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JOHN CHARLES BURKILL

John Charles Burkill, born on 1 February 1900, was the only child of Hugh

Roberson Burkill (1867–1951) and Bertha (neU e Bourne, 1866–1937). His father came

from a family which had farmed in Lincolnshire for generations, whereas his mother

came from a background of prosperous farming and building. On neither side was

there a strong academic tradition, but Charles was soon to show evidence of

intellectual distinction by winning a scholarship to St Paul’s school at the age of 14.

There he profited fully from the excellent teaching that the school offered and which

was reflected not only by his mathematical prowess, which led to a scholarship to

Trinity College, Cambridge, in 1918, but also in his ability in classical studies in which

he maintained a lifelong interest. He was also a formidable chess player, and had a

mischievous sense of humour which he retained, albeit in a more restrained mode, in

later life. A striking example of his grasp of the essence of a practical joke is recorded

in the story of how, as a boy on a visit to a house-proud aunt, he saw the comic

potential of a trail of corn from the chicken run through the front door and upstairs

to the bedrooms.

On leaving school in 1918, he joined the Royal Engineers (RE), but was

demobilized soon after being commissioned as second lieutenant. However, this early

military training was of service in 1939 when he joined the Cambridge University

OTC as a second lieutenant and came to command the RE unit with the rank of

major. He went up to Trinity in 1919, and stayed on successively as scholar, research

student and Smith’s Prizeman and fellow until 1924, when he was appointed at an

unusually early age to the chair of pure mathematics at Liverpool.

Burkill returned to Cambridge in 1929 to take up a university lectureship and a

fellowship, not at his old college but at Peterhouse; and there he stayed for the rest

of his life, giving an example of loyalty and devotion to an institution and its people

that would be difficult to match. His value and potential as a member of the governing

body of the college were soon recognized by his early appointment as a tutor, an office

which he held for a large part of his time at Peterhouse, including the war years when,

in the absence on leave of the Master, he and a very small group of fellows ensured

that the college not only survived but remained a centre of intellectual distinction and

sound teaching.

College life was not easy in the years immediately after the war, and Burkill did

not retire from the tutorship until 1948, and even served again in 1952 as acting Senior

Tutor. His research had inevitably been hampered by a heavy administrative and

teaching load, but his release from some of these responsibilities gave him more time,

and this is reflected by his substantial output of papers at the time. He was awarded

an Adams Prize in 1949, elected a Fellow of the Royal Society in 1953, and served on

its Council from 1959 to 1961. He was made Emeritus Reader in Mathematical

Analysis on his retirement.
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In 1968 it was greatly to the advantage of the college that an amendment to its

statutes made it possible for him to be elected Master beyond the normal age of

retirement, and he served the college in this capacity until 1973. It was at the time of

his election that active student dissatisfaction became a significant element in

university affairs, and one of Burkill’s many services to the college was to handle this

in such a way that there was neither lasting dissension nor the imposition of statutory

and bureaucratic involvement of students in all aspects of college government.

Another distinctive feature of his mastership was his positive support for the

development of graduate studies and research by increasing the number of fellows

and graduate students, and this was achieved without weakening the high standards

of teaching and pastoral care which he had fostered as tutor. His term as Master was

followed by his appointment as editor of the Mathematical Proceedings of the

Cambridge Philosophical Society, and the journal’s high standing when he left it was

a tribute to his achievement in an exacting task, which few scholars of his age were

willing to contemplate. This work was indeed a sign of his sense of duty and integrity

in everything he did, including his fastidious concern for accuracy and economy in the

use of words. In respect of the spoken word, this economy became something of a

legend. Taciturn is not a sufficiently friendly word to describe his conversational style,

because it contained no hint of malice or lack of concern but only an unerring

judgement about what was important, and the clearest way of saying it. What is even

more important is that his distaste for excessive display of feeling concealed, at first,

a truly generous and hospitable nature. He was a kindly man, and shared with his wife

Greta a rare perception of the problems and needs of others, and any account of his

life would be incomplete without reference to the remarkable qualities which she

brought to their partnership.

Greta was the daughter of Adolf Braun, a distinguished journalist in pre-1914

Germany. Her mother was Russian and brought her to England, where she completed

her education at school and at Newnham. Although she was herself neither Jewish

nor a refugee, her early life had given her a deep and sympathetic understanding of

people persecuted for their race, politics or religion, and she became a leading figure

in the organization set up to rescue refugees from Hitler. She and Charles together,

with their combined experience of international affairs and academic life, were

particularly effective in helping many gifted scholars to escape and to contribute to

the intellectual life of this country. They did this not only by good organization, but

also by the example they set in taking young scholars into their own home and

virtually adopting them.

Many of the refugees who came to Britain through the efforts of the Burkills were

either mature scholars or research students whose work had been disrupted, and this

must have been a major factor in stimulating, and extending beyond the college

precincts, their interest in the welfare of graduate students in general. Cambridge was

not a comfortable place for scholars without a firm college connection, and the

provision of basic amenities for them was a pressing need. The founding of the

Graduate Centre and the Cambridge Graduate Society was largely due to their joint

efforts, for they made a powerful team, he with his grasp of practicalities and

procedures and she with her formidable crusading zeal. In superficial ways, few

couples could have seemed more different, but there was a real harmony in their

partnership to enable them to do so much good.
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1. Integration and differentiation

Burkill’s work is all in the theory of functions of a real variable, with its main

emphasis on theories of differentiation and integration. This was a particularly active

area of research in the early decades of this century, after the pioneering work of

Lebesgue, Borel and their contemporaries in establishing the concepts of measure and

the Lebesgue integral associated with it. These continue to play a central role in

modern mathematical analysis, and provide a reference by which further develop-

ments can be compared and understood, and it may be useful to give a very brief

account of some of the concepts associated with them.

Broad ideas about differentiation and integration go back to Newton and

Leibniz, as do requirements about the formal relationship between them. The natural

starting point is the definition of the deri�ati�e F «(x) of a point function F(x) as the

limit in some sense of h−"[F(xh)®F(x)] as h! 0. Then integration, regarded as the

inverse of differentiation, is any operation on a function f(x) which produces a

primiti�e or integral F(x) with the property that F «(x)¯ f(x) ; and we then write

F(x)¯ ! f(u)du. This descriptive concept of integration is incomplete until we specify

the precise definition of a derivative and the interpretation of the equality sign. It is also

deficient in a more practical way in that it provides no method, other than organized

guesswork, for actually finding the primitive of a given function.

The traditional alternative approach which remedies this is first to develop and

make precise the concept of the area of a set of points in the plane (or �olume in three

or more dimensions) and to define !b

a
f(x)dx constructi�ely to be the area of the set of

points S bounded by the x-axis, the lines x¯ a, x¯ b, and the graph y¯ f(x). The

conclusion that these two definitions of an integral are, under appropriate conditions,

equivalent is the fundamental theorem of the calculus, and is central to any theory of

differentiation and integration. Since there is no preordained logical structure to any

such theory, it is essential to make clear what is being defined and what is deduced.

The best known examples of the constructive approach are due to Riemann and

Lebesgue; in spite of apparent similarities in their definition, they are quite distinct

in their properties and in their potential for generalization. In each case the definition

of area is based on the limit as h! 0 of the sums of approximations to the areas of

parts of S obtained by slicing S into sections of width h either vertically (Riemann)

or horizontally (Lebesgue). Riemann requires only approximations by rectangles,

while Lebesgue depends on the notion of the measure of the more complex set of

points x for which f(x)& y. Important distinctions arise directly from the differences

in the geometry of the constructions. For example, the existence and properties of the

Riemann integral are bound up with the metric topology of the real line and the

continuity of the integrand, whereas the Lebesgue integral requires only the existence

of a measure, and measures can be defined in a great variety of spaces without

reference to the nature, or even the existence, of their topological properties.

However, the classical definition of a derivative is a topological concept, and we

expect to find a fully satisfactory calculus only in cases in which measure and

topology are properly related.

A comparison between the two integrals illustrates the important idea of the scope

of a method of integration as the set of functions which can be integrated. Thus

Lebesgue has greater scope than Riemann, but this is not an unconditional advantage

since Lebesgue integrability is the weaker constraint and this may necessitate the

strengthening of some other condition when it is part of the hypothesis of a theorem.
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In the following summary of Burkill’s publications, papers have been grouped to

reflect his main areas of interest, and numbers refer to the list at the end of this

memoir. It is convenient on occasion to retain his notation, using symbols , ®, [
for set operations, and speaking of functions g(I ), F(I ), f(x), G(x) (as a reminder that

the variable may be an interval or a point) despite the normal convention that such

symbols should be used only for �alues of the functions g, F, f, G.

2. Functions of inter�als and the Burkill integral [1–3]

An open n-dimensional interval I is defined as the set of points (x
"
,x

#
,… ,x

n
)

which satisfy a
i
!x

i
! b

i
(i¯ 1, 2,… , n). The same numbers also define closed or

partly closed intervals, and the distinction is generally immaterial, but I is taken to

be open unless the contrary is indicated. An inter�al function g(I ) is defined over a

system of intervals if a real number g(I ) is assigned as its value for each I of the

system. The main aim of [1] is to give a systematic account of the basic properties of

interval functions which are not necessarily additi�e. This means that it is not assumed

that g(I )¯ g(I
"
)g(I

#
) when I is the union of abutting but non-overlapping intervals

I
"
, I

#
(including the interior points of their common boundary). The importance of

this becomes clear when we note the many cases of nonlinear interval functions such

as the elements in Riemann–Darboux sums or the ratio h−"[ f(xh)®f(x)] for the

interval (x,xh).

The elementary properties of interval functions can now be established. For

example, an interval function is bounded in an open or closed interval R if its values

g(I ) are bounded for all intervals I in R. If ω(δ,x) is the upper bound of rg(I )r for

every I in the square with centre x and side δ, then ω decreases with δ and ω(x)¯
limω(δ,x) as δ! 0 exists and is called the oscillation of g(I ) at x. We say that g(I )

is continuous at x if ω(x)¯ 0, and is continuous in R if continuous at every point of R.

If R is closed, continuity implies uniform continuity, in the sense that, given ε" 0, we

can define δ(ε)" 0 so that rg(I )r% ε for every I in R with diameter n(I )% δ. A division

of an interval R (two dimensions being typical) by lines parallel to one or other axis

into a finite number of subintervals I
j
is called a mesh ²I

j
´. We say that g(I ) has an

integral l if, given ε" 0, we can define δ(ε)" 0 so that r3g(I
j
)®l r! ε for all meshes

²I
j
´ with max n(I

j
)% δ(ε). Such a number l is unique if it exists, and is then written

!
R
g(I ) (or ! g if the context is clear) and is called (but not by himself) the Burkill

integral. Whether the integral exists or not, the upper and lower Burkill integrals !,
! always exist as the upper and lower limits of 3 g(I

j
) as max n(I

j
)! 0. Two familiar

examples of the integral are :

(1) ! g(I ) is the total variation of f(x) in one dimension if g(I
j
)¯ r f(x

j
)®f(x

j−"
)r ;

(2) !
(H,K)

g(I ) is the Lebesgue integral !b

a
f(x) dx if I

j
is the interval (y

j−"
, y

j
) and

g(I
j
) is the measure of the set in which y

j−"
% f(x)! y

j
and H, K are bounds of f(x).

The main properties of the Burkill integral are as follows.

(i) If g(I ) is finitely additive, !
R
g(I )¯ g(R).

(ii) (General principle of convergence.) The function g(I ) is integrable if and only

if, given ε" 0, we can define δ(ε)" 0 so that r3 g(I
j
)®3 g(I

k
)r! ε for any two

meshes with max [n(I
j
), n(I

k
)]% δ.

(iii) If ! g exists, so does ! cg for any constant c, and ! cg¯ c ! g.

(iv) If g(I )& 0, then ! g& 0.

(v) (Mean value theorem.) If HmI& g(I )&KmI for I in R, then HmR& ! g&
KmR.
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(vi) If g¯ g
"
g

#
and any two of ! g

"
, ! g

#
, ! g exist, then so does the third, and

! g¯ ! g
"
! g

#
.

(vii) Schwartz’s inequality :

(& g
"
g
#*#%& g#

"& g#

#
; (& p

"
p
#*#%& p#

"& p#

#
if p

"
& 0, p

#
& 0.

(viii) The condition of integrability can be strengthened (with a decrease in scope

of the integral) by allowing meshes in which the dividing lines need not extend right

across R, and the integral so defined is called the extended Burkill integral and written

E !. Then if R¯R
"
R

#
, it is not generally true that integrability over R

"
and R

#

implies integrability over R, and vice versa. But it is true that if g is integrable over

R
"
, R

#
and R, then

&
R

¯&
R
"

&
R
#

.

Also, if g is integrable E over R, it is integrable E over any subinterval of R.

While these properties are analogues of theorems in the traditional integral

calculus, it is important to observe that the Burkill integral has an inter�al function

as its integrand and is quite distinct in concept from the integrals (Riemann,

Lebesgue, Perron, etc.) in which the integrand is a point function.

Some further properties of interval functions are needed to develop the integral.

An interval function g(I ) is absolutely continuous (a.c.) in R if 3 g(I
j
)! 0 as

3mI
j
! 0 and the I

j
(finite or enumerable) are non-overlapping. The Lipschitz

condition rg(I )r%KmI obviously implies absolute continuity. These properties

follow.

(i) If g, g
"
, g

#
are a.c., then so are rgr and g

"
g

#
.

(ii) If g
"

is a.c. and g
#

is bounded, then g
"
g
#

is a.c.

(iii) If p¯ "

#
[rgrg], n¯ "

#
[rgr®g], so that g¯ p®n, rgr¯ pn, p& 0, n& 0, and if

g is a.c., then so are p and n.

(iv) If g is a.c. in R, then its extended upper and lower integrals are finite.

(v) If g is a.c. in R and G(I )¯ !
I
g exists for every I in R, then G(I ) is a.c. in R.

If X is a measurable set in R so that, for a sequence ε
r
decreasing to 0, we can

decompose X as X¯ J
r
e

r
®e!

r
, where J

r
is the union of a finite set of intervals and

me
r
! ε

r
, me!

r
! ε

r
, it is proved that G(J

r
) tends to a limit which is independent of the

particular sequence ε
r
or the particular decomposition of X for any r. This limit is

written G(X )¯ !
X

g(I ) and is called the (Burkill) integral of g over X.

(vi) G(X ) is a completely additive function of measurable sets in R, so that

G(3X
j
)¯3G(X

j
) for any enumerable disjoint sets X

j
in R.

(vii) If g is a.c. and g(I )% g(I
"
)g(I

#
) when I¯ I

"
I

#
, then g is integrable. In one

dimension, the weaker condition that g is continuous may replace absolute continuity,

although its integral may then be infinite.

3. Deri�ati�es of inter�al functions [4, 6, 7]

Burkill’s calculus is completed by defining the deri�ati�e of an interval function

and relating it to the integral G(X ). If 0! ρ% 1, we define u(ρ,x) as the upper limit

of g(I )}mI as mI! 0 and mI}mS& ρ, where S is the smallest square with centre x
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containing I. The lower limit l(ρ,x) is defined similarly, and since both limits are

monotonic in ρ, we can define u(x), l(x), their limits as ρ! 0, as the upper and

lower deri�ati�es of g(I ) at x. If u(x)¯ l(x), we say that g(I ) is differentiable

at x and g«(x)¯ u(x)¯ l(x) is called its deri�ati�e.

The basic properties of derivatives are then as follows.

(i) The necessary and sufficient condition that g«(x) exists is u(ρ,x)¯ l(ρ,x) for

every ρ in 0! ρ% 1.

(ii) If g¯ g
"
g

#
, then l

"
(x)l

#
(x)% l(x)% l

"
(x)u

#
(x)% u(x)% u

"
(x)u

#
(x),

and if g!

"
(x), g!

#
(x) exist, then so does g«(x), and g«(x)¯ g!

"
(x)g!

#
(x).

(iii) For any g(I ), u(x), l(x), g«(x) are measurable.

(iv) In one dimension, if g(I )¯ f(x
j
)®f(x

j−"
) when I is (x

j−"
,x

j
) and if ua (x), lb(x) are

upper and lower derivatives of f(x), either on the right or on the left, then u(x)& ua (x),

l(x)% lb(x). The existence of either f «(x) or g«(x) implies the existence of the other, and

the two are equal.

(v) If ¦# f}¦x¦y exists near (x
!
, y

!
) and has upper and lower limits M(x

!
, y

!
),

m(x
!
, y

!
) as x!x

!
, y! y

!
, then M(x

!
, y

!
)& u(x

!
, y

!
)& l(x

!
, y

!
)&m(x

!
, y

!
). In par-

ticular, g«(x
!
, y

!
)¯ ¦# f}¦x¦y at (x

!
, y

!
) if ¦# f}¦x¦y is continuous at (x

!
, y

!
).

These properties are sufficient to establish analogues of the fundamental theorems

of calculus.

(i) If p(I )& 0 and E !
R
p(I ) is finite, then u(x) and l(x) are finite almost e�erywhere

(a.e.) in R. In particular, if g(I ) is a.c. in R, then u(x) and l(x) are finite a.e. in R. In

one dimension with p(I
j
)¯ f(x

j
)®f(x

j−"
), we have the familiar result that u(x), l(x)

are finite a.e. if f(x) has bounded variation.

(ii) If g(I ) is a.c. in R, then (Lebesgue integrals for l(x), u(x))

E& g(I )%& u(x) dx%E& g(I ).

In particular, if E ! g(I ) exists, so does g«(x) a.e., and

E& g(I )%& g«(x) dx and G(X )¯&
X

g«(x)

for any measurable set X.

(iii) If g(I ) is a.c. in R and l(x)& 0 a.e. in R, then

& g(I )& 0.

(iv) If g(I ) is a.c. in R and G(I ) exists for every I in R, and if l(x)& 0 in a

measurable set X, then G(X )& 0.

(v) If g(I ) is a.c. in R and G(I ) exists for every I in R, then

&
X

l(x) dx%G(X )%&
X

u(x) dx

for any measurable set X. In particular, if g«(x) exists a.e. in X, then

G(X )¯&
X

g«(x) dx.
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(vi) If R is one-dimensional and g(I ) is a.c., then

& g(I )¯& u(x) dx, & g(I )¯& l(x) dx,

and, in particular, the existence of either ! g(I ) or ! g«(x) dx implies the existence of the

other, and the two are equal.

(vii) If !
R
g(I )!¢, then the set of points at which u(x)¯¢ and l("

#
,x)"®¢ has

measure zero.

(viii) If !
R
g (I ) exists, then the set of points at which u(x) and l(x) are finite and

unequal has measure zero.

4. The expression of area as an integral

An important application of the Burkill integral is to simplify and extend the work

of W. H. Young and others on the definition of the area of a curved surface. The

starting point is an observation on the conditions needed by Young for !! J du d� to

give a satisfactory expression for the area of the plane set of points bounded by the

curve x¯x(u, �), y¯ y(u, �) when (u, �) traces out the boundary of a rectangle R and

J is the Jacobian of (x, y) with respect to (u, �). Burkill points out that Young’s

conditions involve the partial derivatives of x and y, and the separation of x from y

and u from �, whereas the natural relationship is between points (x, y) and (u, �). This

suggests that J is not the most natural tool, and that a modification of it might be used

to better effect. The modification which he introduces depends on the notion of the

two-dimensional increment ∆(x, y) of (x, y) over the rectangle I in the (u, �) plane which

is defined by

∆(x, y)¯ "

#
[x

"
y
#
®x

#
y
"
x

#
y
$
®x

$
y
#
x

$
y
%
®x

%
y
$
x

%
y
"
®x

"
y
%
],

where the suffices denote corners of I in anti-clockwise direction, and x
"
is the value

of x at point 1. In fact, ∆(x, y) is simply the area of the quadrilateral with vertices

(x
"
, y

"
), (x

#
, y

#
), (x

$
, y

$
), (x

%
, y

%
). It is a function of intervals but is not additive, and

this is the point at which Burkill’s theory becomes relevant.

The upper and lower modified Jacobians L*(x, y), Lk(x, y) are defined as the

upper and lower derivatives of ∆(I ) at (u, �), and if they are equal we say that the

modified Jacobian L(x, y) exists and takes their common value. Its basic properties

are :

(i) L(x, c)¯L(c, y)¯ 0 for any constant c ;

(ii) L(x, y)¯®L(y,x) ;

(iii) L(cx, y)¯ cL(x, y), L(xy, z)¯L(x, z)L(y, z) ;

(iv) if x¯x(u) is independent of � and y¯ y(�) independent of u, then

L¯
dx

du

dy

dv
;

(v) L*, Lk, and L if it exists, are measurable ;

(vi) if the partial derivatives of x and y with respect to u and � are continuous at

(u
!
, �

!
), then L(u

!
, �

!
) exists and has value J(u

!
, �

!
).

These results can be used to define the area bounded by the closed plane curve

x¯x(u), y¯ y(u), a% u% b, x(a)¯x(b), y(a)¯ y(b). The range (a, b) is divided
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into meshes by points a¯ u
!
! u

"
!…! u

m
¯ b, and the corresponding points

A, P
"
,… ,P

m−"
, A form an inscribed polygon. The interval function g(I ) is defined by

g(I
j
)¯ "

#
[x(u

j−"
)y(u

j
)®x(u

j
)y(u

j−"
)] when I is (u

j−"
, u

j
), and the area inside the curve is

defined to be

&
(a,b)

g(I )

when this exists. A sufficient, but not necessary, condition for this is that the curve is

semi-rectifiable in the sense that x(u), y(u) are both continuous and at least one has

bounded variation. If g(I ) is a.c. and the curve has an area A, then

&b

a

g«(t) dt¯A,

and conversely, if !b

a
g«(t) dt exists and has value A, then the curve has area A. There

is an equally satisfactory result when the curve is defined alternatively by x¯x(u,�),

y¯ y(u, �) for points (u, �) on the perimeter of R. It is that if every curve in (x, y)

which is the image of a parallel subrectangle of R has a definite area, and ∆(I,x, y) is

a.c. in R and L(x, y) exists a.e. in R, then A¯ !!Ldud� over R.

A similar appeal to the theory of interval functions can be used to define the area

of a cur�ed surface S consisting of points (x, y, z), where x¯x(u, �), y¯ y(u, �), z¯
z(u, �) are continuous in the rectangle R (a% u% b, c% �% d ). For this, we define

interval functions

g
"
(I )¯∆(I, y, z), g

#
(I )¯∆(I, z,x), g

$
(I )¯∆(I,x, y),

G
"
(I )¯& g

"
, G

#
(I )¯& g

#
, G

$
(I )¯& g

$
,

over I, and suppose that G
"
, G

#
, G

$
exist and are finite for every parallel subrectangle

in R. This means that the projections on any coordinate plane of the curve on S which

is the image of the perimeter of any subrectangle has a definite finite area. Under these

conditions, the area of S is defined as the upper integral over R of

g(I )¯²G#

"
(I )G#

#
(I )G#

$
(I )´"/#,

and the following conclusions are deduced.

(i) The area S is finite if and only if the upper integrals of rG
"
r, rG

#
r, rG

$
r are finite.

(ii) If S is absolutely continuous and L(y,z), L(z,x), L(x, y) exist a.e. in R, then

the area of S is

&& ²L#(y, z)L#(z,x)L#(x, y)´"/# du d�.

5. Approximate differentiation and extensions of the Perron integral

[3, 9, 10, 14, 15, 17]

A major field of study after the establishment of the Lebesgue integral lay in the

search for integrals with greater scope in the range of integrands on which they could

operate and greater facility in applications such as the integration of derivatives.

These integrands, unlike those in the Burkill integral described above, were point

functions and the integrals, including the more familiar ones associated with the
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names of Denjoy and Perron, were defined descriptively as primitives F(x) satisfying

the basic condition F «(x)¯ f(x) in some sense.

The starting point for Burkill was the extension of the concept of differentiation

to that of approximate differentiation, and paper [9], written with Haslam-Jones,

extends and simplifies some earlier work of Besicovitch.

The upper right λ-derivative AD+( f,x, λ) is defined as the lower bound of numbers

a such that the set of points ξ"x for which f(ξ)®f(x)& a(ξ®x) has upper right

density at x less than or equal to λ. Since AD+( f,x, λ) increases as λ decreases to 0,

its limit exists and is called the upper right approximate deri�ati�e, written AD+ f(x).

The other three right or left approximate derivatives, and the upper and lower (two-

sided) approximate derivatives AD* f and ADk f, are defined similarly. The common

value of AD+ f and AD
+
f, when they are equal, is called the right approximate

deri�ati�e, and ADf is the approximate deri�ati�e when all four are equal.

It is plain that ordinary differentiability implies approximate differentiability, but

the stronger result that D+f¯ADf¯D
−
f a.e. in a set X in which D+f is finite is also

valid. Similar extensions can be made to other limit processes, and particularly to

approximate continuity. These ideas are used in [3] to give a particularly direct proof

of the fundamental theorem of the calculus for the Denjoy integral which, in its

restricted form, is known to be equivalent to Perron’s.

The study of the possible disposition of derivatives of measurable functions can

be extended [13] to cases of non-measurable functions by the introduction of the

concept of relati�e measurability, whereby a set X is measurable in relation to X
!

if

there is a measurable set M such that X
!
X¯X

!
M. In the same general field, but not

directly related to it, is a paper [12] on the differentiability of functions of two

variables. This completes the theory of Rademacher and Stepanoff by filling in some

gaps in the latter’s analysis, and goes on to consider monotonic functions in the plane.

In complex notation, f(z) is monotonic increasing if f(z« )& f(z) when z«& z in the sense

that x«&x, y«& y. It is then shown that lim sup rhr−"r f(zh)®f(z)r is finite a.e. when

f(z) is monotonic, and that a similar result holds for a function which, in a certain

sense, has bounded variation.

Burkill’s important contribution to the problem of extending the scope of the

Perron integral was to suggest that approximate rather than ordinary continuity

might be a more natural property of the indefinite integral to aim for, and to

demonstrate this. He uses the usual formulation of the Perron integral, but extends

the concepts of major and minor functions by defining a major function M(x) by the

conditions that it is approximately continuous, M(a)¯ 0 and ADkM(x)"®¢,

ADkM(x)& f(x) a.e. in (a, b). Minor functions m(x) are defined similarly, and we

define K, k respectively as the lower bound of M(b) and the upper bound of m(b) for

all major and minor functions. Then K&k and, if they are equal, we say that f(x) has

an approximately continuous Perron integral (AP) ! f(x) dx equal to their common

value. The AP integral is then consistent with the ordinary Perron integral and, a

fortiori, with Riemann and Lebesgue. Other properties of the AP integral, including

the approximate continuity of the integral, are established.

This generalization of the Perron integral depends on the replacement of

continuity by approximate continuity, but Burkill introduces in a series of papers [11,

14, 15, 17] a generalization in a different direction which leads to what he calls the

Cesa' ro–Perron (CP) integral. The essential idea is to replace Q(xh) in the increment

Q(xh)®Q(x) of a function Q by the arithmetic (Cesa' ro) mean C(Q, x, xh) in the
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interval (x, xh), and Q is called C-continuous at x if C(Q, x, xh)!Q(x) as h! 0.

If Q(x) is finite and C-continuous at every point of an interval, it follows that Q(x)

is at every point the derivative of its indefinite integral. Since an everywhere finite

derivative can be integrated by the restricted Denjoy process, it is appropriate that

this, or rather the equivalent ordinary Perron process, should give the sense in which

the integral for mean values is understood. The (two-sided) upper C-deri�ati�e

CD*Q(x) can now be defined as the upper limit as h! 0 of 2h−"[C(Q, x, xh)®Q(x)].

The lower C-derivative CDkQ(x) is defined similarly and, when CD*Q¯CDkQ, Q

has C-deri�ati�e CDQ equal to their common value. The definition of the CP integral

can now be completed by the use of major and minor functions as in the case of the

ordinary Perron integral. If f(x) is measurable and finite in [a, b], we call M(x) a major

function if it is C-continuous, M(a)¯ 0 and, for a%x% b, CDkM(x)"®¢,

CDkM(x)& f(x). A minor function m(x) is defined similarly, and the Cesa[ ro–Perron

integral CP ! f(x) dx exists and has value K if K and k are defined as before and K¯
k. Burkill goes on to establish the basic properties of the CP integral, including its

consistency with the ordinary Perron integral.

Two papers [14, 17] are devoted to a further generalization of the Perron integral

to a scale of C
r
P integrals in which r can be any positive real number. This depends

on the replacement of the arithmetic mean C(Q, x, xh), corresponding to the case

r¯ 1, by the Cesa' ro mean of order r defined by

C
r
(Q,x,xh)¯ rh−"&x+h

x

(xh®t)r−"Q(t) dt.

In a further paper [15], Burkill shows how the Cesa' ro summability of the Fourier

series of a periodic function f(x) is related to the C
r
P integrability of f(x). If f(x) is C

r
P

integrable and f(xt)®f(x®t)! 2s(C, j ) as t! 0, then the Fourier series of f(x) is

summable (C,k) at x to s if k" j& r1.

The CP integral also provides [16] a powerful and elegant approach to the

problem which was known to be insoluble in terms of the ordinary Perron integral.

This is to express as a Fourier series of a function f(x) any trigonometric series which

converges everywhere or, more generally, has finite upper and lower sums. These

results are generalized in later papers [19] and [20] by extending the scope of the CP

integral by introducing the symmetric CP integral, in which the continuity condition

h−"&x+h

x

F(t) dt!F(x) as h! 0

is replaced by the weaker symmetrical condition

h−" (&x+h

x

F(t) dt®&x

x−h

F(t) dt*! 0 as h! 0.

The results on Fourier series can be extended to Fourier integrals.

Burkill returns later [23] to the idea of a scale of integrals Dα with 0%α% 1 which

spans the gap between the Lebesgue integral (α¯ 1) and the restricted Denjoy

integral (α¯ 0).
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6. Other topics

In addition to the work already described, Burkill also produced papers on a wide

variety of interesting special topics and problems which are not as strongly related to

one another as those in the preceding sections, although they depend for the most part

on similar analytical techniques.

(a) In�ersion formulae [5, 6]. The first paper shows how pairs of formulae of the

type

F(x)¯&H(x, t) dΦ(t), Φ(t)¯&K(t, u) dF(u)

arise through a discontinuity integral

&H(x, t)
¦
¦t

K(t, u)

with values 0 or 1 according as u!x or u"x.

The formulae include Fourier and Hankel transforms, and similar ideas can be

applied to the Mellin transform.

(b) Differential properties of Young–Stieltjes integrals [18]. L. C. Young has

shown that it is possible to define a Stieltjes integral F¯ ! f dφ in cases where φ is not

(as is usual) of bounded variation, provided that a suitable additional constraint is

put on the variation of f. The paper establishes the formal differential relationship

d

dφ& fdφ¯ f

in the precise sense that

F(xh)®F(x)¯ f(x) ²φ(xh)®φ(x)hε(h)´, ε(h)! 0 as h! 0.

(c) Strong and weak con�ergence [7]. The new results in this paper extend the

studies by W. H. Young on the concept of super summability defined by the condition

!Q²r f(x)r´ dx!¢ when Q(u)¯ !u

!
q(u) dt and q(u) is positive and Lebesgue integrable

over every finite interval. The cases q(u)¯ up−" with p& 1 give the familiar Lp classes

(with p¯ 1 indicating ordinary L integrability) and it is shown that well-known

results on strong and weak convergence in Lp can be extended to general Q.

(d ) Hobson’s con�ergence theorem for Denjoy integrals [8]. This extends the study

by Hobson of the behaviour as n!¢ of integrals of the type ! f(t)Φ(t,x, u) dt in which

f(t) is integrable only in the Denjoy sense. This makes it possible to prove, among

other things, that the Fourier series of a D integrable function f is summable a.e. to

f(x) by Riesz means of any order greater than one.

(e) The differentiability of multiple integrals [21]. The integral of an L integrable

function f(P) is strongly differentiable at P
!

if

(mI )−"&
I

f(P) dP
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tends to a limit as the diameter of the interval I (containing P
!
) tends to 0. The main

result is a general theorem on measure from which it is possible to deduce the theorem

of Jessen, Marcinkiewicz and Zygmund that the integral of f(P) in k dimensions is

strongly differentiable a.e. if r f r [log+ r f r]k−" is L integrable.

( f ) Rearrangements of functions [22]. The functions f, f * are rearrangements of

one another if the measures of sets in which f(x)& y and f *(x)& y are equal, and the

main result is an extension from one to two dimensions of a powerful and interesting

inequality of Hardy and Littlewood. The function θ( f,x, y) is defined in a rectangle

R as the upper bound for 0%x«!x, 0% y«! y of

(mI )−"&&
I

f(x, y) dxdy

for a rectangle I in R with (x, y) and (x«, y«) as its north east and south west corners.

The main theorem is that

&& θ( f,x, y) dxdy

is maximum for all rearrangements f of a given function when f decreases from the

south west with contours of the form log (ax−") log (by−")¯k, 0!k!¢.

(g) An integral for distributions [24, 26]. The theory of distribution systematized

by L. Schwartz has important applications in mathematics and physics, and different

approaches to it are possible. Schwartz himself appeals to the general theory of linear

functionals, but this can be avoided [24] by using more traditional techniques based

on Stieltjes integrals extended in an appropriate way. The same analysis is used

effectively in dealing with theorems on Fourier and Mellin transforms.

(h) Polynomial approximation [25]. The paper deals with the following conjecture

of H. Burkill. There is a number K
n
, depending only on n, such that, given a

continuous function f(x), there is a polynomial p
n−"

(x) of degree at most n®1 for

which, for all x in a finite interval I,

r f(x)®p
n−"

(x)r%K
n
sup r∆

n
( f )r

when ∆
n
( f ) is the nth difference (in a sense to be defined) of f(x) with respect to n1

points h
!
, h

"
,… , h

n
of I, and the supremum is taken over all such sets of points.

The theorem was proved by Whitney with ∆
n

being the usual nth difference with

equally spaced h
i
. The theorem is proved here with the much better constant K

n
¯

2−n provided that the h
i
are not required to be equally spread and ∆

n
is defined

appropriately.

(i ) Conca�ity of discrepancies in inequalities [27]. In the inequality G%A between

geometric and arithmetic means of a set of n numbers, there is a discrepancy ∆¯
n(A®G ), and it is known that ∆ is not only non-negative but also super additive in

the sense that it is not decreased by the insertion of additional terms in A and G. The

paper notes similar results for other inequalities (including Holder, Minkowski and

Tchebichoff), and goes on to prove analogues, motivated by discrepancies, of the

Hlawka inequality rxyzr®ryzr®rzxr®rxyr& 0 for vectors.
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A. I am greatly indebted to Dr Harry Burkill for his advice

and help on all parts of this memoir, and to Professor E. J. Kenney for his

appreciation of Charles Burkill’s life and work at Peterhouse.

This article appeared in Biographical Memoirs of Fellows of the Royal Society 40

(1994) 544–559 and is reprinted by kind permission of the Royal Society. The

photograph is the 1968 copyright of David Vicary.
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