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The influence of cognitive science and psychology on decision
theory is bringing about changes to assumptions about decision
making, and, as a consequence, the way that decisions should
be modeled and supported. The three articles published in
this Special Issue on intelligent decision support and modeling
reflect an emerging literature that incorporates psychology into
decision modeling and decision support. This literature repre-
sents only a starting point, and much remains to be done in
terms of acknowledging the influence of psychology on engi-
neering decisions. Decision support tools will probably never
completely make up for engineers’ lack of the cognitive capac-
ity needed to make the multitude of decisions associated with
engineering design in a fully informed, unbiased way. Incor-
porating rational choice theory and psychology into decision
support tools seems to be a fruitful path toward promoting
optimal decisions in engineering.

The last two to three decades have brought about important
changes to the field of decision theory, particularly in re-
sponse to the generally accepted principle that the act of cog-
nitive representation and framing of decisions should follow
the axioms of expected utility theory. The standard theory for
decision making is based on subjective expected utility the-
ory (e.g., Savage, 1954; Schmeidler, 1989), which involves
the enumeration of possibilities, an analysis of the possible
outcomes, and the selection of the utility-maximizing deci-
sion (Gilboa & Schmeidler, 2001). In engineering design, de-
cision theory is generally applied as a systematic procedure
for selecting design variables when there is uncertainty over
the preferences associated with the objectives (Thurston,
1991, 2001). In schools of engineering, operations research,
computer science, and business around the world, students
continue to be taught a set of methodologies consonant
with rational choice theory (Wood, 2004), which is founded
upon the analysis of information as the basis of decision. In
short, decision support and modeling in engineering design
generally follows a framework of selecting design variables

that optimize the expected utility of the design, and, in so
doing, casts engineering design within a rational process
(Hazelrigg, 1998).

The perceived increased accuracy and rigor of the decisions
and the decision support systems built upon the premise of util-
ity maximization can mask the realities of eliciting preferences
from engineers, which may be subject to psychological biases.
Kahneman and Tversky (Tversky & Kahneman, 1974; Kahne-
man & Tversky, 1979) drew attention to the realities of human
decision making in describing the heuristics that human beings
employ in decision making under uncertainty, which are sub-
ject to psychological biases that can lead to systematic and pre-
dictable errors. In recent years, Kahneman and colleagues have
published a series of articles dealing with strategies to correct
for these psychological biases (e.g., Kahneman & Lovallo,
1993; Kahneman et al., 2011) and entire fields of behavioral
finance, behavioral economics, and behavioral strategy have
grown up around the application of cognitive science and psy-
chology to the theory and practice of decision making under
uncertainty in specific contexts.

This influence is now being felt in the engineering design
domain in the modeling and support of engineering deci-
sions, which is built upon a rich heritage of studies on the
cognitive and behavioral strategies of engineers. The three ar-
ticles published in this Special Issue reflect a shift away from
normative subjective utility maximization as the only model
for decision making and decision support toward greater con-
sideration to the exigencies of engineering decision making
in practice. All three articles contribute to decision support
and modeling and treat these as integrated issues rather than
as compartmentalized problems.

The article “Bayesian Project Diagnosis for the Construction
Design Process” by Matthews and Philip is perhaps the most
“traditional” of the three articles. The article deals with the
problem of forecasting potential problems in construction pro-
cesses. We use traditional in the sense that Bayesian modeling
is an accepted method for estimating the probability of an event
or outcome of interest (Marshall & Oliver, 1995). They model
the construction process as a Markov chain, with transition
probabilities associated with progressing through various
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activities. Rather than simply enumerating the possible events,
Mathews and Philip’s approach attempts to identify “signals”
of a potential future problem, an approach that is similar to
that taken by others to identify potential problems in the man-
agement of complex engineering (Wasiak et al., 2011). What is
particularly interesting about Matthews and Philip’s approach
is that their elicitation of priors from construction experts in-
cludes how frequently they moved from one stage to the next
and how frequently they had erroneously moved from one
stage to another, which in essence is asking them to confront
both saliency (when they overattribute problems associated
with a move) and confidence biases (when they miscalculate
how frequently they move). By showing the decision makers
the link between their frequency estimations under the pre-
scribed elicitation process and the rank ordering of likely prob-
lems, they can revisit their estimates to subject their priors to
additional scrutiny rather than merely take the decision-support
answer as conclusive.

The research perhaps most influenced by psychological
studies is Van Bossuyt et al.’s article, on “Considering Risk
Attitude Using Utility Theory in Risk-Based Design.” In sub-
jective utility theory, the prescription to quantify risk in deci-
sion making is to generate a utility function, with a concave
utility function indicating a risk-averse person and a convex
function a risk-seeking person, based on a series of lotteries
of paired probabilistic alternatives. Van Bossuyt et al. take
an alternative approach by first administering a psychological
test of risk attitude called the Engineering Domain-Specific
Risk test, which is based on the Domain Specific Risk
test instrument (Weber et al., 2002). The premise of their
approach is to modify the utility curve based on a psycho-
metric risk attitude scale rather than lotteries. Their article
demonstrates how to translate engineering risk data from
the expected value domain into a risk appetite corrected
domain using risk curves. The results from an empirical
demonstration of their method show the risk attitude of the
decision maker leads to an altogether different decision
than had the problem been treated with an expected value
approach.

The research by Boyle et al. in “The Impact of Resources
on Decision Making” deals with an often neglected part of
decision making: the resources required to assist the decision
making, which includes information. A decision-analytic ap-
proach to this problem would recommend that the decision
maker consider the (expected) value of perfect information
before the decision is made as one way to quantify whether
the current level of the resource is sufficient or whether fur-
ther expenditures should be made to obtain better informa-
tion. An intriguing result from their experiments is that the
introduction of information can cause significant disruptions
and alter the decision-making method and process. This type
of impact on decision making is generally not considered by
decision-support systems; rather, the belief is that more infor-
mation is desirable. The evidence from this article suggests
that decision-support systems should consider the impact of
introducing new resources into the decision-making process,

especially because the introduction of resources can have
negative consequences.

We believe these three articles make important contribu-
tions to the problem of intelligent decision support and
modeling. In part, they continue to draw attention to the actual
behaviors of human engineers and support that they need to
face the practical realities of engineering processes. Specifi-
cally, human engineers need to pay attention to the impor-
tance of behavior in engineering decision making.
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