
Part 5

Synthetic Light Curves and Velocity

Curves, Synthetic Spectra of Binary

Stars and their Accretion Structures

https://doi.org/10.1017/S1743921311027554 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311027554


From Interacting Binaries to Exoplanets: Essential Modeling Tools
Proceedings IAU Symposium No. 282, 2011
Mercedes T. Richards & Ivan Hubeny, eds.

c© International Astronomical Union 2012
doi:10.1017/S1743921311027554

Advances in Modeling Eclipsing Binary
Stars in the Era of Large All-Sky Surveys

with EBAI and PHOEBE
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Abstract. With the launch of NASA’s Kepler mission, stellar astrophysics in general, and the
eclipsing binary star field in particular, has witnessed a surge in data quality, interpretation
possibilities, and the ability to confront theoretical predictions with observations. The unprece-
dented data accuracy and an essentially uninterrupted observing mode of over 2000 eclipsing
binaries is revolutionizing the field. Amidst all this excitement, we came to realize that our best
models to describe the physical and geometric properties of binaries are not good enough. Sys-
tematic errors are evident in a large range of binary light curves, and the residuals are anything
but Gaussian. This is crucial because it limits us in the precision of the attained parameters.
Since eclipsing binary stars are prime targets for determining the fundamental properties of
stars, including their ages and distances, the penalty for this loss of accuracy affects other areas
of astrophysics as well. Here, we propose to substantially revamp our current models by applying
the lessons learned while reducing, modeling, and analyzing Kepler data.
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1. Introduction
A thorough understanding of the fundamental stellar parameters (masses, radii, lu-

minosities, ages, chemical compositions and distances) and processes (energy transport
mechanisms, nucleosynthesis, etc.) in stars across the Hertzsprung-Russell diagram is the
core of stellar astrophysics. To rigorously study stars, we need to determine their prop-
erties as accurately as possible, using the minimum number of underlying assumptions.
Eclipsing binary stars (hereafter EBs) are ideal astrophysical laboratories to achieve this
goal: the favorable alignment of the line of sight with the orbital plane and the basic
principles of classical dynamics that govern the motion of the components in a binary,
reduce the determination of principal parameters to a simple geometric problem. This
unique property, contrasted with other means of determining stellar radii that either
apply to only a handful of objects (such as resolving the disk of a star) or are encum-
bered with a larger uncertainty (i.e. P -L-R relationships), promoted eclipsing binaries as
key calibrators of stellar properties and distance gauges. Binarity allows us to determine
the masses of individual components, and the alignment of a system’s orbit with the
line of sight and consequent eclipses allow us to determine their radii to better than a
few percent (Andersen 1991). To perform such accurate modeling, both photometric and
spectroscopic observations are required. An excellent overview of the state of the field is
given by Torres, Andersen & Gimenez (2010).
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Figure 1. Kepler observations of a detached EB KIC 5513861 (top; P=1.51012-d), a semi-de-
tached EB KIC 8074045 (middle; P=0.53638-d), and an overcontact EB KIC 3127873 (bottom;
P=0.67146-d).

NASA’s Kepler mission (Borucki et al. 2010) revolutionized two crucial aspects of
our ability for detailed EB modeling: the unprecedented photometric accuracy, and an
essentially uninterrupted observing mode (cf. Fig. 1). Prša et al. (2011, paper I) and
Slawson et al. (2011, paper II) cataloged 2165 EBs in the Kepler field found in the public
Quarter 1 and 2 data, with periods ranging from an hour to several months. The EBs
in the catalog are classified by morphology as overcontact, semi-detached, detached, and
ellipsoidal. A preliminary analysis of these EBs was done by EBAI (Eclipsing Binaries via
Artificial Intelligence; Prša et al. 2008), an approach based on back-propagating neural
networks that yields principal parameters for all binaries. These estimates serve as a
basis for detailed modeling.

Having superb quality data at hand has clear repercussions on our modeling capability.
For the first time, we are observing astrophysical phenomena uninterruptedly, and to an
amazing level of detail. State-of-the-art models such as the renowned Wilson-Devinney
code (Wilson & Devinney 1971; Wilson 1979, 1993, 2007), ELC (Orosz & Hauschildt
2000), and PHOEBE (Prša et al. 2005) are showing systematics in a whole range of
binary light curves. This is partly due to approximations embedded in these models,
and partly due to missing and/or inadequate physics that has yet to be accounted for.
Here, we identify the most striking deficiencies of our models that hinder the reliability
and extensiveness of binary star solutions. Suitably rectified models allow us to determine
fundamental stellar parameters to 1% or better. These are subsequently used to calibrate
stars across the H-R diagram (Harmanec 1988), determine accurate distances (Guinan
et al. 1998), and study a range of intrinsic phenomena such as pulsations, spots, accretion
disks, etc. (Olah 2007).

2. Eclipsing Binaries via Artificial Intelligence (EBAI)
The EBAI project (Prša et al. 2008) employs backpropagating neural networks to

rapidly estimate principal parameters from light curves. For many, Artificial Neural Net-
works (ANN) invoke a veil of suspicion, sometimes because they seem so intangible, at
other times because they are a purely mathematical construct deprived of any physical
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context. In reality, ANNs are very simple algorithms that hardly involve anything beyond
summation and multiplication and are trained on a physical content.

In its basic form, an ANN is a system of three layers. Each layer consists of a given
number of independent units. Each unit holds a single value. These values are propagated
from each unit on the current layer to all units on the subsequent layer by weighted
connections. Propagation is a simple linear combination yi =

∑
j wijxj , where xj are

the values on the current layer, wij are weighted connections, and yi are the values that
enter the subsequent layer. Before they are stored in their respective units, yi are first
passed through the activation function, Af . This function, typically a sigmoid function
Af (yi) = 1/[1+exp(−(yjµ)/τ)], introduces non-linear mapping properties to the network.
Coefficients µ and τ are selected so that Af (yi) fall in the (1, 1) interval. This value is
stored in the i-th unit on the subsequent layer. Layers in the three-layer network are
usually denoted input, hidden, and output layer. In a nutshell, ANN is a non-linear
mapping from the input layer to the output layer. In the domain of EBs, the ANN
maps the input light curves to the output set of principal physical parameters. Training
the network implies determining the weights, wij , on weighted connections. The back-
propagation algorithm relies on a sample of LCs with known physical parameters; these
are called exemplars. All LCs are propagated through the network and their outputs are
compared to the known values. The weights are then modified so that the discrepancy
between the two sets is minimized. This is an iterative process that needs to be done only
once. After training, the network is ready to process any input LC extremely quickly.
For example, solving 10,000 LCs on a single 2GHz processor takes around 5 seconds.

3. PHysics Of Eclipsing BinariEs (PHOEBE)
Our current understanding of the properties and processes in binary stars shape our

ability to model observed data. PHOEBE (Prša et al. 2005) is a physical model based on
the Roche geometry; it includes more than 40 physical and geometric parameters that
determine light and radial velocity (RV) curve properties. The most important effects
implemented in the model are:
• an analytic description of binary star orbits, including apsidal motion;
• iterative solution of the Kepler problem that governs binary star dynamics;
• shape distortion due to eccentricity, tides and (asynchronous) rotation;
• radiative properties of binary star components, including gravity brightening, limb

darkening and reflection effect;
• spots, circumbinary attenuation clouds, and third light.
Furthermore, PHOEBE provides minimization algorithms that fit the model curves

to the data. This highly non-linear problem suffers from non-unique solutions: the right
combination of the wrong parameters can fit the observed data very well. The algorithms
currently in use, namely Differential Corrections (DC), Nelder & Mead (1965)’s Simplex
method (NMS), Powell’s direction set method, and genetic algorithms, have all met with
success, but cannot be run robustly without experienced human intervention.

The level of detail in PHOEBE and its predecessor WD was sufficient for several
decades, however this has been superseded by the Kepler mission. We are now seeing
phenomena that have been theorized but never observed before, and we are seeing them
systematically. The approach of modeling the EB baseline, while assuming that all ne-
glected physical factors are buried deep in noise, is no longer applicable. The residuals
are nowhere near Gaussian, and we cannot assume that these effects are only perturba-
tions; rather, we need to account for their signatures in light and radial velocity curves
rigorously.
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Figure 2. Kepler observations of KOI-74. The model fit consists of two sine waves, at the
orbital and half-orbital period, corresponding to Doppler beaming and ellipsoidal variations,
respectively. Adapted from Van Kerkwijk et al. (2010).

4. Challenges
In this section we present some of the challenges being addressed in the field of eclipsing

binary stars.

4.1. Doppler Beaming

The required fidelity of models for EBs has been set historically by the photometric
precision of ground-based observations, typically a few milli-mag per datapoint. MOST,
CoRoT, and now Kepler, have attained a revolutionary photometric precision of several
parts per million per datapoint. At this level, the photometric phenomenon of Doppler
beaming was predicted to be observable (Loeb & Gaudi 2003). Doppler beaming (also
boosting) refers to the shift in bolometric luminosity of a star accruing from its radial
velocity. The resulting Doppler-shifted bolometric flux, F , is related to the stationary
flux F0 by F = F0(1 + 4vr/c). At a given frequency ν, the observer sees Fν = Fν,0(1 +
(3−α)vr/c), where α is a parameter that depends on the bandpass and the slope of the
spectrum of the observed star. Essentially, beaming makes an object appear brighter on
approach and fainter on recession, thus modulating the light curve of a binary system
(cf. Fig. 2). Analogous to radial velocity information, disentangling orbital beaming in a
light curve can yield the masses of the binary components.

Until recently, beaming was just a footnote for eclipsing binaries. However, the effect
has now been detected for two Kepler binaries, KOI 74 and KOI 81, both likely white
dwarfs (Van Kerkwijk et al. 2010), and for CoRoT-3, a massive planet/low-mass brown
dwarf orbiting an F-star (Mazeh & Faigler 2010), as well as in a subdwarf B–white
dwarf pair by Bloemen et al. (2010). Groot (2011) computed the observability of the
rotational Doppler beaming effect for EBs, a photometric phenomenon directly analogous
to the classical spectroscopic Rossiter-McLaughlin effect, which allows a photometric
determination of the projected radial velocity of the eclipsed star as a function of phase.
The effect is shown to be detectable for binaries ranging from double white dwarfs to
massive O-stars, as well as for the WASP-33b-like transiting system, for which it could
in principle reveal the host star’s rotational obliquity.

To date, most studies predicted and confirmed detections of Doppler beaming based
on simplified, ad hoc theoretical estimates of the magnitude of the effect for binary stars
(or star+planet). While this approach is adequate to confirm the expected physics, it
clearly indicates the need to incorporate Doppler beaming, both orbital and rotational,
into rigorous eclipsing binary models. Neglecting this effect would cause a substantial
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Figure 3. Comparison between observed spectra during the primary eclipse (top) and the sec-
ondary eclipse (bottom). Solid black lines are observations, the dash-dotted lines are the model
fit of co-aligned stars, and the solid lines are model fits that allow for spin-orbit misalignment.
Adapted from Albrecht et al. (2011). This is known as the Rossiter-McLaughlin effect, and has
been observed in a number of stars and planets.

systematic discrepancy for objects of significantly different luminosities; for such objects,
beaming provides constraints on RV semiamplitude without the need for spectroscopy.

4.2. Spin-Orbit Misalignment
Most current EB models are based on the Roche model, which assumes perfect align-
ment between the orbital and the rotational axes and handles each component’s tidal
distortion as due to the companion’s point mass. However, careful ground-based studies
have been able to discern that the components of close binaries in a number of systems
show misaligned rotational and orbital axes (Albrecht et al. 2011). Observationally, this
is most easily discerned via the Rossiter-McLaughlin effect, depicted in Fig. 3. The non-
alignment of a host star spin-orbit has also been found for a number of hot Jupiters
(Hebrard et al. 2008). Consequently, EBs and transiting exoplanets bring into question
the initial conditions for the formation of both binaries and planetary systems.

The generalized Roche potential for binary systems, in which the stellar rotation is
not aligned with the orbital revolution, is fundamentally different from the currently
implemented co-aligned potential. Modifications to the potential have been derived by
Limber (1963), Kruszewski et al. (1966), and Kopal (1978). The properties of the critical
equipotential lobe and Lagrangian points for circular orbits have been studied in detail
by Avni & Schiller (1982).

In binary star modeling, a Cartesian coordinate system is usually set at the center
of the primary star, where x-axis points to the center of the secondary star, and z-
axis points along the orbital revolution axis. Misalignment may be fully described by
two angles: axial deflection from the z-axis (pitch), and rotation from the x-axis (yaw).
The third angle (roll) may be dropped because of symmetry. A simple rotation of the
coordinate system about the x-axis reduces this to a single-parametric problem, with a
misalignment parameter θ′ denoting the angle between the rotated z-axis and the spin
axis, which due to the transformation now lies in the x′z′ plane. This one parameter
determines the location and properties of the Lagrangian points, and hence the shapes of
both components and instantaneous force fields acting on them (Avni & Schiller 1982).

A fully numerical search for equipotential surfaces in misaligned binaries needs to
be implemented. These surfaces determine the shapes and radiative properties of com-
ponents in binary stars. Since 3-D minimization is a computationally expensive task,
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Figure 4. Left: 4 EB targets with tertiary events detected in the public Kepler data. These are
indicative of tertiary components transiting the binary star. Right: eclipse timing variations for
4 interesting targets. Colors in the light curves denote data quarters (Q0: magenta, Q1: black,
Q2: red), and primary and secondary eclipse timing variations (red and black, respectively).

the search will be initiated only when the misalignment parameter θ′ changes its value.
Equipotential surfaces will otherwise be stored for subsequent use.

4.3. Multiple Stellar Systems: Extraneous Bodies in Binary Systems
In an EB, one would expect that primary eclipses and secondary eclipses are uniformly
spaced in time. However, mass transfer from one star to the other, or rotation of the
line of apsides (apsidal motion), or the presence of a third star in the system can give
rise to changes in the orbital period, which in turn change the spacing in time between
consecutive eclipse events. The eclipse times will no longer be described by a simple
linear ephemeris, and the deviations from the linear ephemeris (usually shown in the O-
C diagram) will contain important clues to the origin of the period change. Systematic
measurements of the times of primary and secondary eclipses for the Kepler sample of
EBs have been conducted (Orosz et al. 2011, Prša et al. 2012, in preparation). This is
a tedious task, owing to a host of intrinsic variabilities and systematic problems. These
include large spot modulations that may or may not be in phase with the eclipses,
pulsations and/or noise in the out-of-eclipse regions, thermal events and cosmic ray hits
that make the normalization of the light curves hard to automate, and eclipses falling
partially or completely in data gaps. Fig. 4 presents some interesting cases of EBs with
O-C variations evident in the public Kepler data.

The modeling codes can deal with the simplest case of apsidal motion, where the argu-
ment of periastron changes linearly in time (dω/dt = const.). We found, and successfully
modeled, a number of EBs with strong apsidal motions, and the models successfully
predicted the shapes of light curves without a substantial increase in systematics.

Our adopted model follows the basic concept laid out by Carter et al. (2011) that was
applied to KOI-126, a hierarchical stellar triple system observed by Kepler. A hierarchical
(or Jacobi) coordinate system is used when calculating the positions of the three bodies.
In this system, r1 is the position of star A relative to star B (the inner pair) and r2 is
the position of star C relative to the center of mass of (A,B). We may specify r1 and
r2 in terms of osculating Keplerian orbital elements (period, eccentricity, argument of
pericenter, inclination, longitude of the ascending node, and the mean anomaly). New-
ton’s equations of motion, which depend on r1 , r2 , and the masses, may be specified for
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the accelerations r̈1 and r̈2 (Soderhjelm 1984; Mardling & Lin 2002). An additional term
may be added to the acceleration of r1 due to the post-Newtonian potential of the inner
binary (Soffel 1989). Further perturbing accelerations may be added to the acceleration
of r1 corresponding to the non-dissipative equilibrium tidal potential between stars A and
B and the potential associated with the rotationally-induced oblate distortion of stars A
and B (Soderhjelm 1984). In this approximation, the axial spins of stars A and B follow
the evolving orbit, staying normal to the orbit and spinning at a rate synchronous with
the orbit. Both the accelerations due to tides and rotations depend on r1 , the masses,
and the radii of both components. The acceleration due to rotation also depends on the
angular axial spin rate of both stars A and B. The spin rates and apsidal constants are
assumed to be the same for both stars. This system provides a coupled system of differ-
ential equations that are solved using the Bulrisch-Stoer algorithm. The positions of the
three objects are then projected to the barycentric plane, which is necessary to account
for the finite speed of light and predict eclipse timing variations. Carter et al.’s method
assumes spherical stars, whereas our implementation will feature tidally deformed stars
whose shapes will be derived from the generalized Roche formalism presented in the
previous section.

4.4. Markov Chain Monte Carlo heuristics and Bayesian Error Estimates
Perhaps one of the worst plagues of EB modeling is the inherent non-linearity of the
parameter space and thus a high degree of solution degeneracy. Coupled with that is
a classical approach to data fitting by least squares and estimating errors from the co-
variance matrix. This has two important and dire consequences. First, essentially any
minimizer used is bound to get stuck in local minima. Ways around this have been pro-
posed, most notably by heuristic Monte Carlo scanning and parameter perturbations
(Prša et al. 2005; Prša & Zwitter 2007), or by utilizing global search algorithms such
as the Metropolis-Hastings simulated annealing, which, however, dramatically increases
computing time. Second, chi-square fitting is done on a data curve level rather than on
the parameter level. Any deviation between the model and the data will penalize all
parameters marked for adjustment. To see why this is problematic, consider adjusting
the semi-major axis or the mass ratio of a well detached binary. There is absolutely no
information contained in a light curve on either of the two parameters; all information
lies in radial velocity curves. Hence, if a simultaneous LC+RV least squares fit is em-
ployed, the minimizer will fit the correct RV signature for the two parameters, but it
will essentially fit numerical noise in the EB light curve. The number of data points in a
light curve is typically an order of magnitude larger (several orders in case of Kepler), so
the determination of these two parameters will be heavily weighted towards light curves
where there is little to no oversight when determining their values.

Markov Chain Monte Carlo (MCMC) proves to be a powerful tool for Bayesian in-
ference because it provides more statistical information and makes better use of data
than chi-square fitting. The goal is to determine what configurations of physical and
geometric parameters are consistent with given light and radial velocity observations.
For each parameter, we provide an initial estimate – a prior – that does not need to be
close. After running a given set of chains, MCMC returns a posterior distribution for
each parameter: a histogram of attained values that determines the most likely value as
well as the uncertainty in the statistical sense. Thus, MCMC provides a best-fit solution
and the corresponding error estimates by assessing them on a parametric level rather
than on a data-set level. The latter is exactly the culprit that we would like to eliminate,
and MCMC is a clear path to doing so. The approach has been implemented and used
successfully in BLENDER (Torres et al. 2011), a tool devised to discriminate between
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bona fide extra-solar planets and background EBs in the Kepler data-set. Other examples
of a successful MCMC application include (Bloemen et al. 2010) for Doppler beaming,
and Hou et al. (2011) for fitting radial velocities of stars that host extra-solar planets.

5. Conclusion
Ultra-high precision space missions MOST, CoRoT, and Kepler revolutionized obser-

vations, and our tools need to keep up with them. The two striking issues are: (1) the
amount of data acquired and in need of automated processing, and (2) the inadequacies
of our models that cause systematics in the solutions. Both need to be addressed imme-
diately, otherwise our analysis capabilities will be inferior to the data. To address the
first issue, we propose to use the artificial intelligence based engine EBAI; for the second
issue, significant effort in restating the physics and geometry of the model is underway.
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