao et al., 2020), which
enabled us to calculate ligand binding thermodynamics and kinet-
ics calculations. Repetitive guest binding and dissociation in the
β-cyclodextrin host were observed in hundreds-of-nanoseconds
LiGaMD simulations. The binding free energies of guest molecules
predicted from LiGaMD simulations agreed excellently with
experimental data (< 1.0 kcal/mol error). In comparison with
previous microsecond-timescale cMD simulations, accelerations
of ligand kinetic rate constants in LiGaMD simulations were prop-
erly estimated using Kramers’ rate theory. Furthermore, microsec-
ond LiGaMD simulations observed repetitive benzamidine binding
and dissociation in trypsin. Trypsin–benzamidine ligand binding
free energy was calculated from the 3D PMF profile to be �6.13 �
0.35 kcal/mol, being highly consistent with the experimental value
of�6.2 kcal/mol (Guillain and Thusius, 1970). Similarly, the ligand
binding and dissociation time periods were recorded to calculate
the reweighted kon and koff values to be 1.15 � 0.79 � 107 M�1�s�1

and 3.53 � 1.41 s�1, respectively. These data were comparable to
the values calculated from experiments (Guillain and Thusius,
1970).

Pep-GaMD (Wang and Miao, 2020) has been demonstrated on
binding of threemodel peptides to the SH3 domains (Ball et al., 2005;
Ahmad and Helms, 2009), including “PAMPAR” (PDB: 1SSH),

“PPPALPPKK” (PDB: 1CKA) and “PPPVPPRR” (PDB: 1CKB).
Repetitive dissociation and binding of the three peptides were suc-
cessfully captured in each of the 1 microsecond Pep-GaMD simula-
tions. The peptide binding free energies calculated from Pep-GaMD
simulations were in excellent agreements with those from the experi-
ments. For the 1CKA system, the calculated peptide binding free
energy value was �7.72 � 0.54 kcal/mol, being highly consistent
with the experimental value of �7.84 kcal/mol (Wu et al., 1995).
For the 1CKB system, the predicting binding free energy was �6.84
� 0.14 kcal/mol, being closely similar to the experimental value of
�7.24kcal/mol (Wu et al., 1995). In addition, thePep-GaMDpredicted
the kon and koffof 1CKAas4.06� 2.26� 1010M�1�s�1 and1.45� 1.07
� 103 s�1, respectively. Theywere comparable to the experimental data
(Xue et al., 2014) of kexpon = 1.5� 109 M�1�s�1 and kexpoff = 8.9� 103

s�1.
More recently, Pep-GaMD simulations were combined with

complementary biochemical experiments to elucidate mechan-
ism of tripeptide trimming of amyloid β-peptide (Aβ peptide)
by γ-secretase (Bhattarai et al., 2022). The active model of
γ-secretase for ε cleavage was extracted from previous study
(Bhattarai et al., 2020) and used as the starting structure for
Pep-GaMD simulations. 600 ns Pep-GaMD simulations were
able to capture the ζ cleavage activation starting from the ε
cleavage activated model, which was suggested to carry out in
timescale of minutes (Kamp et al., 2015). During activation,
coordinated hydrogen bonds were formed between carbonyl
oxygen of Aβ49 Val46 and enzyme catalytic Asp257. The two
catalytic aspartates, Asp257 and Asp385 in the active site of the
enzyme both formed hydrogen bonds with the water molecule
aligned in between them. This activated enzyme conformation
was well oriented for the ζ cleavage of amide between Val46 and
Ile47 of the Aβ49. Three low energy states including “Final”,
“Intermediate” and “Initial” were identified from the Pep-GaMD
simulations (Fig. 2a). The Final state denoted the activated
enzyme conformation for ζ cleavage where the Asp257–Asp385
distance was ~7–8 Å and the Asp257–Aβ49 Val46 distance was
~3 Å (hydrogen bond). The Initial and Intermediate low energy
states denoted the starting and transitional conformation during
the activation process. Furthermore, Pep-GaMD simulations
were performed for three additional FAD mutant Aβ49 bound
enzyme systems. Similar to the wildtype system, Pep-GaMD
simulations of I45F, A42T and V46Fmutant Aβ49 bound enzyme
systems were able to capture the ζ cleavage activation starting
from the ε cleavage activated model. Free energy profiles of the
FAD mutant systems were similar to the wildtype system
(Fig. 2b–d). In the I45F mutant system, two low energy states

Figure 1. Schematic illustration of biomolecular recognition: (a) Small-molecule ligand binding, (b) peptide binding and (c) protein–protein interactions (PPIs).
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were identified including “Initial” and “Final” (Fig. 2b). The
A42T mutant was the most dynamic enzyme system with four
distinct low energy states identified in a larger area covered free
energy profile including “Initial”, “Final”, “Inhibited-1” and
“Inactive” (Fig. 2c). The catalytic aspartates of the “Inhibited-1”
conformational state were too close for activation and hence was
inhibited. In contrast, the aspartates were too far for their cata-
lytic activity in the “Inactive” low energy state of the enzyme. In
the V46F mutant γ-secretase system, two low energy states were
identified in the free energy profile including “Final” and
“Inhibited-2” (Fig. 2d). The structures were compared between
the “Initial” and “Final” low energy conformational states of the
enzyme as identified from the free energy profiles (Fig. 2e–g). The
enzyme moved from Initial to Final conformational state, the
Aβ49 substrate tilted by ~50° (Fig. 2f). Unwinding of helix was
observed in the C-terminus of Aβ49 where residues Val44 and
Ile45 were observed changing their conformation from helix to a
loop (Fig. 2f). Similarly, in the active site of the enzyme, the
protonated Asp257 in the Final state was observed moving for-
ward towards the substrate scissile amide bond by 3 Å in com-
parison to the Initial state (Fig. 2g). In contrast, the deprotonated
Asp385 in the Final state and the Initial state were observed in a
similar conformation (Fig. 2g). The simulation findings were
highly consistent with biochemical experimental data. Taken
together, complementary biochemical experiments and Pep-
GaMD simulations have enabled elucidation of the mechanism
of tripeptide trimming of Aβ49 by γ-secretase.

PPI-GaMD (Wang andMiao, 2022) has been demonstrated on a
model system of the ribonuclease barnase binding to barstar. Six
independent 2 μs PPI-GaMD simulations have successfully cap-
tured repetitive barstar dissociation and rebinding events (Fig. 3a).
Five binding and six dissociation events were observed in both Sim1
and Sim3. In Sim2, three binding and four dissociation events
were captured. For the remaining simulations (Sim4–Sim6), three
binding and three dissociation events were observed (Fig. 3a). The
barstar binding free energy predicted from PPI-GaMDwas�17.79
kcal/mol with a standard deviation of 1.11 kcal/mol, being highly
consistent with the experimental value of �18.90 kcal/mol
(Schreiber and Fersht, 1993). In addition, the PPI-GaMD simula-
tions allowed us to calculate the protein binding kinetics. The
average reweighted kon and koff were predicted as 21.7 � 13.8 �
108 M�1�s�1 and 7.32 � 4.95 � 10�6 s�1, being highly consistent
with the corresponding experimental values of 6.0 � 108 M�1�s�1

and 8.0 � 10�6 s�1, respectively. Furthermore, PPI-GaMD simu-
lations have provided mechanistic insights into barstar binding to
barnase, which involve long-range electrostatic interactions and
multiple binding pathways (Fig. 3c–f ), being consistent with pre-
vious experimental and computational findings of this model sys-
tem. It is worth noting that at least three independent replicas of
selective GaMD simulations with longer simulation lengths
(e.g., microsecond) are required to obtain sufficient statistics for
ligand binding, peptide binding and protein–protein interactions.
In order to calculate accurate binding free energy and kinetic rates,
the length of each simulation should be long enough to capture

Figure 2.Mechanism of tripeptide trimming of amyloid β-peptide 49 by γ-secretase. 2D free energy profiles calculated regarding Asp257 - Asp 385 distance and Asp257 – Aβ49 Val46
distance calculated from Pep-GaMD simulations of (a) wildtype Aβ49 bound γ-secretase, (b) I45F mutant Aβ49 bound γ-secretase, (c) A42T mutant Aβ49 bound γ-secretase and (d)
V46Fmutant Aβ49 bound γ-secretase systems. (e) Structures of catalytic subunit PS1 bound to APP and Aβ49 substrates representing the “Initial” and “Final” conformational states,
respectively. (f) Conformational changes in (f) Aβ49 and (g) active site of the enzyme during transition from Initial to Final activated state for ζ cleavage. Adapted with permission
from Bhattari A, Devkota S, Do HN, Wang J, Bhattarai S, Wolfe MS and Miao Y. Journal of the American Chemical Society. 10.1021/jacs.1c10533. Copyright 2022 American Chemical
Society.
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≥3 binding and dissociation events as suggested by LiGaMD (Miao
et al., 2020), Pep-GaMD (Wang and Miao, 2020) and PPI GaMD
(Wang and Miao, 2022) studies.

Machine learning

Machine learning (ML) has been applied to improve computa-
tional docking, especially in the scoring functions (Khamis et al.,
2015). A scoring function in molecular docking refers to a

mathematical predictive model that outputs a representative score
of the binding free energy of a bound conformation. Scoring of a
docked complex is the final step of the three essential components
in molecular docking, with the first two being chemical molecule
representation and pose generation (Khamis et al., 2015). A
reliable scoring function should have a good scoring power (the
ability to produce scores for different binding poses), ranking
power (the ability to correctly rank a given set of ligands with
known binding poses when bound to a common protein) and

Figure 3. PPI-GaMD simulations of barnase binding/dissociation to barstar. (a) Time courses of protein–protein interface distance calculated from six independent 2 μs PPI-GaMD
simulations. (b) Original (reweighted) andmodified (no reweighting) PMF profiles of the protein interface distance averaged over six PPI-GaMD simulations. Error bars are standard
deviations of the free energy values calculated from six PPI-GaMD simulations. (c) 2D PMF profiles regarding the interface RMSD and the distance between the CZ atom of barnase
Arg59 and CG atom of barstar Asp39. (d) 2D PMF profiles regarding the interface RMSD and the distance between the center of masses (COMs) of barnase residues Ala37-Ser38 and
barstar residues Gly43-Trp44. (e,f) Low-energy conformations as identified from the 2D PMF profiles of the (e) intermediate “I1”, (f) intermediate “I2”. Strong electrostatic
interactions are shown in red dash lines with their corresponding distance values labelled in the intermediate “I1” (e) and “I2” (f). Adapted with permission from Wang J, Miao
Y. Journal of Chemical Theory and Computation. 10.1021/acs.jctc.1c00974. Copyright 2022 American Chemical Society.
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docking power (the ability to identify the best binding pose of a
given ligand from a set of computationally generated poses when
bound to a specific protein; Ashtaway and Mahapatra, 2012).
Kinnings et al. (2011) used a support vector machine (SVM) to
derive a unique set of weights for each individual protein family –
the wi’s in the following equation:

ΔGbinding =
w0þw1ΔGVdW þw2ΔGh�bond þw3ΔGrotor

þ w4ΔGhydrophobic

(1)

This was shown to improve the binding affinity prediction of
the electronic high throughput screening (eHiTS) molecular
docking software (Zsoldos et al., 2007) compared with empirical
knowledge-based scoring functions (Khamis et al., 2015). Similarly,
a force field scoring function can be trained to derive a unique set of
parameters for each individual protein family – the Aij’s and Bij’s in
the following equation:

Ebinding =
Xligand
i= 1

Xprotein
j= 1

Aij

raij
�Bij

rbij
þ332

qiqj
Drij

 !
(2)

ML could also be used to predict the binding affinity based on a
number of features of the protein–ligand complex, including
geometric features, physical force field energy terms, pharmaco-
phore features, etc. Specifically, ML could learn the relationship
between these features and corresponding known binding affinity
to predict the binding affinity of new complexes (Khamis et al.,
2015). Recently, Ballester and Mitchell (2010) applied non-
parametric ML techniques to generate the functional form of
scoring functions given molecular databases. The authors used
random forest (RF; Breiman, 2001) to learn the relationship
between the atomic-level description of the complex and the
experimental binding affinity. Here, the Kd and Ki measurements
were merged into a single binding constant K to represent the
experimental binding affinity. The atomic-level description used
was of geometric nature and was the occurrence count of nine
common elemental atoms (C, N, O, F, P, S, Cl, Br, I) type pair.
Even though they completely neglected the energy terms induced
by protein–ligand interactions, Ballester andMitchell (2010) were
able to achieve Pearson correlation coefficient of 0.774 on the
PDBbind v2007 core set (195 complexes).

Very recently, deep learning (DL) methods, including RoseT-
TAFold (Baek et al., 2021) and AlphaFold (Jumper et al., 2021),
were developed to achieve structure prediction accuracies far
beyond those from classical force-field-based methods (Baek
and Baker, 2022). These methods have millions of parameters,
much more than the hundreds of parameters in classical
approaches, thus better sample the large conformational space
of proteins. Furthermore, they make no assumptions about the
functional form of the interactions between atoms. In fact, the two
DL-based methods learn millions of parameters directly to gen-
erate correct 3D structures from input amino acid sequences
(Baek and Baker, 2022; Baek et al., 2021; Jumper et al., 2021).
AlphaFold and RoseTTAFold are trained to predict structures
from alignments of homologous amino acid sequences. In par-
ticular, the two DL-based approaches learn to extract rich struc-
tural information through a three-track network where
information at the 1D sequence level, 2D distance map, and 3D
coordinate level is successively transformed and integrated (Baek
et al., 2021; Jumper et al., 2021). They were also shown to predict
protein structures very accurately from single amino acid

sequences (Baek and Baker, 2022; Baek et al., 2021; Jumper
et al., 2021).

MD simulations could generate very large data in terms of
conformation frames and number of simulated atoms. For
example, weighted ensemble of the COVID19 spike protein’s
closed-to-open state generated over 100 terabytes of data
(Casalino et al., 2021). This brings a challenge to identify proper
CVs to differentiate conformational states from the raw simulation
data and to identify corresponding biologically transitions between
such states (e.g., open/closed states of spike). In this regard, the
ML/deep learning has been applied to identify appropriate CV to
analysis MD simulation trajectories (Noé, 2020; Wang et al., 2020;
Glielmo et al., 2021; Sun et al., 2022). These linear, non-linear and
hybrid ML approaches cluster the simulation data along a small
number of latent dimensions to identify conformational transitions
between states (Bernetti et al., 2020; Ramanathan et al., 2012).
Another benefit of MD-coupled ML approaches is that the infor-
mation learned from ML can be used to iteratively guide the MD
sampling (Wang et al., 2019). Based on the predictive information
bottleneck, Wang et al. (2019) developed an approach to identify
system reaction coordinates and calculate the free energy and
kinetic rates in biomolecules. The algorithm was demonstrated
on conformational transitions in the alanine dipeptide model sys-
tem and ligand dissociation from the L99A T4lysome. Thermo-
dynamic and kinetic quantities calculated from short enhancedMD
simulations for slow biomolecular processes were in good agree-
ment with the experiments and long unbiased MD simulations.

Recently, we have integrated the GaMD, Deep Learning and free
energy prOfilingWorkflow (GLOW) to predict important reaction
coordinates andmap free energy profiles of biomolecules (Do et al.,
2022). First, GaMD simulations are performed on the target bio-
molecules (Fig. 4a). The residue contact map is then calculated for
each GaMD simulation frame and transformed into images
(Fig. 4b). The specialised type of neural network for image classi-
fication, two-dimensional (2D) convolutional neural network
(CNN), is employed to classify the residue contact maps of target
biomolecules, fromwhich important residue contacts are identified
by classic gradient-based pixel attribution (Fig. 4c). Finally, the free
energy profiles of these reaction coordinates are calculated through
reweighting of GaMD simulations to characterise the biomolecular
systems of interest (Fig. 4d; Do et al., 2022). GLOWwas successfully
demonstrated on characterisation of activation and allosteric
modulation of a GPCR, using the adenosine A1 receptor (A1AR)
as a model system. Characterisation of the A1AR activation was
achieved by classification of the A1AR bound by “Antagonist”,
“Agonist” and “Agonist-Gi”. GLOW achieved an overall accuracy
of 99.34% and loss of 1.85%, respectively, on the validation data set
after 15 epochs. Meanwhile, characterisation of A1AR allosteric
modulation was achieved by classification of the A1AR bound by
“Agonist-Gi” and “Agonist-Gi-PAM”. GLOW achieved an overall
accuracy of 99.27% and loss of 1.78%, respectively, on the validation
data set after 15 epochs. GLOW identified characteristic residue
contacts that were highly consistent with previous studies to the
residue levels for both A1AR activation and allosteric modulation.
In particular, the ligand-binding extracellular domains (ECL1–
ECL3) and intracellular G-protein binding domains (TM3, TM5,
TM6 and TM7) were found to be loosely coupled in the GPCR
activation. Furthermore, it showed that ECL2 played a critical role
in the allosteric modulation of A1AR, being consistent with previ-
ous mutagenesis, structure and molecule modelling studies (Avlani
et al., 2007; Peeters et al., 2012; Nguyen et al., 2016; Miao et al.,
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2018a; Draper-Joyce et al., 2021). GLOW revealed that binding of a
PAM (MIPS521) to the agonist-Gi-A1AR complex biased the
receptor conformational ensemble, especially in the ECL1 and
ECL2 regions. PAM binding stabilised agonist binding within the
orthosteric pocket of A1AR, which confined the extracellular
mouth of the receptor Furthermore, PAM binding disrupted the
N148ECL2-V152ECL2 α-helical hydrogen bond and distorted this
portion of the ECL2 helix (Do et al., 2022).

In addition, DL has been widely applied to optimise force field
(Poltavsky and Tkatchenko, 2021; Unke et al., 2021; Chatterjee
et al., 2022), binding free energy calculations (Jiang et al., 2021;
Jones et al., 2021; Chen et al., 2022) and binding pathway identi-
fication (Motta et al., 2022).

Conclusions and outlook

With remarkable advances in both computer hardware and soft-
ware, computational approaches have achieved significant
improvement to characterise biomolecular recognition, including
molecular docking, MD simulations and ML. ML has been incorp-
orated into both molecular docking and MD simulations to
improve the docking accuracy, simulation efficiency and trajectory
analysis, e.g., AlphaFold-Multimer and GLOW. MD simulations
have enabled characterisation of biomolecular binding thermo-
dynamics and kinetics, attracting increasing attention in recent
years. Long time scale cMD simulations have successfully captured

biomolecular binding processes, although slow dissociation of bio-
molecules are still often difficult to simulate using cMD.

Enhanced sampling methods have greatly reduced the compu-
tational cost for calculations of biomolecular binding thermo-
dynamics and kinetics. Higher sampling efficiency could be
generally obtained using the CV-based methods than using the
CV-free methods. However, CV-based enhanced sampling
methods require predefined CVs, which is often challenging for
simulations of complex biological systems. Nevertheless, ML tech-
niques have proven useful to identify proper CVs or reaction
coordinates. Alternatively, CV-free methods are usually easy to
use without requirement of a priori knowledge of the studied
systems. Additionally, the CV-based and CV-free methods could
be combined to be more powerful. The CV-free methods can
enhance the sampling to potentially overcome the hidden energy
barriers in orthogonal degrees of freedom relative to the CVs
predefined in the CV-based methods, which could enable faster
convergence of the MD simulations. Newly developed algorithms
in this direction include integration of replica exchange umbrella
sampling with GaMD (GaREUS; Oshima et al., 2019), replica
exchange of solute tempering with umbrella sampling (gREST/
REUS; Kamiya and Sugita, 2018; Re et al., 2019), replica exchange
of solute tempering withwell-temperedMetadynamics (ST-MetaD;
Mlýnský et al., 2022) and temperature accelerated molecular
dynamics (TAMD) with integrated tempering sampling
(ITS/TAMD; Xie et al., 2017).

Figure 4. Overview of the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL) and Free Energy PrOfiling Workflow (GLOW). (a) With structures of our interest,
GaMD simulations are applied for enhanced sampling of the system dynamics. (b) DL models are then built with GaMD trajectories of residue contact maps transformed into image
representations. (c) The DL analysis allows us to identify important residue contacts and system reaction coordinates (RCs). (d) Free energy profiles of the RCs are finally calculated
through reweighting of GaMD simulations to characterise the system dynamics. Adaptedwith permission fromDoHN,Wang J, Bhattari A andMiao Y. Journal of Chemical Theory and
Computation. 10.1021/acs.jctc.1c01055. Copyright 2022 American Chemical Society.
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Recent years have seen an increasing number of techniques that
introduce “selective” boost in the CV-free enhanced sampling
methods, including the selective ITS, selective scaled MD, selective
aMD and selective LiGaMD, Pep-GaMD and PPI-GaMD. In these
methods, only essential energy terms are selectively boosted to further
increase the sampling efficiency. Additionally, compatible enhanced
sampling methods could be combined to be more powerful. For
example, GaMD has been combined with Umbrella Sampling to
achieve significantly improved efficiency (Oshima et al., 2019; Wang
et al., 2021). Besides enhanced sampling, the accuracy of force fields
and water models play a critical role in predicting the biomolecular
binding affinities and kinetics. For example, the TIP4P2015 water
model was shown to bemore accurate than the TIP3Pwatermodel in
calculating the kinetics of barnase–barstar binding in cMD simula-
tions (Pan et al., 2019). Nevertheless, biomolecular recognition in
systems of increasing sizes (such as viruses and cells) and accurate
calculations of binding thermodynamics and kinetics of large biomo-
lecular complexes present grand challenges for computational mod-
elling and enhanced sampling simulations. Further innovations in
both computing hardware and method developments may help us to
address these challenges in the future.
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