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Abstract
The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin
solid-density foil is investigated. Three-dimensional particle-in-cell simulations and analytical modelling show that the
interaction and resulting transverse instability depend strongly on the polarization directions as well as the intensity
distribution of the resultant light field in the foil. The left- and right-handed circularly polarized laser pair with the same
phase at the common focal spot in the ultrathin foil leads to the strongest distortion of the foil. The fastest growing mode
and maximum growth rate depend mainly on the laser intensity. For all polarization and phase-difference combinations,
the instability is weakest when the two laser pulses are exactly out of phase at the common focusing point in the foil.
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1. Introduction

The Rayleigh–Taylor instability (RTI)[1,2] is a well-studied
hydrodynamic process. It has been found to play detrimental
roles in inertial confinement fusion (ICF)[3–5] and laser-
driven charged-particle accelerators[6–11]. In the past decade,
there have been many efforts to clarify the differences and
contributions of the mechanisms in the development of the
RTI-like[11–15] and Weibel-like[16] instabilities found in laser–
matter interactions. In particular, Wan et al.[17] showed that
the coupling of electrons and ions plays an important role
in the transverse instability of laser-driven thin foils. Chou
et al.[14,15] found that the onset of strong electron heating is
related to laser-driven RTI.

Relativistic, especially counter-propagating, laser pulses
interacting with thin foils have been suggested for
producing intense few-cycle terahertz radiation[18–21], dense
electron–positron pairs and γ -rays[22,23], as well as neutron
bunches[24–27]. Such interactions are also of great basic
physics interest since subwavelength thin foils can serve
as medium for coupling intense short laser pulses without
first significantly alternating their properties. However, the
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existing works are mainly one- or two-dimensional (1D
or 2D), so the effects associated with the third dimension
remain unclear.

In this paper, we investigate the dynamics and stability of
two counter-propagating relativistic laser pulses interacting
in a subwavelength thin solid-density foil by three-
dimensional (3D) particle-in-cell (PIC) simulation and
analytical modelling. For the left- and right-handed
circularly polarized (LCP and RCP) incident laser pair,
we found that a grainy bubble-and-rings density structure
similar to that found in RTI due to radiation-pressure
acceleration (RPA) appears on the foil plane. The criteria,
growth rates and properties of the unstable structure depend
strongly on the polarization, phase and magnitude of the
resultant laser field in the ultrathin foil, and the instability
is weakest if the two lasers are exactly out of phase. Our
result suggests that one can perhaps control instabilities in
thin foils with properly tailored laser pulse(s).

Section 2 gives the parameters of the lasers and ultrathin
foil in our simulations. Section 3 investigates the evolution
of the foil plasma and the laser lights. Section 4 presents
an analytical model for the laser–foil interaction, especially
the evolution of the polarization and intensity distribution
of the resultant laser light. In Section 5, the conditions and
properties, as well as their dependence on the laser intensity
and phase, of the instabilities are discussed in terms of a
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relativistic two-fluid model. Section 6 presents additional
discussion of the results. A summary is given in Section 7.

2. Laser and target parameters

We carried out 3D simulations with the PIC code EPOCH[28]

to investigate the interaction of two counter-propagating
relativistic laser pulses incident on a subwavelength thin
foil and the resulting foil evolution. The simulation box size
is x × y × z = 20λ0 × 20λ0 × 20λ0, with 800 × 400 × 400
cells, where λ0 = 1 μm is the laser wavelength. Each cell
contains 27 electrons and 27 ions. Open boundary conditions
are used for both the fields and particles. Thanks to rapid
ionization by the laser prepulse, the thin foil is modelled
by a fully ionized cold hydrogen plasma layer located
at −0.05λ0 < x < 0.05λ0 and −10λ0 < y < 10λ0. The
plasma density is ne = np = 50nc, where nc = meω

2
0ε0/e2

is the critical density, ω0 is the laser frequency, ε0 is the
permittivity in vacuum and −e and me are the electron
charge and rest mass, respectively. The two identical laser
pulses propagate along the ±x-directions and are focused at
the centre of the 0.1λ0-thin foil. The space–time profile of
the lasers is a0 exp[−(r/r0)

2] sin2(π t/2τ0), where r0 = 5λ0

is the focal spot radius, τ0 = 10T0 is the pulse duration,
T0 = 3.3 fs is the laser period and a0 = eE0/meω0c = 20
is the normalized laser amplitude. Here, E0 is the peak
laser electric field and c is the speed of light in vacuum.
That is, the intensity, power and energy of each laser are
I0 = 5.5×1020 W/cm2, 215 TW and 5.4 J, respectively.

We shall consider linearly polarized (LP) and circularly
polarized (CP) laser pairs. As some laser pairings are phys-
ically identical in the interactions, we shall concentrate only
on the pairs yLP + yLP, yLP + zLP, LCP + LCP and LCP +
RCP for phase differences �ϕ = 0,π/2,π and 3π/2 between
the paired lasers, that is, there are 16 distinct cases. For
clarity, here yLP and zLP, and LCP and RCP denote y- and z-
direction LP lasers, and the left- and right-handed CP lasers,
respectively, and the + sign denotes pairing. Moreover,
unless otherwise stated, foil- or ion-density distribution shall
refer to that on the foil plane.

3. Dynamics of two counter-propagating lasers
interacting with ultrathin foil

The left-hand panel of Figure 1 shows the evolution of the
side (x,y) and foil-plane (z,y) distributions of the foil, or

Figure 1. Evolution of the foil density for different polarizations of the laser pair: (a)–(d) yLP and yLP and (e)–(h) yLP and zLP, with (a) and (e) �ϕ = 0,
(b) and (f) π/2, (c) and (g) π , and (d) and (h) 3π/2. Here, yLP and zLP denote linear polarization in the y- and z-directions, respectively, and �ϕ is the phase
difference between the two lasers. The first three columns of both the yLP (left-hand panel) and zLP (right-hand panel) cases show the axial (with respect to
the lasers) foil-density distribution in the z = 0 plane at t = 16T0, 22T0 and 28T0, respectively. The fourth and fifth columns in both the left- and right-hand
panels show the transverse density distributions at the axial locations defined by the vertical dashed red lines in the second and third columns (for t = 22T0
and 28T0), respectively. In all panels, the red lines/curves with arrows show the amplitude and displacement direction of the analytically obtained resultant
electric field (shown in Table 1) of the two colliding lasers at x = 0, where the subscript ‘r’ here denotes ‘resultant’. The large red centre dot in window (c5)
corresponds to Er = 0, that is, the fields of the two lasers cancelled each other out.
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Interaction of counter-propagating lasers with foil 3

Figure 2. Evolution of the foil-density distribution for the polarization combinations (a)–(d) LCP + LCP and (e)–(h) LCP + RCP with (a) and (e) �ϕ = 0,
(b) and (f) π/2, (c) and (g) π , and (d) and (h) 3π/2. The first to third columns show the longitudinal foil-density distribution in the z = 0 plane at t = 16T0,
22T0 and 28T0, respectively. The fourth and fifth columns show the transverse ion distribution in the planes indicated by the red dashed lines in the second
and third columns at t = 22T0 and 28T0, respectively. The red lines and arrows in the fifth column represent the magnitude and direction of the resultant
radial electric field at x = 0. The dot in panel (g5) indicates Er = 0.

ion, density for yLP + yLP laser pair interaction with the
foil for different �ϕ values. One can see that the foil is first
locally compressed by the focusing lasers. Then, for �ϕ = 0
and π (Figures 1(a) and 1(c)), the compressed foil centre
region begins to expand to the left and right symmetrically.
The expansion for �ϕ = π is weaker since the lasers are
out of phase, so that cancellation of their fields occurs. For
�ϕ = π/2 (3π/2), the laser pulse from the left (right) has a
quarter-period phase lead (lag), so that the affected plasma
is pushed to the right (left) by the net light pressure[21]. Of
interest is that for �ϕ = 0, filament-like streaks along y
appear in the foil-density distribution, but for �ϕ = π/2, π

and 3π/2 the density is azimuthally symmetric. The right-
hand panel for the yLP + zLP pair shows that the foil
density is always left–right symmetric. For �ϕ = 0 and
π , streaks along x (such as that marked by the red box in the
Figure 1(g2)) appear. The transverse features for �ϕ = 0 and
π are similar, except that the streaks are oriented along the
y = z direction for �ϕ = 0 and along the y = −z direction for
�ϕ = π . In both cases, the distribution of the high-density
region is identical. This is because the laser intensity is
lower outside the laser focal spot and the foil is opaque and
will be compressed by the laser ponderomotive force, rather
than being modulated by the transmitted overlap laser field
in the central region of the foil. For �ϕ = π/2 and 3π/2,
Figures 1(f4), 1(f5), 1(h4) and 1(h5) show that the density

distribution has an annular ring and grainy bubble structure,
which has also been observed in light-sail experiments[11]

and simulations[17].
Next we consider counter-propagating CP laser pairs LCP

+ LCP and LCP + RCP. Figure 2 shows that the foil expands
more slowly than that of the yLP + yLP and yLP + zLP
pairs, which is expected since the pressure of CP light has
only a non-oscillating component. For the LCP + LCP pair,
we see in the left-hand panel that the side-view of the foil
density is left–right symmetric for all values, and Figures
2(b2), 2(c2) and 2(d2) have similar features to those in
Figures 1(e2) and 1(g2). Streaks similar to those in Figures
1(e5) and 1(g5) also appear, and their directions are also
�ϕ dependent. The second column of the right-hand panel
in Figure 2 shows that for the LCP + RCP pair the foil
centre is more tightly compressed. For �ϕ = 0 and π (first
and third rows), the density remains symmetric, but it is
more rapidly destroyed for �ϕ = 0 than that for �ϕ = π .
For �ϕ = π/2 and 3π/2 (second and fourth rows), the foil
centre is pushed to the right and left, respectively, as in the
corresponding cases for LP laser pairs. Moreover, in all the
cases here, the centre of the foil is rather heavily distorted.
The fourth and fifth columns show that the foil density in the
transverse direction has a grainy bubble centre and periodic
less grainy annular rings outside. The above results show
that the affected foil region can expand, be driven forward
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or backward and form streaks and grainy bubbles and rings.
In the following, we shall investigate these features in more
detail.

4. Model for the laser interaction in the foil

As the solid-density foil is only 0.1λ0 thin, it is effectively
transparent to the incident laser pulses[29]. We first assume
that it is fully transparent with reflection ratio R = 0 to obtain
a simple analytical solution of the intensity distribution
of the resultant laser field. Since we are interested in the
interaction time of less than one laser period, the electric
fields of the yLP + yLP laser pair can be represented by the
plane electromagnetic (EM) waves:

{
Ey,L = E0 cos(ω0t − k0x),
Ey,R = E0 cos (ω0t + k0x+�ϕ),

(1)

where k0 = ω0/c is the wave number, t = 0 is the time
when the peaks of the lasers meet at the foil centre and
the subscripts L and R denote being from the left and the
right. For simplicity, hereafter the time and space quantities
are normalized by ω−1

0 and k−1
0 , respectively. The resultant

electric field of the two yLP lasers is then as follows:

Ey = Ey,L +Ey,R

= 2E0 cos (t +�ϕ/2)cos (x+�ϕ/2) . (2)

Since any CP EM wave propagating in the x-direction can
be represented by two LP waves polarized in the y- and
z-directions, the CP laser pair LCP + LCP can be repre-
sented by the following:

⎧⎪⎪⎨
⎪⎪⎩

Ey,L = E0/
√

2cos (t − x),
Ez,L = −E0/

√
2sin(t − x),

Ey,R = E0/
√

2cos(t + x+�ϕ),

Ez,R = E0/
√

2sin(t + x+�ϕ) .

(3)

The resultant electric field for the LCP + LCP case is thus
as follows:

{
Ey = √

2E0 cos (t +�ϕ/2)cos (x+�ϕ/2),

Ez = √
2E0 cos (t +�ϕ/2)sin(x+�ϕ/2) .

(4)

Similarly, the resultant fields of the other pairs can be
obtained.

The results for the four laser pairs of interest from the anal-
ysis above are summarized in Table 1, and the corresponding
simulation results are already shown by the (if any) solid red
lines, curves, arrows and dots in the fifth columns of both the
left- and right-hand panels of Figures 1 and 2. For example,
if the resultant field is LP, the foil-density distribution has
a streak pattern, whose direction is the same as that of the
polarization from the theory. For the yLP + yLP case with
�ϕ = π/2 (3π/2), the streaks disappear thanks to the right-
hand (left-hand) foil displacement, and for �ϕ = π , the
density distribution is azimuthally symmetric (since Er = 0).
When the resultant field is CP, the density is annularly
symmetric, also in agreement with the simple theory (as well
as from experiments[11], as mentioned above).

Next we consider the origins of the different foil-density
profiles. From the second and fifth columns in Figures 1 and
2, one can see that the filamentous streaks structure (marked
by the red boxes) along the x-direction exists only if the
resultant laser field is LP and polarized in the z-direction.
The oscillating component of the light pressure force of the
resultant LP laser light drives directed periodic perturbations
that lead to density striation. Strictly speaking, the foil centre
can only be smoothly pushed to the left or right by the net
light pressure of two laser pulses. The steady-state model
of Shen and Meyer-ter-Vehn[21] shows that the foil motion
is determined by the net light pressure �P = Pleft − Pright

on the foil that is related to �ϕ, where Pleft and Pright

are the light pressure on the left- and right-hand surfaces
of the foil, respectively. However, this model is limited to
continuously incident CP lasers and 1D geometry, and there
are only stationary analytical solutions for two lasers with the
same rotation direction. In addition, transverse instabilities
are excluded. Here, we present a more general analysis of
our results. Note that even though the foil is relativistically
transparent, it cannot be ignored, that is, the reflection coef-
ficient R > 0 and the transmission coefficient T < 1. Since
the resultant electric field is nonuniform longitudinally, there
is a pressure difference �P. For the case yLP + yLP,
the normalized intensity of the y-component E2

y/E2
0 of the

resultant laser light along the x-direction at t = 0 is given
in Figure 3(a) for different �ϕ values. The direction of �P
is determined by the slope k

∣∣x=0 = ∂xE2
y

∣∣
x=0

, where k also
represents the difference in the momentum flow of the EM
field between the left- and right-hand laser pulses since the
EM momentum

∣∣−→g ∣∣ scales as E2
y (

∣∣−→g ∣∣ =
∣∣∣−→E ×−→

B
∣∣∣/μ0 =

Table 1. The resultant electric field of two counter-propagating laser pulses.

Ey Ez

yLP+yLP 2E0 cos(t +�ϕ/2)cos(x+�ϕ/2) 0
yLP+zLP E0 cos(t − x) E0 cos(t + x+�ϕ)

LCP+LCP
√

2E0 cos(t +�ϕ/2)cos(x+�ϕ/2)
√

2E0 cos(t +�ϕ/2)sin(x+�ϕ/2)

LCP+RCP
√

2E0 cos(t +�ϕ/2)cos(x+�ϕ/2) −√
2E0 sin(t +�ϕ/2)cos(x+�ϕ/2)
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Figure 3. Results of the analytical model and PIC simulations. (a) Normalized intensity of the y component E2
y/E2

0 of the resultant laser field for the yLP +
yLP case at t = 0. The shaded region represents the foil and the dashed lines represent the slopes of E2

y at x = 0. (b) The impulse If of the axial pressure force
fp (blue curve) of the resultant laser light in one laser cycle and the displacement xd (orange squares) of the foil centre versus �ϕ for the yLP + yLP case.

E2/2μ0c, where μ0 is the permeability in vacuum). We see
that for �ϕ = 0 and π , k|x=0 = 0 and thus �P = 0, resulting
in the longitudinally symmetrical compression of the foil, as
shown in Figures 1(a) and 1(c). However, when �ϕ = π/2
and 3π/2, k < 0 and k > 0, corresponding to the cases of
�P > 0 and �P < 0, respectively. The foil will be pushed
to the right and left, respectively, which is in good agreement
with Figures 1(b) and 1(d). In fact, k = ∂xE2

y is consistent
with the axial ponderomotive force fp = −(

q2/4mω2
0

)
∂xE2

of the laser. Since the axial displacement of the foil is the
result of continuous action of fp, the impulse after integration
over a laser period

If =
∫ T0

0
fpdt = − q2

4mω2
0

∫ T0

0

∂E2

∂x
dt (5)

should be of interest. Figure 3(b) shows If versus the max-
imum foil displacement xd at t = 22T0 from the PIC simu-
lations of the yLP + yLP case. We see that these relations
are consistent with the discussions above; in particular, the
axial displacement of the foil centre depends mainly on the
impulse exerted by the resultant laser light on the foil.

Figure 4 shows the evolution of fp and the relation between
fp and �ϕ for different polarization combinations. Here,
fpy = −(

q2/4mω2
0

)
∂xE2

y and fpz = −(
q2/4mω2

0

)
∂xE2

z are also
given. For the yLP + yLP and yLP + zLP cases, Figures 4(a)
and 4(b) show that fp oscillates periodically with time. The
difference between them is that for the yLP + yLP pair, fp is
either greater than or less than 0 (also seen in Figure 4(e)),
so the foil may be pushed right or left. For the yLP + zLP
case, fp can be positive or negative, but its integral over one
laser period is equal to 0 (i.e., If = 0), as shown in Figure
4(b). This results in a longitudinally symmetric distribution
of foil density at different �ϕ values. When the two lasers

are CP, the superposition of fpy and fpz (i.e., fp) is constant
for each �ϕ, as seen in Figures 4(c) and 4(d). In the LCP
+ LCP case, fp ≡ 0 (seen in Figures 4(c) and 4(g)) and the
foil density is symmetrically distributed. Since there is no
oscillating term in fp, the expansion is slower than that due to
the LP laser pair. For the LCP + RCP case, the relationship
between fp and �ϕ is fixed, as shown in Figure 4(h). When
�ϕ is not an integral multiple of π , such as π/2 and 3π/2,
fp �= 0 and the foil is pushed longitudinally to one side, as
shown in Figures 2(f) and 2(h). It should be mentioned that
despite the simplicity of the above model, for the LCP +
RCP polarization combination, both the relations between fp
(or If) and �ϕ, t and the longitudinal motion of the thin foil
are consistent with the 1D steady-state model of Shen and
Meyer-ter-Vehn[21]. Moreover, the model is also suitable for
other polarization combinations.

5. Transverse instability in foil driven by two counter-
propagating laser pulses

We now consider the development of the transverse instabil-
ity in the foil. The intensity of the 2D Fourier spectrum of
the averaged transverse foil density may be used to track the
evolution of the instability[17]. As examples, we first consider
the LCP + LCP case for �ϕ = π/2 and the LCP + RCP
case for �ϕ = 0, since their resultant fields are LP and
CP, respectively. Figures 5(a) and 5(c) show the transverse
distributions of the averaged density in these cases, and
their Fourier spectra are given in Figures 5(b) and 5(d),
respectively. We see that for the LCP + LCP case with
�ϕ = π/2, the dominant mode in the k space is ky = kz,
consistent with the result that the direction of the streaks is
the same as that of the polarization of the resultant laser field.
For the yLP + yLP and yLP + zLP cases, except for those in
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Figures 1(c), 1(f) and 1(h), we can draw the same conclusion
since the resultant laser fields are LP. It should be noted
that this analysis of the very initial evolution of the foil with
respect to the incident lasers does not identify the instability
leading to foil destruction. In fact, the foil response to the
resultant laser field is similar to that driven by a single LP
laser. On the other hand, if the resultant field is CP, foil
destruction can result from the transverse instability[11,17]. As
shown in the right-hand panel of Figure 2 for the LCP +
RCP case, a grainy bubble structure similar to that observed
in the RPA light-sail experiments appears. Figures 5(c)
and 5(d) show that the foil density is strongly modulated
and the unstable mode has annular spatial distribution. The
amplitude of the ring at kr = (

k2
y + k2

z

)1/2 (grey circles in
Figure 5(d)) then gives the relative magnitude of mode k, as
shown in Figure 5(e). For the LCP + RCP case with �ϕ = 0,
the fastest growing mode and the maximum growth rate of
the instability are km = 2k0 and γm = 0.98T−1

0 , respectively.
Note that although bubble structures also appear in Figures

1(f) and 1(h), they are located on the periphery of the laser
affected area, and the foil expansion is similar to that of
the LP laser pairs. Thus, in the following we shall mainly
consider the instability of the LCP + RCP case.

Figure 6 shows the evolution of the fastest growing mode
of the transverse instabilities in all the 16 cases. As shown in
Figures 6(a)–6(d), the instability grows rapidly, then more
slowly and the foil is eventually broken. The maximum
growth rates γm are shown in Figure 6(e). For the yLP +
yLP case, γm is positively correlated with Er, as depicted by
the lengths of the red arrows in the fifth column of the left-
hand panel of Figure 1. For �ϕ = 0 and π , γm is maximum
and minimum, respectively. For �ϕ = 0 and π of the yLP +
zLP case, and for all �ϕ values of the LCP + LCP case (as
shown in the fifth column of the right-hand panel of Figure 1
and the fifth column in the left-hand panel of Figure 2), γm

remains roughly the same since Er is similar in these cases.
However, for the yLP + zLP case with �ϕ = π/2 and 3π/2,
γm is somewhat smaller and Er is also smaller, as depicted
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Figure 5. Averaged distribution of the foil density at t = 21T0 for the (a) LCP + LCP case with �ϕ = π/2 and (c) LCP + RCP case with �ϕ = 0. (b), (d)
2D Fourier transform of the density distribution in (a) and (c), respectively. (e) Evolution of transverse instability of the LCP + RCP case for �ϕ = 0 and
different kr values. The slope (dotted lines) of the fastest growing mode km shows the maximum growth rate γm.
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Figure 6. (a)–(d) Evolution of the fastest growing mode of transverse instability for all 16 cases. Here, the maximum growth rate γm (i.e., the slope) is
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Figure 7. (a)–(c) Scaling laws of the electron temperature Te (left-hand y-axis, blue dots) and Lorentz factor γe (right-hand y-axis, orange squares) versus
a0 for the LCP + RCP case with (a) �ϕ = 0, (b) π/2 and (c) π from PIC simulations. The straight dashed lines are linear fits of the simulation results.
(d)–(f) The fastest growing mode km (left-hand y-axis, grey dots) and maximum growth rate γm (right-hand y-axis, green squares) of transverse instability
versus laser amplitude a0 from PIC simulations for the LCP + RCP case with (d) �ϕ = 0, (e) π/2 and (f) π . For comparison, the theoretical results from
Equation (6) are also given: a solid green curve for RTI and a dashed green curve for the electron-ion (ei) coupling effect, and the grey curve for km is from
Equation (7).

by the arrow lengths and circle diameters in the fifth column
of the right-hand panel in Figure 1. Similar behaviour can
be found in the LCP + RCP case, as shown in the fifth
column of the right-hand panel of Figure 2. In fact, the fifth
columns of the right-hand panel of Figure 2 and the left-hand
panel of Figure 1 for the LCP + RCP and yLP + yLP cases,
respectively, indicate that the dependence of γm and Er on
�ϕ is similar. For all 16 cases, γm is smallest if the laser
pair is out of phase, or �ϕ = π . As a result, the instability
also develops slowest and the foil can thus be most tightly
compressed.

The characteristics of the foil instability can be estimated
from the 3D relativistic two-fluid theory of Wan et al.[17]. In
the linear stage, the maximum growth rate is as follows:

⎧⎨
⎩

γm,RT � (√
κ/2αinωpe/vosc

)1/2
,

γm,ei � 2
(
ω2

piωpe

)1/3
(κme/mi)

1/6,
(6)

where κ = (2c2 − v2
osc)/2γec2, vosc = eE0/γ0meω0 is the

electron quiver velocity in the resultant field, γe = Te/mec2 +
1 is the Lorentz factor of the electrons, Te is the electron
temperature, γ0 = (

1+a2
0/2

)1/2 for LP and γ0 = (
1+a2

0

)1/2

for CP light, αin = P0/mined0 is the axial ion speed, P0 =
(1+R−T) I0/c is the light pressure, mi is the ion mass
and ωpe = (

e2ne/ε0me
)1/2 and ωpi = (

e2ni/ε0mi
)1/2 are the

electron and ion plasma frequencies, respectively. According
to the model of relativistic-induced transparency (RIT)[29],
R = ε2

0/a2
0 and T = 1 − ε2

0/a2
0 when a0 > ε0 > 1, where

ε0 = ω2
ped0/2ω0c characterizes the optical properties of the

subwavelength foil. The wave number of the fastest growing
mode of transverse instability is given by the following:

km = √
2κωpe/vosc. (7)

The above analysis is for a single laser beam. To extend
it to the interaction of a counter-propagating laser pair with
a thin foil, it is necessary to replace P0 with the combined
pressure �P. Since the foil is nearly transparent to the inci-
dent light, the two lasers effectively merge into a resultant
light bunch and the interaction of the two lasers with the foil
can be approximated by that between the resultant light field
and the thin foil. Since xd < λ0 (see Figures 2(f3) and 2(h3)),
E0, a0 and I0 can be replaced by those of the resultant laser
field. Thus, km and γm for given laser and plasma parameters
can be obtained.

Considering that the bubble structure in the LCP + RCP
case is similar to that observed in the RPA experiments
and simulations[11,17], we use this case as an example for
analysing the transverse instability in more detail. Figures
7(a)–7(c) show the electron temperature Te and γe versus
a0 for �ϕ = 0, π/2 and π . The results for �ϕ = 3π/2
are exactly the same as those of �ϕ = π/2. We can see
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that Te and γe grow linearly with a0 for both �ϕ = 0 and
π/2. For the latter, they are higher since the foil experiences
higher net light pressure. For �ϕ = π , both Te and γe remain
almost unchanged in the range 5 < a0 < 20, since fp = 0
and the foil remains symmetrically compressed. With larger
a0 the foil becomes more relativistically transparent and
its axial distortion becomes more pronounced, resulting in
significantly larger Te and γe. Figures 7(d)–7(f) show the
dependence of km and γm on a0 for different �ϕ values.
Since for �ϕ = π , Er should be less than E0 but not null
(as the foil is not fully transparent), we set Er = E0/2 in the
corresponding theory. We can see that for larger a0, km and
γm first decrease and increase (rising stage, blue shaded) with
a0, respectively, and then become nearly level (saturation
stage, orange shaded). For a0 ≤ 20, the behaviour agrees well
with that given by Equations (6) and (7) for the RTI. For
the �ϕ = π case, γm is smallest and Er is near null. Figures
7(d)–7(f) show that for less phase-matched laser pairs, the
threshold light intensity is larger and the growth rate is
smaller, suggesting that the instability can be manipulated
by tailoring the phases of the paired lasers.

Several theoretical models have been proposed to explain
the RTI. We have used Wan et al.’s model[17] since there
the effect of electron temperature is included, which can be
important in the problem here. It is also helpful for identi-
fying which RTI and/or electron coupling effect governs the
development of transverse foil instability.

6. Discussion

Although the simulations are for d0 = 0.1λ0, that is, com-
parable with that used in most related studies[18–22,25,27], our
model is still applicable as long as the RIT condition d0 <

dm = 2a0ω0c/ω2
pe is satisfied. To illustrate the effect of d0

on the laser–foil interaction, it is convenient to introduce the
relativistic transparency factor η = dm/d0. Figure 8 shows
the dependence of η, xd, γm and km on d0 for the LCP + RCP
case with �ϕ = π/2 from PIC simulations. One can see that
for d0 < dm and η > 1, the foil is transparent (grey shaded
region). Both xd and γm are relatively large and remain
constant. As d0 is increased (d0 > dm,η < 1), km becomes
larger and is different in the blue and orange shaded regions.
The interaction first experiences the quasi-transparent (blue
shaded) stage because RIT also occurs at a later time as
the two lasers compress the foil and transverse instability
develops, and xd and γm decrease. If the foil is thicker (i.e.,
d0 is larger, orange shaded region), the foil becomes opaque
to the lasers and xd rapidly decreases to 0, that is, the foil
is not axially displaced. The instability growth rate γm also
decreases to its minimum value.

It may be of interest to note that the foil density 50nc used
in our simulations is close to that of the cryogenic hydrogen
jet in the laser-ion acceleration experiments[30]. Although use
of microneedles behind the nozzle can further reduce the size
of the jet[31], it is still difficult to experimentally produce
ultrafine plasma jet with sub-micrometre thickness. With
thicker and denser (such as solid-density hydrogen) foil, in
order to obtain similar results as considered here, the laser
intensity must be increased to satisfy the RIT condition.

In experiments, the spatiotemporal synchronization of two
relativistic fs lasers can be difficult to implement. Recently,
it has been shown that two relativistic fs laser pulses of
the same polarization can be obtained by splitting a source
laser pulse, and their properties precisely controlled to within
the micrometre and femtosecond scale[32]. Two laser pulses
with different polarizations should thus be realizable with
a plasma-based waveplate[33], and the time delay caused by
the waveplate can be rectified by a suitable compensation
plate.
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7. Summary

To summarize, we have investigated the dynamics of two
counter-propagating relativistic fs laser pulses interacting
with ultrathin foil. It is found that the transverse feature of
the foil depends on the polarization direction and intensity
distribution of the resultant laser field, and its longitudinal
motion is determined by the impulse of the longitudinal light
pressure force of the resultant laser light. For the LCP +
RCP case, a grainy bubble and ring structure, characteristic
of thin-foil RTI, appears in the foil density. The maximum
growth rate of the instability increases with the resultant
laser intensity, first rapidly and then slowly. When the two
lasers are out of phase, the instability is weakest. Our results
should be helpful for understanding counter-propagating
laser pair interaction with ultrathin foils, which has been
proposed for the production of ultra-bright γ -rays[22,23],
electron–positron pairs[34–37], pulsed neutrons[24–27], ultra-
intense light[18], etc.
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