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ABSTRACT. To better understand apparent stratigraphic disturbances in ice cores
such as Greenland Ice Sheet Project 2 (GISP2), we examine how ice-sheet flow can trans-
form gentle open folds into order-disturbing recumbent folds. The initial disturbances in
the stratigraphy have their roots in transient dynamic processes and local rheological
inhomogeneities, but the kinematics of even a simple ice-flow model can deform these dis-
turbances enough to alter paleoclimatic interpretation of an ice core. The local vorticity
number suggests which structures can be passively overturned, but analyzing the finite
strain along particle paths gives a more complete picture, especially when taken relative
to a hypothetical core location. Core-relative isochrones, or ‘‘pre-cores’’, predict which
stratigraphic disturbances will appear as obviously overturned layers in a core. The
deformation-gradient tensor along particle paths allows us to calculate the rotation of seg-
ments of various reference slopes.These calculations suggest that observed 20‡ dips in the
GISP2 core are rotating on a time-scale of a few hundred years and could result from dis-
tortions with much smaller slopes produced upstream.The time during which they canbe
recognized to be overturning is short because the rotation rate is high. Once overturned
they are flattened further and may be hard to recognize, especially in the small cross-sec-
tion of a core.

NOTATION

_b Accumulation rate
BðxÞ Bed profile (BðxÞ ¼ 0)
C x coordinate of a hypothetical ice core
d̂ ¼ ðS � zÞ=h, normalized depth
dX; dx Reference and current segments
F Deformation-gradient tensor
FhXxi F withX reference point, x current point
Fxx One of the components of F
H Thickness at the divide
hðxÞ ¼ S � B, thickness
L Velocity-gradient tensor
L Length of flowband, from divide to terminus
QðxÞ Flux through flowband cross-section at x
S0 Surface slope, gradient of SðxÞ
SðxÞ Surface profile
T ¼ H= _b, time-scale
ûðd̂Þ Vertical profile of uðx; zÞ
�uðxÞ Mean horizontal velocity
uðx; zÞ Horizontal-velocity component
v ¼ 0, transverse-velocity component
ŵðd̂Þ Vertically integrated û
wðx; zÞ Vertical-velocity component
Wk Kinematic vorticity number
x Horizontal coordinate (downstream)
y Coordinate orthogonal to x and z
z Vertical coordinate
�; � Reference and current segment angles
_� Rotation rate, time derivative of �
�f Pre-core slope angle
�r Rate-based critical wrinkle angle
@xu ¼ @u=@x, one of the terms of L

1. INTRODUCTION

Underlying the paleoclimatic interpretation of ice cores is
the assumption that a core samples the ice in the order in
which it was deposited. Some post-depositional modifica-
tion in the ice stratigraphy, such as thinning of annual
layers, is anticipated and can be included in the interpret-
ation of the climatic signal. Unanticipated thinning would
introduce errors in some climatic signals, such as the accu-
mulation rate, but actual alteration in the order of some of
the stratigraphic layers in the core sample affects the entire
climatic signal they carry.

1.1. Evidence from ice caps

The suggestion that the Greenland Icecore Project (GRIP)
ice core showed evidence of major climatic shifts in part of
the Eemian interglacial period (GRIP Members, 1993)
proved to be particularly controversial when the nearby
Greenland Ice Sheet Project 2 (GISP2) core lacked the cor-
responding oxygen-isotope oscillations (Grootes and others,
1993). It was suggested that one or both of the cores hadbeen
altered by folding or other forms of mixing. Further
research found evidence for differential thinning, and possi-
bly even folding, in the lower 10% of the ice by comparing
the water isotope signal with the atmospheric dissolved
gases signal (Fuchs and Leuenberger, 1996). A detailed
examination of visible stratigraphy showed dips of up to
20‡, and even a few small overturned folds in the lower
25% of the cores (Alley and others, 1995). A small-scale
structure, called ‘‘stripes’’, was also identified in the GISP2
core (Alley and others, 1997). Photographs of these stripes,
and small folds associated with them, can be seen in Alley
and others (1997). The difficulty in identifying internal
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radar layers in deep ice may sometimes be an indication of
stratigraphic disturbance at these depths (Robin,1983).

Interaction of contrasting layers has been been proposed
as a cause of such folding (Dahl-Jensen and others, 1997).
Layering in anisotropic ice directly under the divide, where
it is subject to vertical compression, appears, in theory, to be
potentially unstable (Azuma and Goto-Azuma, 1996; Cas-
telnau and others, 1998; Thorsteinsson and Waddington,
2002). Recumbent folding observed at the terminus of
Barnes Ice Cap, Canadian Arctic, has been attributed to ad-
vancing or retreating margins (Hudleston, 1977). Foliation
developed under one flow pattern could be passively de-
formed and folded when subjected to a different flow.

The GRIP core was drilled close to the current summit
divide of the Greenland ice sheet in the hope of observing a
maximum possible thickness of undisturbed ice.The GISP2
core was placed ten ice thicknesses (30 km)to the west of the
divide to give a complementary sample of nearby flank-flow
ice. But if the divide moved around during the last glacial
cycle (Anandakrishan and others,1994; Marshall and Cuf-
fey, 2000) it may be best to consider both locations as near-
divide sites. Other cores, such as Dye 3 (Greenland), Camp
Century (Greenland) and Byrd (Antarctica) have been
drilled on clearly flank positions.

Ice-penetrating radar can follow the internal stratig-
raphy over large horizontal extents, to complement the very
small-scale details seen in ice cores. Examples can be found
from Greenland (Jacobel and Hodge,1995), East Antarctica
(Robin, 1983) and Siple Dome, West Antarctica (Nereson
and others, 1998). Unfortunately, the ability of radar to
image folds at scales smaller than tens to hundreds of meters
may be limited.These intermediate-scale folds are also dif-
ficult to clearly identify in ice cores. Without azimuthal
orientation information or reliable ‘‘up’’ indicators (Alley
and others, 1995) it is difficult to say whether a dip in the
stratigraphy in a core sample is the start of a fold, or the
overturned limb of a well-developed fold.

1.2. A passive-shearing model of folding

To understand how stratigraphic layers in an ice sheet could
be reordered,Waddington and others (2001) (alsoWadding-
ton and others,1995; Jacobson andWaddington,1996; Jacob-
son,2001) have studied the kinematics of forming recumbent
folds from gentle disturbances in otherwise steady-state
stratigraphy. At scales of decimeters to decameters, these
initial disturbances could have their roots in some transient
dynamic process, most likely involving local rheological in-
homogeneities. Waddington and others (2001) and Thor-
steinsson and Waddington (2002) evaluate in more detail
some processes that could possibly generate such small-scale
wrinkles. At the scale of hundreds of meters, the arches cre-
ated in internal layers by the special flow pattern found
under an ice divide (Raymond,1983) can be a source of ini-
tial layer disturbance if a stationary ice divide subsequently
migrates rapidly. These arches have been observed in Ant-
arctica at Fletcher Promontory (Vaughan and others,1999),
Siple Dome (Nereson and others, 1998) and Roosevelt Is-
land (Conway and others, 1999). In a separate paper (un-
published manuscript by Jacobson and Waddington) we
investigate the potential for generating folds from these
arches. However, we do not have a comprehensive theory
of how and where injection of disturbances might occur at
other places and at other spatial scales, and so we will limit

this study to examining the consequences of injection at a
variety of positions.

The deformation in an ice sheet in plane strain near its
center can be represented as a combination of vertically
compressive pure shear and bed-parallel simple shear. The
pure shear thins and stretches the stratigraphic layers. It
also flattens disturbances in these layers. The simple shear,
on the other hand, ‘‘catches’’ these wrinkles and deforms
them into order-disrupting recumbent folds. These two
effects are illustrated in Figure1, where the contrasting rota-
tions of the A^B limb are highlighted.When we discuss the
angle and rotation of a segment, it is the behavior of just
such a portion of a disturbance that we have in mind.

Waddington and others (2001) used this trade-off
between stretching and shearing to determine where dis-
turbances of any given slope would be flattening and where
they would be overturning.They assessed the plausibility of
several proposed disturbance sources, and applied their sta-
bility limit estimates to the Dye 3, GRIP, GISP2 and Siple
Dome ice-core sites. Their simple approach was based en-
tirely on the strain rate at a point (e.g. the point at which a
disturbance might be created by localized inhomogeneous
flow). As they noted, their assessment gave an optimistic
view of stratigraphic integrity, because it neglected vari-
ations in strain rate experienced by disturbances as they
moved (a) over undulating bedrock, and (b) into deeper
regions with stronger bed-parallel shear strain rates. They
were able to estimate the time required for disturbances to
overturn, and the distance that disturbances would move
during this time, but only for disturbances that were already
rotating strongly at the point of injection. They suggested
that finite-strain calculations, following disturbances as
they moved along particle paths, would produce better as-
sessments of the behavior of marginally unstable distur-
bances, and would greatly advance understanding of this
passive-folding process. This paper analyzes those finite
strains to understand features of folding that could not be
addressed byWaddington and others (2001).

One measure of the mixture of pure and simple shear is
the kinematic vorticity number, Wk ¼ �_!=�_� (Means and
others, 1980). This is defined so that Wk ¼ 0 for pure shear,
and Wk ¼ 1 for simple shear. �_! is the rotation rate of the
principal axes, and �_� is the difference in their strain rates,
_�max � _�min. In Hudleston and Hooke (1980) this is called

Fig. 1.The deformation of a disturbed layer under (a) pure

shearand (b) simple shear. Pure shear, with vertical compres-

sion, flattens the disturbance. Simple shear steepens (and

overturns)theA^B limbwhile leaving the disturbance ampli-

tude unchanged.
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the index of simple shear, Iss. Under pure shear, the princi-
pal axes do not rotate, while under simple shear, their rota-
tion rate equals the strain rate.

The vorticity number1 for a simple ice-sheet flowband
model is shown in Figure 2. Near the surface of the ice sheet,
vertical compression dominates, so Wk is close to 0. This is
also true directly under the divide where the horizontal flow
is negligible. On the flank, the proportion of simple shear
increases with depth, andWk approaches unity.

In pure shear (as in Fig.1a), vertical and horizontal seg-
ments do not rotate, while segments on either side of vertical
rotate toward horizontal. Under simple shear, all segments,
except those parallel to the plane of shear, rotate in the same
direction (clockwise in Fig. 1b). In mixed pure and simple
shear (0 < Wk < 1), there is some angle, �r � cos�1Wk,
between vertical and horizontal that is not rotating, and
which separates the clockwise rotating segments from the
anticlockwise ones (Bobyarchick,1986).The contours in Fig-
ure 2 have been labeled with this angle.The critical wrinkle
segment slope, mcrit � S�1, in Waddington and others
(2001) is approximately the tangent of �r, and their dimen-
sionless shear number, S, is a variant onWk.

The wrinkle in Figure 1with the A^B segment at about
41‡ would be flattening if it occurred above the 41‡ contour
in Figure 2, but would be steepening (rotating clockwise) if
it was below this contour.

�r is not simply a divider between segments that rotate
one way versus the other. As a segment moves along a par-
ticle path, Wk increases and �r decreases. The effect on the
segment’s rotation can be seen by considering a segment

with an angle equal to �r at time t on the path. At this point
it is not rotating. At tþ dt, a short time later, it will have
practically the same angle, but will be further along the
path, where �r is smaller. Since it is now steeper than �r, its
rotation is clockwise, away from �r. Conversely, at an earlier
time, t� dt, the segment angle would have been larger than
the local �r, which means that the segment was rotating
anticlockwise, toward �r. In effect, the �r angle is a turn-
around point. A segment can flatten until it reaches the
local �r, at which point it reverses rotation direction and
starts to steepen.

1.3. Observation points

Since segments can change their direction of rotation, we
need to look at the evolution of a disturbance over a finite
interval along a path in order to gain amore detailed under-
standing of the folding process than that which the first
analysis of �r byWaddington and others (2001) provides.
This requires choosing meaningful end-points for such an
interval.

The obvious choice for the starting point is where the
disturbance originated, assuming, of course, that there is a
time when the transient dynamics generating the disturb-
ance cease to be significant and we can focus on the kine-
matics. In this paper, we do not examine the complexities
of this transition. In a separate paper (unpublished manu-
script by Jacobson andWaddington) we investigate one such
transition to kinematic overturning, which occurs in the
special flow field found under an ice divide (Raymond,
1983). Herewe limit our study to following smaller-scale dis-
turbances, injected at a variety of positions, after this trans-
ition has occurred.

We have found it equally productive to specify the inter-
val end-point, as the place where we find an observed or hy-
pothetical fold, and ask what sort of disturbance might have
been its precursor. In particular, we look at a vertical set of
observation points, such as might be sampled in an ice core.

To study this kinematic folding, we use a flowband
model to calculate the ice velocity and its gradient at all
points, and use these to calculate particle paths. Then we
define core-relative isochrones and show their relevance to
folding. Next we calculate the deformation gradient and
show how it gives more general information on segment ro-
tation. Finally, we ask how much information is needed to
predict where observed folds might have originated.While
the best evidence for folding has been found in the lower
20% of ice sheets, and while models predict the greatest
likelihood of folding near the bed, nevertheless our models
show that folds canbe encountered virtually anywhere in an
ice sheet, except close to the surface, or directly under a
stable ice divide.

2. FLOWBANDMODEL

After defining some terminology for disturbances and
angles, we will describe a simple flowband model of an ice
sheet. This model calculates the velocity at points in the
flowband as a function of position and model geometry.
Using this velocity field, we can calculate the velocity gradi-
ent,Wk, and �r at specific points.We can also calculate par-
ticle paths and finite strain along these paths.

Fig. 2.The kinematic vorticity number, Wk, and the critical

wrinkle angle, �r, for a simple ice-sheet model. z=H describes

the relative height in the ice sheet; x=L the distance from the

ice-sheet center.The lefthand numberon each contour,Wk, is a

measure of the relative magnitudes of pure and simple shear.

Pure shear dominates near the surface and under the divide

(Wk close to 0) while simple shear dominates elsewhere

(Wk close to 1).The righthand number, �r, is the segment
angle that is not rotatingat this point in the flow(cos�1 Wk).

1Our model geometry and notation are explained in section
2.2.
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20% of ice sheets, and while models predict the greatest
likelihood of folding near the bed, nevertheless our models
show that folds canbe encountered virtually anywhere in an
ice sheet, except close to the surface, or directly under a
stable ice divide.

2. FLOWBANDMODEL

After defining some terminology for disturbances and
angles, we will describe a simple flowband model of an ice
sheet. This model calculates the velocity at points in the
flowband as a function of position and model geometry.
Using this velocity field, we can calculate the velocity gradi-
ent,Wk, and �r at specific points.We can also calculate par-
ticle paths and finite strain along these paths.

Fig. 2.The kinematic vorticity number, Wk, and the critical

wrinkle angle, �r, for a simple ice-sheet model. z=H describes

the relative height in the ice sheet; x=L the distance from the

ice-sheet center.The lefthand numberon each contour,Wk, is a

measure of the relative magnitudes of pure and simple shear.

Pure shear dominates near the surface and under the divide

(Wk close to 0) while simple shear dominates elsewhere

(Wk close to 1).The righthand number, �r, is the segment
angle that is not rotatingat this point in the flow(cos�1 Wk).

1Our model geometry and notation are explained in section
2.2.
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2.1. Disturbance notation

A prototypical upward disturbance with key terms is de-
picted in Figure 3. Such a wrinkle might be the result of
stratigraphic layers draping around a transient rheologi-
cally harder lump of ice (Waddington and others, 2001). Of
particular interest is the leading limb (the A^B edge in Fig.1),
which is the portion of this disturbance which would over-
turn when sheared in the direction of flow.We will also refer
to the trailing limb, the portion that will flatten under both
pure and simple shear. If the disturbance were inverted
(that is, a dip) the limb on the upstream side of the distur-
bancewouldbe the limb at risk of overturning.The required
adjustment in terminology is left to the reader.

We will use � for the angle of a segment, measuring it
relative to the horizontal axis pointing in the upstream dir-
ection (to the left in our prototype). This choice of angle
orientation means that the initial angle of a leading limb
will be in the 0^90‡ range, and will increase to 90‡ and be-
yond when the leading limb overturns. A trailing limb will
start in the 90^180‡ range and rotate toward 180‡.

For the purposes of this paper, we ignore the distinction
between horizontal and the slope of undisturbed stratig-
raphy. Near the center of an ice sheet, the slope of stratig-
raphy over a flat bed is negligible, on the order of 0.5‡ or less.

2.2.Velocity model

We use a simple flowbandmodel, with enough detail to cap-
ture the change in the vorticity number along particle paths
but without complicating details. This model assumes that
surface slopes are small and that the bed is frozen. This is
true for the central portion of many, though not all, ice
sheets and ice caps. Allowing sliding on all or portions of
the base would require a significantly more complicated
flowband model; however, as long as some ice flow due to
horizontal shear is present, folding as encapsulated in Fig-
ure 1will be present.

Figure 4 illustrates our model. The coordinate system is
aligned with the direction of flow. The horizontal coordi-
nate in this direction is x, while z is the vertical coordinate.
The corresponding velocity components are u and w (posi-
tive upward). Perpendicular to these is y, with its velocity
component v, being zero by definition.

The geometric inputs to our velocity model are the sur-
face profile SðxÞ and the bed profileBðxÞ.The flowband ice
equivalent thickness is hðxÞ ¼ S � B.

The transverse geometry can be expressed in terms of a
relative flowband width, and used to calculate the trans-
verse spreading rate @yv, as a function of u and x.

We also specify the flux QðxÞ, through the flowband
cross-section at x. Dividing by the thickness gives a depth-
averaged horizontal velocity, uðxÞ ¼ Q=h.

Rounding out the inputs is an expression for the vertical
profile (shape function) of the horizontal velocity, ûðx; zÞ.
The source of this function is a dynamic model that includes
momentum conservation and ice rheology. The horizontal
velocity can then be written as

uðx; zÞ ¼ uðxÞûðx; zÞ : ð1Þ
Since the integral of u over the thickness equals the flux, the
integral of û over z must equal h. The vertical velocity can
be derived from uðx; zÞ by incompressibility,

wðx; zÞ ¼ �
Z z

B

@xuþ @yv
� �

dzþ wðx; BÞ : ð2Þ

We simplify the calculations with a number of assump-
tions, which can be selectively relaxed to explore their effect
on the results. Few are essential to this analysis, but they al-
low us to keep the description simple, while retaining the
features of the flow that are key to folding. The resulting
model was first proposed by Vialov (1958) (see also Reeh,
1988).

We assume that the base is flat, BðxÞ ¼ 0, and that the
ice is frozen to the bed, so that uðx; BÞ ¼ wðx; BÞ ¼ 0.The
flowband width is uniform, so that all the gradient terms in
the y direction vanish.This approximates the flow on an ice
ridge or a highly elongated dome. The velocity gradient is
then

L ¼ rv ¼ @xu @zu
@xw @zw

� �
: ð3Þ

We assume that the ice-sheet surface is in steady state. The
fluxQðxÞ through a cross-section must equal the integrated
accumulation upstream. If we also assume that the accumu-
lation rate, _b, is uniform in space, then the flux is
QðxÞ ¼ _b x.

This uniform-accumulation assumption requires that
we specify the length or span of the flowband L, in order to
determine the model geometry. In effect, we specify the

Fig. 3. Prototypical disturbance, illustrating our notation, in-

cluding leading limb, trailing limb and �. Segment slope is
measured relative to horizontal (pointing upstream). Not

shown is the slight slope (relative to horizontal) of the undis-

turbed stratigraphy. One could imagine a disturbance such as

this forming around a rheologically stiffer ‘‘lump’’ in the ice.

Such a lump would also disturb the layers below it.

Fig. 4. Flowband geometry and notation defined in text.

Crosses on the particle path mark equal elapsed time intervals.
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location of a calving front that can handle any flux. The
conditions at such a terminus are not realistic, but they do
not adversely affect the model a short distance inland. L
could also be thought of as a virtual or effective length. If
an ice sheet terminates in an ice stream (as Siple Dome
does) or a narrow ablation zone, the terminus profile would
be different, but this model would still be useful over a wide
region around the divide.

To specify û and S, we assume that the ice is isothermal,
and use the shallow-ice approximation (Hutter,1983; Pater-
son,1994, p. 262) with Glen’s flow law.This flow law assumes
that the deviatoric stress �0, and strain rate _�, are related by
_� ¼ A�03, whereA is a temperature-dependent flow param-
eter. Since, in a typical ice sheet, the length is much larger
than the thickness, the shearing component, @zu, is the larg-
est term of the velocity gradient over much of the flowband,
and the flow law can be written as

@zu � 2 _�xz � 2A�03
xz ¼ �2Að�gÞ3S03h3d̂3 ð4Þ

d̂ ¼ S � z

h
normalized depth ð5Þ

�0
xz ¼ ��gS0hd̂ shear stress ; ð6Þ

where S0 is the surface gradient. Integrating Equation (4)
upward from the bed gives the horizontal velocity and its
shape function.

u ¼ �2Að�gÞ3S03h3

Z z

0

d̂3 dz

¼ � 1

2
Að�gÞ3S03h4 1� d̂4

� �
¼ uûðd̂Þ ð7Þ

ûðd̂Þ ¼ 5

4
1� d̂4
� �

ð8Þ

In this case, û is a function of only d̂.
The corresponding vertical velocity (using Equation

(2)) is

w ¼ � _bŵðd̂Þ þ uS0 1� d̂
� �

: ð9Þ

ŵðd̂Þ �
Z 1

d̂

ûðd̂Þ dd̂ ¼ 1� 5

4
d̂þ 1

4
d̂5 : ð10Þ

A surface profile consistent with this ûðd̂ Þ can be derived
from the steady-state expression for the flux.

QðxÞ ¼ _bx ¼
Z S

B

uðx; zÞ dz ¼ � 2

5
Að�gÞ3S03h5 ð11Þ

This can be rewritten as a differential equation in S0, which
can be solved numerically. In the simple case of a flat bed
and uniform accumulation, it can be solved analytically
(Vialov,1958) giving

SðxÞ ¼ H 1� x

L

� �4=3� �3=8
: ð12Þ

The maximum thickness, H ¼ hð0Þ, is related to the other
parameters (L, _b and A) by

H ¼ 20 _bL4

Að�gÞ3

 !1=8

: ð13Þ

The horizontal coordinate x scales withL, while the ver-
tical coordinate and ice-sheet thickness scale with H. With
a typical H=L ratio of 1=50, the surface slope S0 (for
x < 0:5L) is small. The time-scale is set by T ¼ H= _b. The
velocities, u and w, scale with L=T andH=T (¼ _b) respect-
ively.

The velocity gradient, L (Equation (3)), scales as

1 L=H
H=L 1

� �
1

T
: ð14Þ

Since L is much larger than H, the @zu term clearly domi-
nates. The @xw term is ðH=LÞ2 times smaller, and can in
many cases be assumed to be zero.

2.3. Segment rotation rate

With a velocity model we can calculate the velocity gradi-
ent, and from that the rotation rate _�, of a segment with an
angle of �.

_� ¼ @zu sin
2 �� ð@xu� @zwÞ sin � cos �� @xw cos2 � :

ð15Þ
When Wk is small (mostly pure shear), the ð@xu� @zwÞ
term dominates, resulting in rotation away from vertical
for most angles. In most of the ice sheet @zu dominates, pro-
ducing a positive _� for most angles except a small set close to
0�(horizontal upstream). At some points over an uneven
bed, it is possible for @zw to be sufficiently negative that
_� > 0 for all segment angles. At such pointsWk > 1.

When @xw is negligible, the segment is not rotating
( _� ¼ 0) if tan � � ð@xu� @zwÞ=@zu. In this case, the vorti-
city number can be written as

Wk ¼
�_!
�_�
¼ @zu� @xwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð@zuþ @xwÞ2 þ ð@xu� @zwÞ2
q

� @zuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@zu2 þ ð@xu� @zwÞ2

q

� cos tan�1 @xu� @zw

@zu

� 	
¼ cos �r ; ð16Þ

confirming the relationship between Wk and �r shown in
Figure 2.

In general there are two segment angles that do not ro-
tate, one of which is the reference steady-state stratigraphy
angle.They merge into one for simple shear. cos�1Wk is the
sum of angles of these two non-rotating segments. For small
@xw, the approximation in Expression (16) is valid because
one of these is practically horizontal. Waddington and
others (2001) refine this idea of a non-rotating segment by
calculating the segment that is not rotating relative to the
reference steady-state isochrone at a point. However, this
requires knowing the slope and rotation rate of the iso-
chrones, which must be calculated from particle paths.

2.4. Particle paths

We calculate particle paths by solving the pair of differential
equations:

_x ¼ uðx; zÞ _z ¼ wðx; zÞ: ð17Þ
Path calculation can start at any point in the ice sheet, and
run either forward or back in time. Each point along a path
is defined by a triplet of values, ½x; z; t�. For a steady-state
geometry, only relative times are important.We solve these
differential equations numerically with the ordinary differ-
ential equation (ODE) routines provided with MATLAB
(Shampine and Reichelt,1997).

In velocity andparticle-path calculations, the horizontal
and vertical coordinates can be rescaled independently, but
the slope and finite deformation calculations (next section)
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retain a dependence on the H=L ratio. For most of our
examples, we use an ice ridge with dimensions comparable
to Siple Dome, which has a 1/50 ratio. We also examine a
Greenland-like ridge which has a 1/100 ratio (Table 1).

3. PRE-CORES

A conventional isochrone is the set of glacial ice of the same
age, where age is the time since the ice accumulated at the
surface.We can equally well construct isochrones relative to
another set of initial points such as the set of vertically
aligned points at a possible core site (located at x ¼ C).
Such isochrones would show where the ice currently in the
core was located at earlier times. A set of core-relative iso-
chrones, which we call pre-cores, is shown in Figure 5 for a
core at 0:2L.

Figure 6 illustrates why pre-cores are relevant to the
problem of turning open folds into recumbent folds. If a dis-
turbance originates at point (p) with a leading-limb angle
equal to the pre-core slope angle (24‡ in this example), this
limb will be near-vertical when the disturbance reaches
point (q) at x ¼ 0:2L. This disturbance would appear as
an obvious fold-in-progress in a core sample taken at this
point (provided that it is small enough to fit in the core
cross-section). Further downstream at point ðrÞ it will ap-
pear as a nearly horizontal (�= 176‡) segment.

A graphical way to use these pre-cores would be to over-
lay themwith plots of representative disturbances. Any por-
tion of a disturbance that is steeper than the corresponding
pre-core will be overturned at the core location. Portions
that are not as steep as the pre-core will not be overturned

in this core, although overturning further downstream is
still possible. Pre-cores can also be generated for more com-
plicated flow models, as long as particle paths and strati-
graphic isochrones can be calculated.

Figure 7a shows contours of the angles of the pre-cores in
Figure 5, with the same particle paths shown.We denote this
angle field as �fðx; z;CÞ. It is a function of the point in the
ice sheet, and of the core location. Figure 7b shows the
angles along three particle paths for segments that have an
angle of 90‡ at x ¼ C. The rotation through vertical is
abrupt for deep paths, and much more gradual for paths
near the surface. This contrast in rotation rates is largely a
result of the larger vorticity number at depth, though the
lower velocity near the bed makes the contrast stronger
when plotted against distance (x) rather than against time.

In Figure 7b, the angle at point ðpÞ is close to the mini-
mum along its particle path. This means that a segment
with a slope angle of 24‡ is not rotating at this point in the
flowband. In Figure 7a, the same property is seen in the fact
that the angle contour is parallel to the particle path at this
point. At this point, �r � 24‡.

Consider a segment with an angle of 60‡ near the surface
on the same particle path (the middle diamond). As it
moves downstream, it is flattened (angle decreasing) until
it reaches point ðpÞ. At this point it starts rotating in the
other direction. It passes through vertical at ðqÞ and con-
tinues rotating toward horizontal in the downstream direc-
tion. Disturbances can be flattened when Wk is small
(dominant pure shear), but farther along the path, Wk

grows to the point that the flattening changes to steepening
and overturning.

The pre-core slope angles �fðx; z;CÞ contoured in Fig-
ure 7a are the angles of segments that will reach vertical (�
= 90‡) in the core at x=C. At any point in the ice sheet, we
can also think of �f as a threshold for disturbances that will
be overturned in an ice core at C. Segments that are steeper
than �f will overturn prior to reaching the core location, C.
Segments with a smaller � < �f will not overturn before
they get to C and might never do so.

The f subscript in �f alludes to the finite time interval
over which this rotation to vertical occurs.This is in contrast
to the critical wrinkle angle, �r, derived byWaddington and
others (2001), which focuses on the rate at which a segment is
rotating at a point. �f is a function of both the chosen core
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T ¼ H= _b (years) 10 000 10 000
A (kPa^3 s^1) 5.6610^16 3.3610^16

Fig. 5. Core-relative isochrones (pre-cores) for an ice sheet with anH toL ratio of 1:50 and a core at 0:2L (10H).The heavier

lines are at 1T intervals. Selected particle paths are drawn as dotted lines.

Jacobson andWaddington: Recumbent folding in ice sheets

8

retain a dependence on the H=L ratio. For most of our
examples, we use an ice ridge with dimensions comparable
to Siple Dome, which has a 1/50 ratio. We also examine a
Greenland-like ridge which has a 1/100 ratio (Table 1).

3. PRE-CORES

A conventional isochrone is the set of glacial ice of the same
age, where age is the time since the ice accumulated at the
surface.We can equally well construct isochrones relative to
another set of initial points such as the set of vertically
aligned points at a possible core site (located at x ¼ C).
Such isochrones would show where the ice currently in the
core was located at earlier times. A set of core-relative iso-
chrones, which we call pre-cores, is shown in Figure 5 for a
core at 0:2L.

Figure 6 illustrates why pre-cores are relevant to the
problem of turning open folds into recumbent folds. If a dis-
turbance originates at point (p) with a leading-limb angle
equal to the pre-core slope angle (24‡ in this example), this
limb will be near-vertical when the disturbance reaches
point (q) at x ¼ 0:2L. This disturbance would appear as
an obvious fold-in-progress in a core sample taken at this
point (provided that it is small enough to fit in the core
cross-section). Further downstream at point ðrÞ it will ap-
pear as a nearly horizontal (�= 176‡) segment.

A graphical way to use these pre-cores would be to over-
lay themwith plots of representative disturbances. Any por-
tion of a disturbance that is steeper than the corresponding
pre-core will be overturned at the core location. Portions
that are not as steep as the pre-core will not be overturned

in this core, although overturning further downstream is
still possible. Pre-cores can also be generated for more com-
plicated flow models, as long as particle paths and strati-
graphic isochrones can be calculated.

Figure 7a shows contours of the angles of the pre-cores in
Figure 5, with the same particle paths shown.We denote this
angle field as �fðx; z;CÞ. It is a function of the point in the
ice sheet, and of the core location. Figure 7b shows the
angles along three particle paths for segments that have an
angle of 90‡ at x ¼ C. The rotation through vertical is
abrupt for deep paths, and much more gradual for paths
near the surface. This contrast in rotation rates is largely a
result of the larger vorticity number at depth, though the
lower velocity near the bed makes the contrast stronger
when plotted against distance (x) rather than against time.

In Figure 7b, the angle at point ðpÞ is close to the mini-
mum along its particle path. This means that a segment
with a slope angle of 24‡ is not rotating at this point in the
flowband. In Figure 7a, the same property is seen in the fact
that the angle contour is parallel to the particle path at this
point. At this point, �r � 24‡.

Consider a segment with an angle of 60‡ near the surface
on the same particle path (the middle diamond). As it
moves downstream, it is flattened (angle decreasing) until
it reaches point ðpÞ. At this point it starts rotating in the
other direction. It passes through vertical at ðqÞ and con-
tinues rotating toward horizontal in the downstream direc-
tion. Disturbances can be flattened when Wk is small
(dominant pure shear), but farther along the path, Wk

grows to the point that the flattening changes to steepening
and overturning.

The pre-core slope angles �fðx; z;CÞ contoured in Fig-
ure 7a are the angles of segments that will reach vertical (�
= 90‡) in the core at x=C. At any point in the ice sheet, we
can also think of �f as a threshold for disturbances that will
be overturned in an ice core at C. Segments that are steeper
than �f will overturn prior to reaching the core location, C.
Segments with a smaller � < �f will not overturn before
they get to C and might never do so.

The f subscript in �f alludes to the finite time interval
over which this rotation to vertical occurs.This is in contrast
to the critical wrinkle angle, �r, derived byWaddington and
others (2001), which focuses on the rate at which a segment is
rotating at a point. �f is a function of both the chosen core

Table 1. Characteristic geometry parameters

Parameter Siple Dome Greenland

L (km) 50 300
H (m) 1000 3000
H/L 1/50 1/100
_b (ma^1) 0.1 0.3
T ¼ H= _b (years) 10 000 10 000
A (kPa^3 s^1) 5.6610^16 3.3610^16

Fig. 5. Core-relative isochrones (pre-cores) for an ice sheet with anH toL ratio of 1:50 and a core at 0:2L (10H).The heavier

lines are at 1T intervals. Selected particle paths are drawn as dotted lines.

Jacobson andWaddington: Recumbent folding in ice sheets

8
https://doi.org/10.3189/172756504781830204 Published online by Cambridge University Press

https://doi.org/10.3189/172756504781830204


location, C, and the current location of the ice segment,
while �r is a function of only the velocity gradient at the
current location. As noted above, in connectionwith Figure
7, along a particle path �f decreases, reaches a minimum
and then increases. At its minimum, �f equals the local �r.
For points upstream, the �f corresponding to this path (and
core) is smaller than the local �r. For points downstream
from the minimum, the opposite is true.

The finite perpendicular material line (FPM) of Grase-
mann and Vannay (1999) is similar to our pre-cores. They
show that currently inverted metamorphic zones in rock
could have originated with tilted but otherwise normal
(cold over hot) metamorphic isotherms. The FPM is the
pre-deformation alignment of a set of rocks sampled in the
currently deformed terrane.

4. DEFORMATION-GRADIENT TENSOR

Pre-cores and their slope angle, �f, give an idea of how ice
segments rotate as they move along particle paths toward
the ice-core location. In particular they show which dis-
turbances will be vertical in a core sample.We are also inter-
ested in layer disturbances that may not be exactly vertical
in a core. Amore general tool for relating segments, or small
structures in general, at one point in the ice-flow field to
their strained form at a core sample is the deformation-gra-
dient (or finite-strain) tensor. In this sectionwe explain how
this tensor is calculated with our flow model, and use it to
calculate �f.

4.1.The strain from reference point to current point

The deformation-gradient tensor is a measure of the strain
that occurs over a finite distance in a flow field. Let dX
(with components dX and dZ) be a small segment at a ref-
erence point such as ðpÞ in Figure 6. The corresponding de-

formed segment, dx at the current point (e.g.ðqÞ), can be
expressed as a linear function of dX.

dx ¼ FhðpÞðqÞi � dX ; ð18Þ

where FhðpÞðqÞi is a tensor mapping dX onto dx. The
bracketed subscripts denote the reference and current
points.When it is clear which points we are referring to, we
will just write F.The component Fxx ¼ @x=@X maps a ref-
erence horizontal segment (or the horizontal component of
a segment), dX, onto the current horizontal component, dx.
Fxz maps dZ onto dx (vertical to horizontal). In terms of the
tensor components, Equation (18) is

dx
dz

� �
¼ Fxx dX þ Fxz dZ

Fzx dX þ Fzz dZ

� �
: ð19Þ

The tensors for the deformations shown in Figure 1are

ðaÞF ¼ 3=2 0
0 2=3

� �
and ðbÞF ¼ 1 1

0 1

� �
: ð20Þ

We are particularly interested in the rotation of layer
segments. If � is the angle of the segment at the reference
point, then the current angle, �; satisfies

tanð�Þ ¼ dz

�dx
¼ �Fzx þ Fzz tanð�Þ

Fxx � Fxz tanð�Þ : ð21Þ

(The negative signs result from defining angles relative to
the �x coordinate.)

F can be calculated from closely spaced particle paths,
much as finite strain is calculated in the field or laboratory;
however, we can also find it using a set of differential equa-
tions

_F ¼ L � F : ð22Þ

L (Equation (3)) is the spatial gradient of the velocity rela-
tive to the current-point coordinate frame, while _F is the
gradient of the velocity relative to the reference-point frame.

Fig. 6.The relation of pre-cores to the folding of a sample disturbance. A particle path (dotted line) is shown with three pre-cores

(solid line).The pre-cores are at 0:4T before and after the core at 0:2L (10H).The small figures underneath show a represen-

tative disturbance at these three points, ðpÞ, ðqÞ and ðrÞ.These three plots have the same scale, but a different aspect ratio from the

larger plot.The particle path and pre-core through the center point is included on each subplot.The number in the upper right corner

is the angle of the pre-core at that point.
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We can get a rough idea of where Equation (22) comes from
by writing

d

dt

@x

@X

� 	
¼ @

@X

dx

dt
¼ @v

@X
¼ @v

@x

@x

@X
: ð23Þ

See Malvern (1969, section 4.5) for details.
We solve Equation (22) for F when we calculate a par-

ticle path (Equation (17)), using I, the identity matrix, as
its initial value. These form a differential-equation system
of six variables (x, z and the four strain terms). L is cal-
culated with an eight-point finite difference to maximize
continuity. The error tolerances have to take into account
the widely differing magnitudes of the variables. The result
is a series of F tensors, one for each point along the particle
path, relating dx at that point to dX at the path start. The
components of such a series of tensors are shown in Figure
8b^d.The particle path is shown in Figure 8a. In Figure 8b
and c the reference point is at the surface of the ice sheet.
The diagonal components of the tensor, Fxx and Fzz, start
at 1, while the two shear components, Fzx and Fxz, start at
0. Fzx remains too close to zero to plot with the other com-
ponents (it is slightly negative, with some increase in magni-
tude near the terminus).

The determinant of F is the Jacobian (Malvern, 1969,
section (equation (4.5.25)) relating an infinitesimal de-
formed volume at the current point to the undeformed
volume at the reference point. Since ice is incompressible,
this determinant must be equal to unity at all points along
the particle path.

1 ¼ jFj ¼ FxxFzz � FzxFxz : ð24Þ

While FzxFxz is small, Fzz � 1=Fxx.When x=L < 1=3, Fxx

is approximately linear in x. (See Appendix B for details.)
This also means that Fzz � x0=x, so that the amplitude of
a disturbance decreases inversely with the distance traveled
away from the divide. Adisturbance observed at 10H would
be approximately half as high as it had been at 5H, regard-
less of the observation depth or slope.

4.2. Choosing the core as reference point

The reference point ofF canbe changed.Taking the inverse,
F�1

hðpÞðqÞi, interchanges the reference and current points, (p)
and (q), in effect undoing the strain.

dX ¼ F�1
hðpÞðqÞi � dx ¼ FhðqÞðpÞi � dx ð25Þ

We use such an inverse to shift the reference point from the
surface, (s), to the core, (q).

FhðqÞðpÞi ¼ FhðsÞðpÞi � F�1
hðsÞðqÞi ð26Þ

The components for such a shifted set of F tensors are
shown in Figure 8d and e.

Since a segment aligned with the core at ðqÞ (Fig. 6) is
vertical (� ¼ 90�), its angle at other points on the particle
path can be calculated from a modified version of Equation
(21),

tan �f ¼
�Fzx0þ Fzz dZ

Fxx0� Fxz dZ
¼ Fzx

�Fxz
: ð27Þ

This is the pre-core slope angle, �f, contoured in Figure 7
and plotted in Figure 8f.

The minimum point of �f along the path, where �f ¼ �r,
is a consequence of the variation of the velocity gradient, L,
along the path. As L changes, �r decreases, leading to the
change in rotation direction for certain segments (section
1.2). On the other hand, the rapid change in �f while it passes
through 90� (at the core) does not depend on L changing.
This rapid rotation through vertical occurs even when L is
assumed to be constant (see Appendix C).

4.3. Patterns of segment deformation

The �f plot in Figure 8 (and Fig.7b) shows the angle evolu-
tion of an ice segment that is vertical at the core.The series
of F tensors along a particle path can be used to track the
history of any segment. Figure 9 shows the angle evolution
that a set of ice-layer segments would undergo as they travel
along a particle path. The history varies depending on the
initial angle � of the segment. On the left, pure shear dom-
inates, because the path is near the surface. All segments ro-
tate toward horizontal (0‡ and180‡). Segments near vertical

Fig. 7. (a) Contours of the pre-core angles, �f, in degrees. (b) Pre-core angles along selected particle paths (marked with � at the
surface). ðpÞ, ðqÞ and ðrÞ points in Figure 6 are also shown.
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are under compression (the shaded region) while near-hori-
zontal segments are under extension. As the proportion of
simple shear increases, the range of angles under compres-
sion shifts to angles less than 90‡. All segments with an angle
less than that of the particle path itself, �p, continue to rotate
toward 0�.

5. PREDICTING THE ORIGIN SITE OF OBSERVED
FOLDS

We can start with an observed structure in a core, and at-
tempt to predict where it originated and what its shape was
there.The amount of information that we can deduce about
the original disturbance depends on howmuch information
we can glean from the deformed structure. To further con-
strain the point of origin, we may have to make some add-
itional assumptions about the source disturbance. For
example, if we assume that gentle wrinkles are more likely
to occur than steeper ones, then the point where the �f curve
has a minimum may be the most likely point of origin of a
disturbance.

5.1. Minimum disturbance-angle assumption

In cores such as GISP2, stratigraphic layers with tilts of 5^
20‡ have been observed (Alley and others, 1995). With our
deformation model, we can project these tilted layers up-
stream and downstream from the observed location at 9H

from the divide (� 0:1L). Figure10a shows the angle history
of the leading limb of a recumbent fold at a depth of 0.8H =
2400m in the core. At the core site, its angle is slightly past
vertical (100‡). This recumbent fold could have originated
from a disturbance with leading-limb angle of about 10‡ at
x � 6H. This disturbance has been largely unchanged or
flattening for most of its history, with most of its rotation oc-
curring close to the core site. Figure 10b is similar but for a
20‡ segment at 0.88H = 2640m depth. Because the azi-
muthal orientation of the core is unknown, we show the his-
tory for segments that tilt 20‡ in both the upstream and
downstream directions. During their prior history, the
minimum angles are practically the same for both segments
(about 5‡).Themost likely origin point of this disturbance is
a broad region around 5H. For similar segments at a depth
of 0.92H, the minimum angle is closer to 3‡.

It is apparent from Figure 7 that the �f minimum is
further upstream the deeper we look in the core (in
Figure 7a the minimum �f occurs along a particle path
where the �f contour is tangent to the path). However, as is
evident from the curves in Figure 7b, the deeper we look in
the core, the less ability we have to resolve that disturbance
injection point, because on the deeper paths �f has much
broader minima. Thus disturbances with similar small
angles that fall anywhere in a broad region can all cause
overturning folds at the core site downstream.

We emphasize the fact that, when layer segments over-
turn, they overturn very quickly. The characteristic time-
scale T ¼ H= _b for strain in central Greenland is
10 000 years (Table 1). The steady-state age of ice at 0.8H
depth at the location of the GISP2 core is 25000 years. The
time for a segment to evolve from its upstream minimum
value to 90‡ (vertical) at the core is about 700 years. In Fig-
ure 10b, at a deeper level, the age is 40 000 years, and the
time from minimum slope to overturning is about
1000 years. In contrast, the time taken to rotate from 20‡
through vertical to 160‡ is only about 200 years, i.e. rotation
through angles differing significantly from horizontal hap-
pens very quickly.

Fig. 8.F components of (dimensionless) finite strain along a

particle path (a). In (b) and (c) the reference point (�) is at
the surface; in (d) and (e) it is at x ¼ 0:2L. (f) Finite-

strain threshold, �f ¼ tan�1ð�Fzz=FxzÞ.

Fig. 9. Rotation of segments of various initial slope angle �
along a particle path (Fig. 8a). The line marked �f is the
pre-core angle for a core at 0:2L.The heavy dashed line is the

angle of the particle path, �p. Shading marks where segments
are undergoing shortening. The dotted line marks the zero-

rotation angle, �r, which was used to formulate a folding

criterion in earlier studies (Waddington and others, 2001).
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Fig. 8.F components of (dimensionless) finite strain along a
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strain threshold, �f ¼ tan�1ð�Fzz=FxzÞ.

Fig. 9. Rotation of segments of various initial slope angle �
along a particle path (Fig. 8a). The line marked �f is the
pre-core angle for a core at 0:2L.The heavy dashed line is the

angle of the particle path, �p. Shading marks where segments
are undergoing shortening. The dotted line marks the zero-

rotation angle, �r, which was used to formulate a folding

criterion in earlier studies (Waddington and others, 2001).
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These steady-state depth^age values do not take into ac-
count the much lower accumulation rate during glacial
times, so they are younger than measured core ages. How-
ever, the overturn times fall well within the current intergla-
cial period, so the deformation causing this folding is not
affected by the earlier accumulation rates.

Figure 11 shows a similar case with a different flowband
model. The bed approximates the radar profile from the
Greenland summit (Jacobel and Hodge, 1995; Castelnau
and others 1998). The velocity profile ûðx; d̂ Þ has been
adapted from a finite-element flowband model (Bolzan
and others,1995; Nereson and others,1998). Most of the dif-
ference between Figures 10 and 11, once the bed slope is ac-
counted for, can be attributed to the polythermal nature of
the finite-element model.

It should be noted that withbedundulations (Fig.11), the
�f curve has multiple local minima, suggesting that a fold
observed in a core could have originated as a shallow distur-
bance in any of several distinct localities. If the segment
angles are measured relative to the local steady-state iso-
chrone (Waddington and others, 2001) this oscillation in �f
is reduced, but not eliminated (Jacobson, 2001).These mini-
ma of �f are also points where the rotation rate is zero.Thus
the presence of bed undulations increases the need to look at
the finite strain along a particle path, and not just the local
rotation rate (Waddington and others, 2001), when evaluat-
ing fold potential.

5.2. Symmetric disturbance assumption

We could also constrain the disturbance location if we knew
its initial shape. If the disturbance is the result of layers
draping over a transient ‘‘hard lump’’ (Fig. 3) it might be
reasonable to assume that, before shearing, the disturbance
was symmetrical as depicted at point (p) in Figure 6. If we
observe the fold at point (q) (in a core), and measure the
angles of the leading limb and trailing limb, we can con-
strain the location of point (p), by running the wrinkle

backwards from the core until its shape becomes symmetri-
cal. See Appendix D for details of such a calculation.

Thorsteinsson and Waddington (2002) investigated the
deformation pattern in an anisotropic layer in which the c
axes clustered in a cone, and the cone orientation varied
with position; non-symmetric wrinkles were created in pure
shear, which approximates the stress pattern in the upper
part of an ice sheet near a divide. However, if the fabric
was everywhere vertical, and varied spatially only in its de-
gree of clustering about the vertical (cone angle), then we
could expect that symmetric wrinkles would be created in
pure shear. If a search for asymmetric origin of an observed
wrinkle finds no solution (as shown in Appendix D), this
could be an indication of variable and non-vertical fabrics
at the source region. In such a case we would have to use a
flow model that takes the fabrics into account.

6. DISCUSSION

While the probability of a core containing a fold increases
downstream, and deeper into the ice sheet, this fold may be
harder to recognize.The interval during which a fold is ob-
viously overturning is short, because the overturning limb
rotates rapidly. Once a segment has overturned, it continues
to rotate toward the orientation of the undisturbed iso-
chrones. Since ice lacks reliable ‘‘up’’ indicators (Alley and
others, 1995), the fold limbs will merge back into the other-
wise undisturbed stratigraphy, leaving a stratigraphic
‘‘error’’ that may be undetectable in an ice core.

Folds can also be difficult to identify in radar layering.
First, as noted above, folds can overturn very quickly when
the leading limb is noticeably non-horizontal; the leading
limb spends very little time at a high angle to the normal
stratigraphy.When a fold is sub-parallel to the undisturbed
stratigraphy, it is unlikely to be identified as a fold by radar.

Fig.11. Predicted histories of observed disturbances in a core at

9H(� GISP2), as in Figure 10, but with bed and velocity

profiles that better approximate the Greenland summit

area.(a) History of a 100� slightly overturned core segment
at a depth of 0:8H (15� minimum slope upstream).(b)His-

tories of segments that are oriented at 20� and 160�at 0:88H
depth in the core (2^4‡ minimum slope upstream). Relative to

the bed slope these minima are (a) 15‡ and (b) 5^6‡.The

bed-slope angle is plotted at the top and bottom (centered on

180‡ and 0‡).

Fig.10. Predicted histories of observed disturbances in a core at

9H (� GISP2). (a) History of a 100� slightly overturned
core segment at a depth of 0:8H (10� minimum value). For

comparison the history of a segment that is at 5� in the core at
the same depth is also plotted. (b) Histories of segments that

are oriented at 20� and 160� at 0:88H depth in the core (5�

minimum values).
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Second, as suggested byWaddington and others (2001), folds
may appear on an increasing hierarchy of spatial scales.The
youngest disturbances seen in the GISP2 core occur on
scales of centimeters. At scales of decimeters to meters, ice-
core records can be noticeably compromised. Folds of such
small scale cannot be detected by ice-penetrating radar; in
ice, the wavelength of the energy pulse is many meters to
decameters, and the separation between successive radar
traces is typically many meters. At 2^3 km below the sur-
face, a fold of this small scale will also be a very weak
point-diffractor. At spatial scales of tens to hundreds of
meters, folds could be imaged by typical ice-penetrating
radar if the limbs have not merged back with the undis-
turbed stratigraphy. Folds on these large scales are probably
relatively rare. Finally, it has been suggested (Robin, 1983)
that radar may detect stratigraphic disturbances through
the existence of an ‘‘echo-free zone’’ deep in the ice sheet,
i.e. through the inability of radar to generate coherent re-
flections from layers that have been geometrically disturbed
by folding or other heterogeneous flow. On the other hand,
absence of detectable radar layers does not always indicate
disturbed stratigraphy; it can also result from power and
sensitivity limitations of radar echo-sounding equipment,
i.e.the connection between the lack of echo and the distur-
bance is not conclusive.

Folding has been found in the lower 20% of ice in the
central Greenland ice cores (Alley and others 1995); how-
ever, ice cores are very poor at revealing structures larger
than a few decimeters. Ice-penetrating radar also hints at
folding in the deep echo-free zone (Robin, 1983); however,
as noted above, radar may be poor at detecting structures
smaller than tens to hundreds of meters. Direct evidence
for folding at intermediate scales is even weaker, due to our
inability to make critical observations. Nevertheless, the
limited data suggest that folds are more common at depth,
and our models also predict this. However, it is important to
note that our models also show that folds may be encoun-
tered virtually anywhere in an ice sheet, except close to the
surface and under a stable ice divide.

Although our examples assume steady flow and a frozen
flat bed, our approach is equally applicable to transient ice
sheets on rough beds, and to ice sheets with wet beds and
sliding basal ice.We did not include basal sliding here, pri-
marily to keep our ice-flow model simple; however, wher-
ever an ice sheet has a component of ice flow due to
internal shear deformation, folds such as we have described
are possible. Evenwhere internal shear deformation is insig-
nificant, such as in ice streams, in ice shelves and over large
subglacial lakes, the ice can contain folds that were acquired
in shearing flow upstream.

In addition, transitions between sliding and frozen sec-
tions of partially frozen beds introduce local strain vari-
ations in the flow, and have the potential of altering
stratigraphy. If these boundaries are transient, then their
migration is likely to position some layer sections in orienta-
tions where they can subsequently be overturned by passive
steady flow.

7. CONCLUSIONS

The kinematics of large-scale ice-sheet flow can deform gen-
tle open folds into order-disturbing recumbent folds. To
extend the results of Waddington and others (2001) to ac-

count for spatially variable strain rates, we have used three
concepts: �r the no-rotation angle, �f the finite-strain thresh-
old angle, and pre-cores.

From the velocity gradient at a point, we calculate Wk,
the kinematic vorticity number which measures the relative
mix of pure and simple shear, and �r, the angle that is not
rotating at that point. Segments steeper than �r are rotating
toward vertical and overturning, while gentler ones are
being flattened. But because segments move along paths
into regions of higher Wk, segments that were not rotating
will begin to overturn. So, while the �r criterion of Wad-
dington and others (2001) is an approximate indicator of sta-
bility against recumbent folding, it is still optimistic about
downstream stratigraphic integrity. Our finite-strain
analysis can quantify this.

By calculating the finite-strain deformation-gradient
tensor, F, along a particle path, we see how a disturbance
segment rotates over a finite time interval. Given our limit-
ed understanding of the dynamic processes that inject dis-
turbances, the most useful form of the angle-rotation
function specifies a vertical segment at a reference (obser-
vation) point, and calculates the corresponding angle at
other points along the path.We have called this the finite-
strain threshold angle, �f . At any point, this is the angle of
the segment that will be in the process of overturning when
it reaches the reference point.

�r is aminimumangle onthe �f curve, i.e. thegentlest seg-
ment thatwill overturnat the reference point. A segmentcan
flatten foraperiodof time, thenreachthe local�randproceed
to steepenandoverturn. Since thisminimumcanbebroad, it
gives little indicationof how soonthe overturnwill occur. For
that, the full �f calculation in this paper is needed.

Pre-cores, or core-relative isochrones, extend the con-
cept of the �f curve to multiple particle paths.The reference
isochrone is defined along a hypothetical ice core, and up-
stream pre-cores give the location of the core ice at earlier
times.They also give the slope of segments that will be ver-
tical in the core. A �f curve gives the pre-core slope angle
along its path. Thus the pre-cores and the �f contours are
graphical ways of showing just how steep disturbances must
be upstream in order to be overturned in the core.

Other processes, such as shear-band development or
various three-dimensional flow effects, can also disrupt stra-
tigraphy. In that sense, our calculations may still err on the
optimistic side when assessing stratigraphic integrity. Our
analysis identifies scale parameters for processes that could
generate initial disturbances. A process that cannot gener-
ate an adequate disturbance can be ruled out as a core-dis-
rupting process.
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pre-cores.The time-scale T for the ice sheet affects the con-
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chrones), but does not change their shape. We can gain
further insight into pre-cores and the folding potential by
looking at how the pre-core angles vary with these scaling
factors.

Figure 12 shows how the pre-core angles vary with the
core location C, while keeping H=L constant. The solid set
of lines with the core at 10H are a subset of the contours in
Figure 7.The dashed set are for a core at 20H ¼ 0:4L. The
gray lines mark where these angle contours are parallel to
the particle paths, that is, where �f ¼ �r.
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the pre-core shapes are controlled primarily by the location
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 0), and wðx; zÞ is dominated by the
_b ŵðd̂Þ term (Equation (9)). The distance to the terminus
has limited direct impact on the velocity field, the particle
paths and the isochrones. When the contours of �f are
plotted against d̂ and x (not shown), they show little vari-
ation asH=L is varied, provided C=H is held constant.
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of the modeled ice sheet is doubled while keeping H the
same, the pre-core slopes are halved. Since the slope is the
tangent of the angle, the angles for pre-cores in two different
sets of model geometries are related by

tanð�2Þ ¼
H2L1

L2H1
tanð�1Þ : ðA1Þ

Figure 13 illustrates this H=L dependence of the slope an-
gles for a vertical section through point ðpÞ in Figure 7.

APPENDIX B

THE APPROXIMATE LINEARITYOF Fxx

ALONG A PATH

For our simple geometry, where u ¼ _bx=h, the position xðtÞ
along a flow path can be expressed as the exponential of an
integral (using Equation (1)).

_x ¼ u ¼
_bx

h
û

xðtÞ
xð0Þ ¼ exp

Z t

0

_b

h
û dt

 !
ðB1Þ

Since û decreases along the particle path, this expression is
more linear in t than would be expected for a simple expo-
nential.

The Fxx term of F, as a function of time along a path,
can be approximated by a similar exponential. Starting
with the differential equation for F (Equation (22)),

_Fxx � @xuFxx @xu �
_b

h
û ðB2Þ

FxxðtÞ � exp

Z t

0

@xu dt

� 	
� xðtÞ

xð0Þ : ðB3Þ

Herewe assume that Fzx, @xw, @xû and @xh are small, which
is valid in the inner third of our ice-sheet model.

APPENDIXC

HOMOGENEOUS STRAIN-RATE APPROXIMATION

Over a short distance along a particle path, we can assume
that L (Equation (3)) is approximately constant. It is then
possible to derive an analytical expression for F as a func-
tion of time (Ramberg, 1975, equations 33 and 38). In the

Fig. 13.The scaling of pre-core angles with variations in the

H=L ratio.The heavy solid line shows the angles along a ver-

tical transect through point ðpÞ on Figure 6. In this case

H=L ¼ 1=50 and C=L ¼ 0:2.The dashed lines show the

equivalent angles for other H=L ratios (keeping

C=L ¼ 0:2).The curves are related by Equation (A1).

Fig. 14. Pre-core slope angles (solid lines) calculated from the

‘‘constant-strain-rate’’approximation, using rates at the core

location (10H). Pre-core slope contours (dotted lines) are

included for comparison.

Fig. 15. (a) An overturning disturbance (�) and a possible

symmetric predecessor (�). (b) The point at which Fxz�z
equals�Fxx�x=2(�).
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neighborhood of the core, the equations are (t ¼ 0 at the
core; again using Equation (22))

LðrÞ ¼
@xu @zu
@xw @zw

� �
� � �

0 ��

� �
ðC1Þ

FðtÞ � e�t �
2� ðe�t � e��tÞ

0 e��t

� �
ðC2Þ

tan �f �
Fzz

�Fxz
� �

�

�2

e2�t � 1
: ðC3Þ

As seen in Figure 14, this approximation captures the rapid
rotation of the pre-core slope near the core. Further away,
the variation in the velocity gradient must be taken into ac-
count. A similar approximation is used inWaddington and
others (2001) to estimate segment overturn times.

APPENDIX D

THEORIGINOFA SYMMETRICAL DISTURBANCE

Consider a fold with a vertical leading edge at point ðqÞ. If
its amplitude is �z, and width is �x, then its trailing-limb

slope is �z=�x.We can approximate it by a right triangle
with a set of points with relative positions (Fig.15a)

0
0

� �
;

0
�z

� �
;

��x
0

� �
 �
: ðD1Þ

The relative positions at an earlier time would be (using
Equation (19))

0
0

� �
;

Fxz�z

Fzz�z

� �
;

�Fxx�x
�Fzx�x

� �
 �
ðD2Þ

where the F reference point is ðqÞ. Here we assume that
�Fzx�x � 0.When Fxz�z ¼ �Fxx�x=2 as shown in Fig-
ure 15b, the earlier disturbance is a symmetrical triangle
with height Fzz�z. For smaller trailing �z=�x at the core,
the symmetric injection time is earlier. For example, in Fig-
ure 6 ðqÞ, this slope is 0.04 and we would infer that the dis-
turbancewas injected at x=L � 0:12. However, in Figure15,
where the fold is observed with �z=�x ¼ 0:075, the sym-
metric injection point is closer to the core site
(x=L ¼ 0:16). It is possible, if �z=�x is too small, that no
point satisfies this constraint. In this case, the observed fold
could not have originated as a symmetric wrinkle.
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