
Astroinformatics
Proceedings IAU Symposium No. 325, 2016
M. Brescia, S.G. Djorgovski, E. Feigelson,
G. Longo & S. Cavuoti, eds.

c© International Astronomical Union 2017
doi:10.1017/S1743921317000047

Identification of Interesting Objects in Large
Spectral Surveys Using Highly Parallelized

Machine Learning
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Abstract. The current archives of LAMOST multi-object spectrograph contain millions of
fully reduced spectra, from which the automatic pipelines have produced catalogues of many
parameters of individual objects, including their approximate spectral classification. This is,
however, mostly based on the global shape of the whole spectrum and on integral properties of
spectra in given bandpasses, namely presence and equivalent width of prominent spectral lines,
while for identification of some interesting object types (e.g. Be stars or quasars) the detailed
shape of only a few lines is crucial. Here the machine learning is bringing a new methodology
capable of improving the reliability of classification of such objects even in boundary cases.

We present results of Spark-based semi-supervised machine learning of LAMOST spectra
attempting to automatically identify the single and double-peak emission of Hα line typical for
Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at
Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain
adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be
stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra
of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature
of interesting candidates benefited considerably from cross-matching and visualisation in the
Virtual Observatory environment.
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1. Introduction
There are many objects in the Universe that may show interesting shapes of some

important spectral lines. The objects presenting emission lines, as are Be stars, where
a gaseous envelope in the shape of a sphere or a disk is expected (Porter & Rivinius
2003), and rare class of B[e] stars showing infrared excess (Zickgraf 2003), are especially
interesting, thanks to their complicated physics. The emission lines in spectra of such
objects may present under different physical conditions single peak, double peak with
different ratios of components or even complicated combined emission and absorption
profiles (Silaj et al. 2010). To find emission line objects with given shape of spectral line
in a big survey, the automatic procedure must be used based on principles of supervised
machine learning.

2. Machine Learning
Machine learning is the field of informatics, closely related to the advanced statisti-

cal inference, which tries to build models of data by learning from sample inputs and
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make predictions based on such learned models. It is divided mainly into supervised and
unsupervised methods with a number of subclasses.

Supervised: These algorithms have some prior knowledge about the data, that was
supplied by some external means. This is usually done by a human domain expert. Main
representatives are the classification tasks, where the models classify data into some
predefined, finite set of classes, and regression tasks, which infer output of a real-valued
function.

Unsupervised Algorithms in this group do not have any prior knowledge of the data.
They attempt to discover corresponding relationships themselves. This is by definition a
much harder task than supervised learning, however it can potentially lead to much more
interesting results. Example tasks are clustering, automated feature selection or outliers
detection.
A special category is a Semi-Supervised Learning. It is a group of algorithms designed
to work on datasets, that have very few labelled data points compared to the amount
of unlabelled points. It resembles a supervised learning in that we have labelled data,
however with an addition of also having unlabelled data, which may help us estimate the
distribution of the data set more precisely. There is, however, another possible variant
of semi-supervised learning. Here, we are not using labelled data, but merely some con-
straints. These constraints may link some points, that share the same label, or they may
reveal the actual number of classes. This resembles unsupervised learning, however with
some a priori information about the data.

In big spectral archives, where it is almost impossible to investigate every spectrum
visually, the yet unknown rare objects with strange features, or even sources with yet
undiscovered physical mechanism may be in principle found using machine learning.

3. LAMOST Spectral Surveys
The LAMOST telescope (Cui et al. 2012) has been delivering one of currently largest

mega-collections of spectra (similar to Sloan Digital Sky Survey). The sixteen LAMOST
spectrographs are fed by 4000 fibres positioned by micro-motors. Its publicly accessible
data release DR1 (Luo et al. 2015) contains altogether 2 204 696 spectra, with a spectral
resolving power ∼ 1800, covering the range 3690-9100Å. The LAMOST pipeline classified
1 944 329 of them as stellar ones.

4. Ondřejov CCD700 Archive
The unique source of the spectra of emission line stars (mostly Be and several B[e]) is
the archive of spectra obtained with 700mm camera of the coudè spectrograph of the
2m Perek Telescope at Ondřejov observatory, a part of the Astronomical Institute of
the Czech Academy of Sciences. The archive (named CCD700) contains about twenty
thousand spectra of mainly Be stars and other emission-line objects exposed mostly in
spectral range 6250–6700Å with spectral resolving power ∼ 13000.

4.1. Cross-matching and Labelling of LAMOST and CCD700 Archives
Using the technology of Virtual Observatory, namely the combination of Table Access
(Nandrekar-Heinis et al. 2014) and Simple Spectra Access (Tody et al. 2012) protocols
we have identified less than ten objects (e.g. BT CMi or HD53416) observed both by
Ondřejov 2m Perek Telescope and LAMOST. This limits the usage of normal supervised
training due to the lack of labelled spectra in LAMOST DR1 selected for training set. So
the semi-supervised method must be used. In CCD700 archive we have visually identified
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1696 spectra with clearly defined classes of spectral shapes. The most important part
consisted of spectra of selected Be stars with different spectral line profiles as double
peak emission, emission with central absorption or deep absorption with small single or
double emission peak. All such interesting cases were given label 1 (target class). They
were complemented by absorption spectra of many classical stars labelled 0. This sample
became a training set. The spectra, however, could not be used immediately due the
the different spectral resolving power of CCD700 archive and LAMOST. We needed to
perform a Domain Adaptation of training sample.

4.2. Domain Adaptation of CCD700 Spectra
Before starting the semi-supervised learning, all Ondřejov spectra with higher resolution
must be converted to the same resolution as LAMOST data. In other words the samples
from one domain (CCD700) are transformed to second domain (LAMOST), so that
the CCD700 spectra of selected emission stars will look like exposed with LAMOST
spectrograph. Here we use the model based on our (simplified) physical knowledge of
the principles how the spectrograph works. The spectral resolving power degradation
may be roughly approximated by the convolution with the Gaussian kernel with Full
Width at Half Maximum (FWHM) proportional to the ratio of resolving powers. In our
case we have used Gaussian with FWHM of 5 pixels. Finally, the spectrum has to be
re-binned into larger pixels, as the LAMOST spectrum contains less pixels over the same
spectral range. Such simulated spectra are treated as the original data for the input
preprocessing. See Fig. 1 for an example of resolution degradation. The top spectrum is
an original CCD700 spectrum of HD53416, the bottom one its convolved version (please
notice the smearing of the double peak profile), while the middle one is the same star
observed with LAMOST.

5. Input Spectra Preprocessing
An important part of data preparation before applying machine learning is the data

pre-processing. In our case all the spectra had to be normalised to the continuum (rec-
tified), cut to the same wavelength range 6250–6750Å (for CCD700 also convolved with
Gaussian as explained above) and re-binned into the same grid of wavelength points. This
gave us the number of so called Feature Vectors (FV). The result of the preprocessing
is the Comma-separate values (CSV) file with all spectral intensities interpolated to the
same wavelength grid mapped to the individual elements of the FV. Here the value of
physical wavelength in Å is unknown and must be reconstructed for visualisation from
the mapping metadata. This CSV file is uploaded to a computing cluster running the
semi-supervised machine learning algorithms .

6. Semi-Supervised Machine Learning
We have used two graph-based methods, described in Chapelle et al. (2006), which

were adopted for parallelisation on Spark engine. The full implementation details are
explained in Palička (2016).

Label Propagation Label propagation is an algorithm that leverages the graph rep-
resentation of data to fit a model. Labels are encoded as an one-hot variable, so that we
may support multi-class classification. The algorithm basically computes weights for la-
bels for each data point based on the distance to its neighbours. Note that in our version
of the algorithm, the initial labels do not change and are reset to their original value in
each step.
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Figure 1. Comparison of the original (top) and convolved (bottom) CCD700 spectrum of
HD53416 with one observed by LAMOST (middle)

Label Spreading is a similar algorithm to label propagation. It uses the normalised
graph Laplacian to propagate the label information across the graph. It also allows the
labels to retain some partial information from the initial labelling.

7. Massively Parallelised Processing Using Spark
The Apache Spark (http://spark.apache.org) is a cluster computing technology

allowing the fast computation on number of computing nodes in parallel. We have used
the academical cluster MetaCentrum consisting of twenty-four sixteen-core nodes (the
number of nodes assigned by the system is however unknown, dependent on a availability
and load of the cluster). The data were distributed across all nodes by Hadoop Distributed
File System — HDFS (http://hadoop.apache.org). The search was run on more than
fifty thousand spectra randomly selected from those labelled as star by LAMOST DR1
pipeline.

8. Results
The result of running the semi-supervised machine learning on a set of feature vectors

is a confidence score of each — the number expressing the weight of the label assigned
by the algorithm to the unlabelled data. By thresholding the highest confidences we get
the most probable candidates of our target class (in our case the emission line spectra).
Our experiments run many times of subsamples of LAMOST DR1 gave us a short list
of interesting spectra which were previewed to eliminate artifacts. The final list contains
tens of very interesting candidates of emission line stars deserving further investigation.
On Fig. 2 and Fig. 3 are given examples of two different profiles of Be stars found by
semi-supervised training (the whole spectrum and zoomed one centered around Hα line).
The Fig. 4 shows another interesting object with emission both in Hydrogen and Helium
6678Å lines. This configuration of emission line profiles closely resembles the well-known
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Figure 2. Example of Be star identified in LAMOST DR1 by machine learning: Strong double
peak emission

Figure 3. Example of Be star identified in LAMOST DR1 by machine learning: Absorption
line with weak central emission peak

Figure 4. LAMOST star with line profiles similar to Beta Lyrae
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Figure 5. Beta Lyrae from Ondřejov CCD700 archive

Beta Lyrae star. For comparison the spectrum of Beta Lyrae from Ondřejov CCD700
archive is given on Fig. 5.

9. Conclusions
Big spectral archives such as LAMOST DR1 are good source of data suitable for

machine learning of interesting objects according to their characteristic spectral line
shape. Examples of objects with emission lines found by our method confirm, that the
whole idea of machine learning applied to spectral line profiles is viable and the methods
described above are able to identify object of given spectral properties. The identified
candidates with emission profile need further detailed examination as they may hide
interesting scientific objects. The semi-supervised methods may benefit considerably from
massive parallelisation using Spark on Hadoop cluster.
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