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GENERATING FUNCTIONS RELATED TO THE OKAMOTO
POLYNOMIALS FOR THE PAINLEVE IV EQUATION

HIROMICHI GOTO AND KENJI KAJIWARA

We construct generating functions for the entries of Hankel determinant formula
for the Okamoto polynomials which characterise a class of rational solutions to the
Painleve IV equation. Generating functions are characterised as asymptotic expan-
sions of log derivative of Ai and Bi, which are solutions of the Airy equation.

1. INTRODUCTION

In the theory of integrable systems, the structure of exact solutions are considered to
reflect essential mathematical structures behind the equations. In the soliton theory, as
clarified by the Sato theory [11], the dependent variables which are introduced intuitively
in Hirota's method (r functions) are regarded as the most fundamental object, and
determinant or Pfaffian structure of the r functions is a reflection of the solution space and
the transformation group acting on it. For the Painleve equations, it is considered that
the T functions and their determinant structure are of the same importance as the soliton
equations, although the Painleve equations are ordinary differential equations while the
soliton equations are partial differential equations. In the series of works [14, 15, 16, 17],
Okamoto has introduced the r functions through the Hamiltonians, and studied their
properties. He has shown that the r functions satisfy the Toda equation in general,
and that some classes of transcendental classical solutions (hypergeometric solutions, or
special function solutions) can be expressible in terms of determinants whose entries are
given in terms of special functions of hypergeometric type. Moreover, for algebraic (or
rational) solutions, which are another class of classical solutions to the Painleve equations,
it has been revealed that the special polynomials that characterise the solutions are
specialisations of the Schur functions or their generalisation (universal characters) by
studying the determinant formula of Jacobi-Trudi type [4, 6, 7, 9, 10, 13].

For example, the Painleve II equation(Pn)
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admits a one-parameter family of transcendental classical solution expressible in terms of
the solution of the Airy equation when a is an integer, and rational solutions when a is
a half-integer. As for the rational solutions, the following fact is known: let TN (N 6 Z)
be the polynomials which are generated by the Toda equation

\l) 1N1N~(J-N) = -LN+I-LN-I ~ x J N' • ' 0 = -1! l l = x , = ~~j—-

Then we have TN = T-N-I, and it is shown that the function

(3)
d

satisfy Pn (1) with a = N+(l/2). The polynomials TN are called the Yablonski-Vorob'ev
polynomials. It is known that the Yablonski-Vorob'ev polynomials admit the following
determinant formula of Jacobi-Trudi type [6]:
(4)
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Since the Schur function 5y(t1,t2!*3i •• •) associated with the 2-core Young diagram
Y = (N, N - 1, • • • , 1) is given by the determinant in (4) with Pk replaced by

k=0 n = l

([11]), the above formula immediately implies that TN are nothing but the specialisation
of 2-core Schur functions. Furthermore, since the 2-core Schur functions give rational
solutions to Korteweg-de Vries or modified Korteweg-de Vries equation ([11]), this co-
incides with the fact that Pn can be derived from similarity reduction of the modified
Korteweg-de Vries equation (see, for example, [1]). In this manner, the determinant
formula is useful to clarify the essential property of the object.

On the other hand, it is known that TN admits the following Hankel determinant
formula [6]:

(6) TN =
a2

T - I <Z/V

n-2

, a0 = x, an = a'n_!
*=o
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If a determinant formula reflects some mathematical structure, what does this formula

imply? In particular, what are the entries an? In order to investigate this problem, a

generating function for an was considered in [2], and the following result was obtained.

THEOREM 1 . 1 . ([2]) We define the generating function F(x, t) ofan (n ̂  0) by

(7) F(x,t) =
n=0

Then, the following asymptotic expansion around t -> oo holds for any subsector of
| arg t\ < IT/2:

(8) F{x,t) ~ ^

where Ai is the Airy function.

This result is quite suggestive, since log derivative of the Airy function is another
particular solution to Pn- In fact,

(9) u = - f logAi^1'3*),
dx

satisfies Pn (1) with a = 0. Is this phenomenon caused by an accident? In order to
answer this question, it may be an important problem to investigate whether similar
phenomena take place for other Painleve equations or not.

In this article, we consider the Painleve IV equation (Prv)
2 3 , , , 9 / , 4

where a and (5 are parameters, and the Okamoto polynomials which characterise a class of

rational solutions for Piv- We construct the Hankel determinant formula for the Okamoto

polynomials and discuss the generating functions for the entries of determinants.

2. OKAMOTO POLYNOMIALS AND HANKEL DETERMINANT FORMULA

Let Qn (n € Z) be polynomials generated by the following Toda equation.

(11) Q'nQn ~ {Q'nf = Qn+lQn-1 " (x2 + 2n + 1)Q»,

(12) Qo = l, Ql=X2 + l.

Then, it is known that [16, 12]

(13) y^log^+I-*,
dx Qn

satisfies Piv (10) with a = n + 1, /3 = 1. The polynomials Qn are called the Okamoto

polynomials. A Jacobi-Trudi type determinant formula for Qn is discussed in [7, 13, 12],

and it is shown that Qn are specialisation of 3-core Schur functions.

Let us construct the Hankel determinant formula for Qn. A Hankel determinant

formula for the general solution of the Toda equation has been presented in [5] as follows.

https://doi.org/10.1017/S0004972700038521 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038521


520 H. Goto and K. Kajiwara [4]

THEOREM 2 . 1 . ([5].) Let {rn}n€z functions satisfying the Toda equation:

(14) T^Tn -T° = Tn+lTn-X - tpip T2, T_! = ijj, T0 = 1, Tj = <f.

Let {an}n6N, {6n}n6N be sequences defined by the recursion relation

n-2 n-k

k=0 fc=0

respectively. Then r n is expressed as

det{ai+j_2)ij^n n > 0,
(16) rn = { 1 n = 0,

*+i-*)ij<\n\ n<0.

Applying Theorem 2.1 to the Toda equation for Qn (11), we have the following

formula.

P R O P O S I T I O N 2 . 2 .

1 " J " n = 0, - 1

n-2

(18) an = an_t + 2xan_i + ̂  a*an_2_*, a0 = x2 + 1, en = 2x3 + Ax,

n-2

P R O O F : For technical reason, we separate the cases n > 0 and n < 0. Putting

Qn — e~nx*Rn in (11), we have

I?" D I D1 ^2 p p f~2 I i\ p2
K-nttn ~ (n-n) ~ "n+l-ftn-l ~ I 1 + 1J/tn>

Applying Theorem 2.1 to (20) with n > 0, we have

n-2

(21) Rn = det(ai+J-_2), an = an_! + e~*3 ^a fc5 n _ f c , o0 = el3(x2 + 1).

Now putting an = e l 2 o n and noticing that Rn = enx2Qn, we obtain the formula for n > 0

as

n-2

(22) Qn = det(a i + J_2)1 an = a'n_x + 2zan_i + ̂  a/to,,-*, ao = x2 + 1.
Jt=O
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For the case of n < 0, putting Qn = e~(n+1)lJ5n+i, we have

(23)

n^ - (*2 - i)s2
n,

- 1), 50 = l,

Applying Theorem 2.1 to (23) with n < 0, we get the formula for n < 0 by similar
calculations. D

3. GENERATING FUNCTIONS

3.1. MAIN RESULT. Let Iv(z) be the modified Bessel function

(z/2)"+2*
(24)

' | a r g 2 | < 7 r '

We define the functions Ai(z) and Bi(z) by

(25)

(26) Bi(z)= ~— I-uz{~

z ^

3
zl/2

- / • 1/3

respectively. It is known that Ai(z) and Bi(z) are independent solutions of the Airy
equation

cPu
dz2 ~ ZU'

(27)

and that they admit the following asymptotic expansion around z ~ oo ([8]):

Ai(z) ~ £/.

(28)

where

(29)

/_(z) |argz| < n,

/+(z) |argz| < | ,

* n=0

Now we define the generating functions for the entries an and 6n of the Hankel
determinant formula of Qn obtained in Proposition 2.2 by

(30) F(X, t)= , G(X, t) =
n=0 n=0

Then the main result of this article is stated as follows.
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THEOREM 3 . 1 . Define the functions 6x{x, t), 02(x, t) by

[ e1{x,t) = Bi(^-.
(3D V4

4

respectively. Then, the following asymptotic expansions hold around t ~ oo:

(32) F ( x , t ) ~ ^

[OO) (jr(X,t) 'v

3.2. RICCATI EQUATION. In the following we give the proof of Theorem 3.1. The
strategy for proof is described as follows:

(1) We derive Riccati equations for F and G from the recursion relations (18)
and (19), respectively.

(2) We then linearise the Riccati equations by a standard technique to yield
the Airy equation.

(3) Finally we identify the functions by investigating asymptotic behaviours.

PROPOSITION 3 . 2 . F(z, t) and G(x, t) satisfy the foUoiwng Riccati equations,

r)F
(34) t3 ^- = -F2 + t3(t3 - 2x)F - * V + 1),

ox
(35) t3 ^ = -G2 + t3{t3 + 2x)G - t6(x2 - 1), .

ox

respectively.

P R O O F : (34) can be derived as follows:

n=0 ^*=0 ' n=0

= (fF - t6a0 - t3
ai) - (t3^ - t3ai) - 2x(t3F - t3a0)

an

= -t3^- + t3(t3 - 2x)F - t6(x2 + 1),
ox

where we have used (18) to derive the second equality. We obtain (35) by the similar

calculation.

Since F(x,t) and G(x,t) are denned as formal series around t ~ oo, it is useful to

derive differential equations with respect to t. For this purpose we present the following

lemma.
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LEMMA 3 . 3 . (1) an and bn satisfy the following recursion relations,

(36) a'n = xa'n_x + (3n + l)an_x,

(37) 6'n = - x 6 ' n _ 1 - ( 3 n

respectively.

(2) F(x, t) and G(x, t) satisfy the following linear differential equations,

(38) ( x . t - ) g = t|__4F-2«t»,

(39) {x + t ^ = t ^ . 4 G + 2xt3
t

respectively.

The first statement can be proved by a simple induction. The second statement

follows immediately from (36) and (37). U

From Lemma 3.3, we obtain the Riccati equations with respect to t.

PROPOSITION 3 . 4 . F(x, t) and G{x, t) satisfy the following Riccati equations

(40) t ^ = - ^ - F 2 + (-t6 + 3t3x - 2x2 + A)F + t3(t*x2 + t3-x3 + x),

(41) t ^ = -^^-G2 + (t6 + Zxt3 + 2x2 + A)G + t3{-t3x2 + t3-x3- x),

respectively.

3.3. LINEARISATION AND IDENTIFICATION OF FUNCTIONS. We obtain the Airy equa-

tion by linearisation of the Riccati equations by standard technique.

P R O P O S I T I O N 3 . 5 . (l) Putting

(42) F = t^-xtz + t'

the Riccati equation (34) reduces to the following linear equation.

(43, £(
(2) Similarly, putting

the Riccati equation (40) reduces to the following linear equation.

d2v 3t2 dv . 3 / t3
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(3) (43) and (45) are transformed into the Airy equation

(46, £_„.
by the change of variable

(47) z =

A similar proposition holds for G(x, t).

P R O P O S I T I O N 3 . 6 . (l) Putting

(48) G=t
3^+xt3 + ^,

w 2
the Riccati equation (35) reduces to the following linear equation:

<«> £-*•(* 4)-
(2) Similarly, putting

(50) G = JL^l + xt* + *!
x + i3

 IU 2

the Riccati equation (41) reduces to the following linear equation:

. . , , d2w 3t2 dw , , , , / t3

(3) (49) and (51) are transformed into the Airy equation

(52, *?_„,
by the change of variable,

(53)

We omit the proof since it is done by elementary calculations.

R E M A R K 3.7. Assertions (1) and (2) in Proposition 3.5 are consistent. Namely, (1) and
(2) can be transformed to each other under the assumption that (x, t) dependence of u
is given by u = u(z). A similar remark also holds for Proposition 3.6.

Let us finally identify the function by considering its asymptotic behaviour around

t ~ oo. Solving (44) in terms of v, we have from (30)

r 1 1 1 1 f °°
(54) v(x, t) = const, x exp — t6 — -xt3 x - x exp — Y^

L n=0
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The function v is given as linear combination of Ai(z) and Bi(z). We compare the above
expression with (28) and (29). Noticing that we have from (47)

we find that u should be

(55) u{x,t)

by comparing the exponential factors. This proves the statement regarding F in The-
orem 3.1. The statement for G can be proved in a similar manner by using Proposi-
tion 3.6. D

4. CONCLUDING REMARKS

In this article, we have shown that the generating functions associated with the
Hankel determinant formula for Okamoto polynomials can be characterised by the log
derivative of solutions of the Airy equation. It is an interesting observation that Bi
and Ai, the solutions of Airy equation with different asymptotic behaviours, appear in
opposite directions with respect to n.

We have posed the question as to whether the appearance of the log derivative of the
Airy function in the generating function associated with Yablonski-Vorob'ev polynomials
is an accident or not. The result of this article appears to imply that the answer is "No".
It may be an interesting problem to characterise generating functions associated with
special polynomials for other Painleve equations in terms of the log derivative of special
functions of hypergeometric type.

If this phenomena is not caused by accident, we should clarify the reason and mech-
anism underlying it. Unfortunately we cannot give an answer to this problem yet. Re-
cently, Hankel determinant formula for generic solutions to Pn and the generating func-
tions of its entries have been discussed in [3]. It is shown that the generating functions
are also characterised by log derivative of solutions of certain linear differential equations,
which are nothing but the auxiliary linear problem for Pn- This result is not a conclusive
answer to the problem, but it may imply some (unknown) correspondence between the
Painleve equations and their auxiliary linear problems. At least, it may be true that
there is a nontrivial mathematical structure behind Hankel determinant formulae, which
deserves further study.
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