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1. Lyapunov's second method is a well-known and powerful tool for study
ing the behaviour of solutions of a system of differential equations. One 
approach to the theory is the comparison method developed by Corduneanu 
(4). This approach has the advantage that it also leads to other results on 
asymptotic behaviour which originally appeared to be unrelated to Lyapunov's 
method. Some of these results have been obtained by the author in (2). The 
purpose of this paper is to make use of the comparison method to obtain some 
refinements of Lyapunov's theory. A classical theorem of Lyapunov states 
essentially that if the derivative of a suitably well-behaved Lyapunov function 
is negative definite, then the trivial solution of a system of differential equations 
is asymptotically stable. In this paper a result is obtained on asymptotic 
stability when the derivative of the Lyapunov function is negative everywhere 
but in a weaker sense. In another result, this derivative is allowed to be positive 
for some values of the independent variable, provided its average is sufficiently 
strongly negative. Easy proofs of asymptotic stability theorems due to Mas-
sera (10) and Persidskii (11) can be obtained as very special cases of these 
results. 

2. Let us begin by collecting some basic definitions and preliminary results. 
We are interested in a system of differential equations 

(1) *' =f(t,x), 

where x and / are real n-dimensional vectors and t is a real non-negative 
scalar. A solution of this system will be denoted by x{t). Sometimes we shall 
wish to emphasize the dependence of the solution on initial conditions, by 
using x(t, to, Xo) to denote a solution which takes the value x0 for / = t0. 

We shall always assume that / is continuous in (t, x) on 0 < t < oo y 

\x\ < oo. (| | will denote any suitable norm for vectors.) We shall also assume 
f(t, 0) = 0 for t > 0, so that x = 0 is a solution of (1). Following the standard 
terminology (1; 5), we say that the solution x = 0 is stable if for every e > 0 
and to > 0 there exists ô(e, to) > 0 such that \x0\ < 8 implies \x(t, t0, x0)\ < e 
for to < t < oo. If § in this definition can be chosen independent of to, then 
we shall say that the solution x = 0 is uniformly stable. If x = 0 is stable 
and, in addition, |x0| < ô implies that l im^^ x(t, t0, x0) = 0, then we shall say 

Received June 1, 1964. This research was supported by a grant (G-24335) from the National 
Science Foundation. 

811 

https://doi.org/10.4153/CJM-1965-079-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-079-2


812 FRED BRAUER 

that the solution x = 0 is asymptotically stable. If x = 0 is uniformly stable 
and if for every r) > 0 there exists r(^), independent of to, such that 
\x(t, h, Xo)\ < t] for t > to + 7(77) when |x0| < d, where 5 is independent of 77, 
then we shall say that the solution x = 0 is uniformly asymptotically stable. 
The region of asymptotic stability is the set of initial values x0 for which 
x{u, to, Xo) —> 0. I t has been shown by Massera (10) that if/ does not depend 
on t explicitly, then stability or asymptotic stability of x = 0 in (1) implies 
uniform stability or uniform asymptotic stability respectively of x = 0. 

In discussing Lyapunov functions, we shall find it convenient to use the 
class of functions K introduced by Hahn (5). A real-valued function 9(V) 
belongs to the class K if it is defined for r > 0, if 0(0) = 0, and if 6(f) is 
strictly increasing. We shall be interested in real-valued functions V(t, x) of 
the scalar variable / and the vector variable x, defined for t > to and x in some 
region |x| < h. A function V is said to be positive definite if there exists a 
function 9(r) in the class K such that 

(2) V(f,x) > 6 ( | x | ) . 

A function is said to be negative definite if its negative is positive definite. 
A function V is said to have an infinitesimal upper bound if there exists a 
function \p in the class K such that 

(3) |7 ( * , * ) |< iK | * | ) . 

We shall always assume that the function V is continuous in (t, x) and has 
one-sided partial derivatives with respect to t and the components of x. We 
use Vt to denote a partial derivative of V with respect to t, Vx to denote a 
gradient vector of V with respect to x, and • to denote the usual scalar product 
of vectors. Any condition involving Vt or Vx will be understood to be required 
for all one-sided derivatives. We define 

V'(t,x) = Vt(t,x) + Vx(t,x)-f(t,x), 

the total derivative of V with respect to the system of differential equations 
(1). The reason for this terminology is that if V has continuous first-order 
partial derivatives and if x(t) is a solution of (1), then V'(t,x(t)) = 
d[V(t,x(t)))/dt. We shall assume that V'{t, x) satisfies an inequality of the 
form 

(4) V'(t,x) <w[t, V(f,x)], 

where w(t, r) is continuous on 0 < K 00, r > 0, and w(t, 0) = 0 for / > 0. 
We shall make use of the following result, proved in (2; 4). 

THEOREM 1. Suppose that V is positive definite and satisfies (4). If the solution 
r = 0 of the scalar differential equation 

(5) r' = w(t, r) 

is stable, then the solution x = 0 of (1) is stable. If the solution r = 0 of (5) is 
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asymptotically stable, then the solution x = 0 of (1) is asymptotically stable. 
Moreover, if V has an infinitesimal upper bound, then uniform stability and 
uniform asymptotic stability for r = 0 in (5) imply uniform stability and uniform 
asymptotic stability respectively for x = 0 in (1). 

The last statement in Theorem 1 dealing with uniformity is not given 
explicitly in (2) but it is easy to see that the proof given there yields this part 
of the theorem. If the equation (5) is autonomous (w(t, r) independent of t)% 

then any stability or asymptotic stability of r = 0 in (5) must be uniform 
(5, pp. 62-64). 

Before proceeding to our main results, we give a useful preliminary lemma. 

LEMMA 1. If V is positive definite and has an infinitesimal upper bound, and 
if the total derivative of V with respect to (1) is negative definite, then there exists 
a function % in the class K such that 

V'{t,x) <x[V(t,x)]. 

Proof. By definition, there exist functions <j>, \p in the class K such that 

-V{t,x) > e(|*|) f V(t,x) < * ( | * | ) . 

Since \p is strictly increasing, it has an inverse \f/~1 which is also strictly increas
ing and belongs to the class K. Then \x\ > *P~l(V(t,x)), and — V'(t, x) > 
0 o ^/~l[V(t, x)]. It is easy to verify that the composite of two functions in the 
class K also belongs to K, and the lemma follows, with x = Q o \f/~1. 

3. The comparison theorem quoted in the previous section suggests that 
detailed study of a first-order differential equation may yield theorems on the 
stability of the zero solution of a system. To this end, we examine the scalar 
equation 

(6) r' = X(0*(r), 

where X is continuous on 0 < K œ, and </> is continuous and non-negative 
on 0 < r < oo. This equation has been studied in (3) with the assumption 
that X is also non-negative. It is easy to verify that the formula obtained for 
the solution in (3) remains valid when X is allowed to take negative values, so 
long as precautions are taken to prevent the solution from becoming negative. 
We define 

7(0- f ^ r if f ^ T < -
Jo <t>{u) Jo (t>{u) 

(otherwise 
J(r) = I it) 

for sufficiently small e > 0). If 

Jo <l>(u) 
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then J is a monotone function mapping the interval [0, °°) homeomorphically 
onto the interval (0, R). The solution r(t) of (6) with r(t0) = rQ is given by 

(7) J(r(t)) = J(r0) + Hs)ds, 

as long as 

0 < J(r0) + f \(s)ds < R, 

or 

(8) Jo 4>(u) J,0 JTlt (j>{u) 

du 
Jo 4>M 

then r(h) = 0; while if 

J' t\ 
\(s)ds for some t\ (t0 < h < œ ), 

ta 

J0 <t>(u) JtQ 

then l im^ œ r ( / ) = 0. If 

J'*2 r ° ° ^ 

X(s)ds = I , , x for some h (to < t2 < °° ), 
then l i m ^ ï 2 r ( 0 = oo. From (7) and the fact that / is a homeomorphism 
it is easy to see that: (i) r = 0 is stable in (6) if (8) holds for each t0 and 
h < t < °° ; (ii) r = 0 is uniformly stable in (6) if (8) holds and either 
§™du/<j>(u) < oo or (a) J™Qdu/(j>(u) = °° and (b) j l

t \(s)ds is bounded above 
for every t (to < t < oo) uniformly in to', (iii) r = 0 is asymptotically stable 
in (6) if there exists T (t0 < 2" < °°) such that 

X(»ds = - —r-r 
J t0 Jo 0(#) 

In this case the region of asymptotic stability includes 0 < r(t0) < r0. 
Combination of this analysis with Theorem 1 yields the following result: 

THEOREM 2. Let V be a positive definite Lyapunov function whose total derivative 
with respect to (I) satisfies 

(9) V'(t,x) < \(t)ct>(V(t,x)), 

where X is continuous on to K t < oo t and </> is continuous and non-negative on 
0 < r < oo. Then x = 0 is stable in (1) if (8) holds for some r0 > 0, every 
to > 0, and to < t < oo. Also, x = 0 is asymptotically stable in (1) if there exists 
T (to < T < oo) such that 

https://doi.org/10.4153/CJM-1965-079-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-079-2


LYAPUNOV'S SECOND METHOD 815 

""> du j \{s)ds = - I 

Finally, x = 0 is uniformly stable if V has an infinitesimal upper bound, if (8) 
holds, and if either f™du/<f>(u) < oo or (a) f™du/<l>(u) = °° and (b) jl

t\(s)ds 
is bounded above for every t (t0 < t < oo ) uniformly in t0. In the case of asymptotic 
stability, the region of asymptotic stability includes initial values x0 with 
V(t0, xo) < r0. 

In Theorem 2, X is allowed to take both positive and negative values. The 
easier special case in which X is always negative is of sufficient interest to merit 
explicit description. We consider 

(10) r' = - M ( 0 * W , 

where /x is continuous and non-negative on 0 < t < oo and <j> is continuous 
and non-negative on 0 < r < oo, and where 4>(u) > 0 for u > 0. The study 
of (10) is simpler than the study of (6) mainly because all solutions of (10) are 
monotone decreasing. 

LEMMA 2. / / 

(ID r*(s)ds> P°-^T, 
J t0 «'o q>[u) 

for some r0 > 0, then the zero solution of (10) is asymptotically stable, and the 
region of asymptotic stability contains 0 < r(t0) < r0. 

Proof. The solution r(t) of (10) with r(t) = r0 satisfies 

f° du f (\j 
ZÛ7Â = v(s)ds. 

If jr
0°du/<f>(u) diverges, then (11) implies the divergence of f™n(s)ds. Thus 

>r° du 

f 
•J T( 

a s i Kit) 4>(u) 

which can happen only if r(t) —> 0. Hjr
0

0du/(j)(u) converges and 

then there exists T > t0 such that 

r ... p du 
n(s)ds = —7-t 

Jt, Jo <p(«) This implies that r(jH) = 0 , and then r(£) = 0 for t > T. If 

iy(s)ds= x °^) < 

then it is clear that r(t) —* 0 as £ —> oo. 
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Combination oi Lemma 2 and Theorem 1 yields the following result. 

THEOREM 3. Let V be a positive definite Lyapunov function whose total derivative 
with respect to (1) satisfies 

(12) V'(t,x) < -n(t)<t>(V{t,x)), 

where /x is continuous and non-negative on to < t < oo and 4> is continuous and 
non-negative on 0 < r < » f with <p(u) > 0 for r > 0. If (11) is satisfied for 
some r0 > 0, then the zero solution of (1) is asymptotically stable and the region 
of asymptotic stability includes initial values x0 with V(to, x0) < r0. 

COROLLARY 1 (Massera 10). If V'(t,x) < — <t>(V(t, x)), where V is positive 
definite and 0 is as in Theorem 3, then the zero solution of (1) is asymptotically 
stable. If V also has an infinitesimal upper bound, then the asymptotic stability 
is uniform. 

Proof. If fi(t) = 1, then (11) is automatically satisfied for every r0 > 0, so 
that Theorem 3 is applicable. Also, the comparison equation (10) is autono
mous, and therefore the asymptotic stability of r = 0 for (10) is uniform. 
If V has an infinitesimal upper bound, then the asymptotic stability of x = 0 
for (1) is uniform by Theorem 1. 

COROLLARY 2 (PersidskiT 11). / / there exists a positive definite Lyapunov 
function, with an infinitesimal upper bound, whose total derivative with respect 
to (1) is negative definite, then x = 0 is uniformly asymptotically stable for (1). 

Proof. By Lemma 1, there exists a function 4> in the class K such that 
Vr(t, x) < — <t>(V(t, x)), and the result follows from Corollary 1. 

The part of Theorem 3 dealing with asymptotic stability has been obtained 
by Krasovskii (6), using a slightly different method. The role of Lemma 1 
is to show that when F has an infinitesimal upper bound, the results of Massera 
and Persidskii are equivalent. 

To conclude this section, let us apply Theorem 2 to a system of the form 

(13) x' = A(t)x + g(t,x), 

where A (t) is a continuous n X n matrix and q(t, x) is an w-dimensional vector 
We assume that there exists a function a such that the eigenvalues of the 
symmetric matrix \[A(t) + AT(t)] (where AT denotes the transpose of A) 
are no greater than a(t). We also assume that there exists a non-negative 
function 7 such that 

l|g(*,*)|| < 7(011*11, 
where ||x|| denotes the Euclidean norm. We use V(t, x) = xTx = \\x\\2, and 
then V'{t, x) < 2[a(t) + y(t)]V(t, x). We are led to the comparison equation 
r' = 2[a(t) + y(t)]r. Theorem 2 shows that the zero solution of (13) is stable if 

J [a(s) + y(s)]ds < 00 for t0 < t < 00, 
to 
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uniformly stable if 

J [a(s) + y(s)]ds is bounded above for all t uniformly in t0, 
to 

and asymptotically stable if 

J [a(s) + y(s)]ds = — oo for some T (t0 < T < oo ). 
to 

Note that a is allowed to take both positive and negative values, while^y is 
non-negative. Thus a sufficient condition for asymptotic stability is the exis
tence of T (t0 < T < oo ), such that 

<r(s)ds = — oo and I y(s)ds < oo. 
to J to 

4. The assumption that the Lyapunov function V has an infinitesimal 
upper bound can often be replaced by an assumption of boundedness on the 
function/ on the right side of (1). An example is the following theorem due to 
Marachkov (8), which has been generalized by Levin (7). 

THEOREM 4. Let V be a positive definite Lyapunov function whose total derivative 
with respect to (1) is negative definite, and if f is bounded uniformly in t whenever 
x remains in a compact set, then the solution x = 0 of (1) is asymptotically stable. 

The proof in (7) is obtained by observing that there exists a function <j> in 
the class K such that V'(t, x) < — </>(|x|), or 

V(t,x(t)) -V(to,x0) < - f <t>(\x(s)\)ds, 
J to 

where x(t) is a solution of (1) with x(t0) = x0. This yields 

J <t>(\x(s)\)ds < V(t0, xo) for every t (t0 < t < oo ), 
to 

which implies that 

(14) f%(|x(s)|)</<>< V(to,xQ). 
J to 

The stability of x = 0 (a consequence of Theorem 1), the boundedness of/, 
and x'if) = f(t, x(t)) imply that \x(t)\ and \x'(t)\ are uniformly bounded when 
\xo\ is small enough. This, together with (14), yields the asymptotic stability 
of x = 0 . 

If neither boundedness of / nor the existence of an infinitesimal upper bound 
for V is assumed, the solution x = 0 of (1) is not necessarily asymptotically 
stable. This can be shown by an example due to Massera (9). It has been 
shown, however, that if F i s positive definite and V is negative definite, then 
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for every solution x(f) of (1) with \x(t0)\ sufficiently small, lim inf t^œ \x(t)\ = 0 
(1). We can give the following generalization of this result. 

THEOREM 5. Let V be a positive definite Lyapunov function whose total derivative 
with respect to (1) satisfies 

(15) V'(t,x) < - X(/)0(|x|), 

where <j> is a function in the class K and X is a continuous non-negative function 
on 0 < t < oo with f™\(t)dt = oo. Then for every solution x(t) of (1) with 
\x(to)\ sufficiently small, lim inf t œ\x(t)\ = 0. 

Proof. Inequality (15) yields 

V{t,x(t)) - V(h,x(t0)) < - f X(s) *(!*(*) I )ds, 
«̂  to 

which leads to 

\(s)<t>(\x(s)\)ds < V(to,x(t0)). f 
*s tn 

to 

Since this is true for all t, 

r 
*J ta 

X(s)cj>(\x(s)\)ds < V(fo,x(to)). 
' to 

If lim inf^œ \x(t)\ > 0, then for every e > 0 there exists T = T(e) such that 
\x(t)\ > e for t > T. This implies that 

J»oo /*co 

X(s)4>(\s(s)\)ds > \(s)<t>(\x(s)\)ds 
to * ' T 

J»oo 

\(s)ds, 
T 

which contradicts f™\(s)ds = oo. Thus lim inf t^œ \x(t)\ = 0, provided that 
\x(t0)\ is small enough for V(to,x(tQ)) to be defined. Of course, if V(t,x) is 
defined everywhere, this result holds for all solutions of (1). 

It is not known whether the condition f™\(s)ds = oo in Theorem 5 is 
necessary. Another open question is whether some slightly stronger condition 
of the same type suffices for asymptotic stability. 
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The University of Wisconsin 

Postscr ipt . T h e following example, supplied by Professor A. Strauss, shows 
t h a t the condition (15) does not imply asymptot ic stabil i ty of the solution 
x = 0 of (1). We choose a sequence {tn) —* 00, and corresponding to this 
sequence we define the functions g and h as follows. For each integer k, we 
define g(t2k-2) = 2, make g decreasing on [^-2 , ^ - 1 — 1] with g'(t) > — 1/k 
on this interval , define g(t) = 1/k on [ ^ - I — 1, t2k-i + 1], make g increasing 
on [t2jc-i + 1, t2k] with g'(t) < 1/k on this interval , and define g{t2k) = 2. We 
can make g continuously d i f fe ren t ia te and \gr(t)/g{t)\ < 1 for 0 < / < 00. 
For each integer k we define h(t) = 1 on [/2*-i — h tu-i + !L 

h(t) = 2-*/(*2*+i — *2*-i) on [t2k-i + 1, t2k+1 — 1], 

and elsewhere we define h to be linear, so t h a t h is continuous on 0 < t < œ. 
We can choose the sequence [tn] so t h a t h is not integrable b u t g2h is integrable 
on 0 < / < 00. 

Now consider the first-order linear equation 

de) x' = i§x' 
whose solutions are given by x(t) = x(0)g(t). Since g does not tend to zero, 
i t is clear t h a t the solution x = 0 of (16) is not asymptotical ly stable. T h e 
Lyapunov function 

V(t,X) = ^ y [ f~g\s)h(s)ds + £g\s)h(s)ds 

is positive definite since 

2 

V(t,x)>j jog\s)h(s)ds, 

and its total derivat ive with respect to (16) is V'(t, x) — —h(t)x2. T h u s the 
hypotheses of Theorem 5 are satisfied, bu t the solution x = 0 of (16) is not 
asymptotical ly stable. 
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