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Abstract
Economic and health benefits assessments of air quality changes often quantify and report changes in
deaths at a given point in time. The typical approach uses a method that attributes air pollution-related
health impacts to a single year air quality change (or “pulse”). The perspective on benefits from these
static pulse analyses can be enhanced by conducting a dynamic population assessment using life tables.
Such analyses can provide a richer characterization of health risks across a population over a multiyear
time horizon. In this article, we use the life table approach to quantify cumulative counts of reductions
in PM-attributable deaths and life-years gained due to overlapping impacts of PM2.5 changes over a
multiyear period, using case studies of air quality improvements in theUSA andChile. Our comparison
of health risk and economic valuation for the two approaches shows life table analysis can be a valuable
adjunct analysis to the pulse approach though both come with their own set of uncertainties and
limitations. If applied jointly, they provide a broader characterization of how air quality actions can
change populations in terms of life-years lost, life expectancy, and age structure. The value of these
metrics is illustrated using case studies with dramatically different air quality reduction trajectories.

1. Introduction

A substantial body of literature spanning decades supports themortality-related benefits of
reductions in fine particulate matter (PM2.5) in ambient air, including over 25 years of
cohort-based epidemiological studies (U.S. EPA, 2019; Pope et al., 2020). Health impact
assessments of PM2.5 air pollution rely on this literature to quantify either reduced or
excess cases of PM-attributable death among a population at a given point in time. These
calculations support health burden analyses of existing PM2.5 concentrations or the retro-
spective or prospective evaluation of the benefits of policies to reduce fine particles. TheU.S.
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Environmental Protection Agency (U.S. EPA) and other analysts typically quantify these
impacts in regulatory analyses using a “pulse” method that attributes reduced (or incurred)
air pollution-related health impacts to an air quality change (or “pulse”) that is modeled or
measured in a single year. This is an efficient strategy for complying with established
government guidance for comparing costs and benefits, particularly since the computational
requirements of analysis of air rules at fine spatial scales required (e.g., 12 km photochemical
modeling simulations) generally constrain the number of years that can be evaluated. Pulse
analyses inform the policymaking process by providing a contemporaneous comparison of
annual costs and benefits expected at critical points in policy implementation.

While the pulse approach is useful for providing snapshots of the benefits resulting from
PM2.5 reductions, it likely underestimates cumulative impacts of these reductions on
survival. First, by using static snapshots in time, analysts cannot describe the change in
pollution-attributable risks in intervening years not selected for analysis. More importantly,
however, these analyses assume that the impacts of each pulse are independent of one
another. This approach ignores the long-term dynamic effect of death rates in one year
altering the population-at-risk in future years. This assumption means the analysis cannot
account fully for the influence of air pollution trends on the pool of individuals whose
mortality risks may be affected by air pollution from one year to the next.

Alternatively, a dynamic approach that uses life-table risk assessment methods updates
at-risk population estimates from year to year based on both mortality risk impacts from an
individual year’s air quality changes and the delayed impacts of previous years’ changes that
continue to ripple through the population. The consequent changes to the size and age
distribution of the population-at-risk affect mortality estimates and hence air pollution
impacts in future years of analysis, helping to estimate the cumulative impacts. This
approach also provides advantages for calculating time streams of benefits or costs by
estimating changes in life years and life expectancy – amore conceptually accurate depiction
of the public health benefits of improved air quality. The stream of changes in life years can
then be expressed as a net present value (NPV) of changes to the population survival curve.
Further, the additional survival metrics generated by the life table approach enable analysts
to undertake a richer comparison of the effects of different air pollution reduction scenarios.

In this article, we describe a variant on the dynamic approach using a life-table-based risk
assessment tool called PopSim that quantifies PM2.5-related PM-attributable mortality and
population effects using a dynamic population model. This tool contains information to
support the analysis of policies in over 180 countries using readily available data and health
impact functions. Our approach is not new – it is based on principles established in prior
research, such as that ofMiller andHurley (2003) andRöösli et al. (2005), but it is an approach
that is under-represented in the suite of air quality benefits tools available (Anenberg et al.,
2016), and its usefulness has yet to be thoroughly explored. The model was designed to track
the effect of alternative assumptions about themortality effects of PM2.5 in theUSApopulation
over time. The tool incorporates detailed life table data for historical years, by age, gender, and
cause of death as well as population projections for future years based on the U.S. Census
Bureau’s data and models for the USA and countries worldwide. The U.S. EPA’s Science
Advisory Board has supported the use of dynamic population modeling where practicable
noting that, “it provides the most realistic available modeling of how, over time, changes in
population risk lead to changes in the size and age distribution of the population, with
consequent implications for estimated mortality impacts” (U.S. EPA, 2010).

We apply PopSim to two historical datasets: (i) a time series of observed and predicted
annual mean PM2.5 concentrations in the contiguous USA showing a steady decline, and

Journal of Benefit-Cost Analysis 199

https://doi.org/10.1017/bca.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2022.5


(ii) a time series of historical monitored PM2.5 concentrations for a city (Santiago, Chile)
with more rapid and dramatic improvements in air quality over a similar period. These case
studies allow us to answer three questions:

(i) What is the estimated long-term change in PM2.5-attributable counts of death, life
expectancy and life years in each location due to these air quality changes?

(ii) How can we best compare life table estimated values to a traditional “static” approach?
What does each approach contribute to benefits analysis and under what circumstances
might each be appropriate?

(iii) What is the Present Value of the long-term stream of mortality-related benefits using
this new approach?

2. Methods

This analysis applies U.S. EPA’s PopSim Model to estimate the cumulative impacts of
historic PM2.5 changes from 1990 to 2015 in the USA and in Santiago, Chile. The model is
available in two versions: a domestic version that is included as part of U.S. EPA’s Benefits
Mapping and Analysis Program (BenMAP-CE) tool, and an international version that is
available for download separately. Additional detail on PopSim can be found in the
BenMAP-CE user manual and online at https://epa.gov/benmap.

2.1 PopSim model overview and structure

The PopSim tool builds on the life table method described in Miller and Hurley (2003). In
brief, the model allows users to:

(i) Simulate population in the USA by single year of age and gender for years between
1990 and 2060 under alternative assumptions about the degree of hazard posed by air
pollution relative to baseline historical and projected Census mortality rates;

(ii) Estimate changes in life years relative to a fixed baseline of historical and projected
Census mortality rates;

(iii) Apply air pollution hazards specific to cause of death and age category; and
(iv) Analyze the effect of alternative lag structures on the timing of mortality rate changes

following changes in PM exposure (“cessation lag”).

The model includes a library of concentration-response functions for PM2.5-related mortal-
ity, or users can specify their own. Users specify a set of national population-weighted
average PM changes at up to five specific points in the study period and can specify the
trajectory of PM changes between these points as either a step function or through linear
interpolation between target years. If desired, users can also incorporate a PM2.5 threshold
concentration and explore the impacts of varying susceptibility to air pollution by age.

By default, all calculations and results in the model are conducted at the national level,
using population-weighted average changes in PM.However, if providedwith appropriately
scaled life-table and air quality inputs, the model can be applied at alternative spatial scales,
as we do in this study for the city of Santiago, Chile. The USAmodel can be used to estimate
changes in mortality risk for years between 1990 and 2060 (1990 and 2050 for the
international model). The temporal range provides a “run-up” period using the more highly
resolved by-cause mortality data available for historical years and allows for testing of
hypotheses on a retrospective and prospective basis.
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The model consists of four linked components, as illustrated in Figure 1: Inputs (which
includes the Hazard Estimation module); Baseline Life Table; Regulatory Life Table; and
Results. The hazard estimation component of the model is integrated into the Inputs module.
It applies user-specified parameters to calculate a mortality hazard adjustment factor
(MHAF) that scales the baseline mortality hazard in a given year based on cumulative
impacts across all previous years in the study period, according to the following equation:

MHAF j,t = 1þ
Xt

i = BaseYear

eβ�ΔPM i �1
� ��LAF t�iþ1 �TAF i
� ��ASAF j

" #
, (1)

where MHAFj,t is the Mortality Hazard Adjustment Factor for age group j in year t; β is the
coefficient from epidemiologic study or user-specified (% change in mortality per μg/m3

PM2.5); ΔPMi is the change in PM2.5 concentration for year i (μg/m3); LAFt�iþ1 is a Lag
Adjustment Factor in year t for total PM mortality impact from year i; TAFi is a Threshold
Adjustment Factor for year i; and ASAFj is anAge-Specific Adjustment Factor for age group j.

To accommodate dynamic year-to-year variation in PM2.5 concentrations, theMHAF for
each calendar year is calculated as a weighted average of themortality impact of PM changes
associated in that year and all previously modeled years, with weights determined by the
cessation lag structure chosen by the user. The weighted average effect estimate of the
change in mortality, therefore, incorporates the effects of multiple, overlapping impacts for
changes in annual average PM2.5 prior to that year. The MHAF for each calendar year is
calculated for each year of age in the cohort and is modified to reflect any additional
adjustment factors specified by the user.

The lag between changes in PM2.5 exposure and the full realization of the expected
changes in mortality rates is modeled by applying a lag adjustment factor (LAF) to the
relative risk (RR) calculated in each year. The LAF for a given year, tn, represents the fraction
of the total change inmortality associatedwith a PM2.5 change in year t1 that is expected to be
realized by year tn.The threshold adjustment factor (TAF) enables themodel to incorporate a
threshold value for the mortality impacts of PM2.5 concentration such that only changes

Figure 1. Conceptual framework for PopSim model.
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above the specified threshold would result in a change in mortality. The Age-Specific
Adjustment Factor (ASAF) allows users to reflect on differences in susceptibility to
PM2.5 across the population. The user can specify values for an ASAF between 0 and
2 for a specific user-defined age group, with a value of 1 meaning that the age group
experiences the full mortality impact of the change in PM2.5. Values greater than 1 indicate
that an age group ismore affected by changes in PM than the rest of the population and values
less than 1 indicate that an age group is less affected by changes in PM.

TheBaseline Life Table component represents historical population data and projection data
for the USA and Santiago, Chile for the years 1990–2050. The data for Chile, as with the other
countries in the International version of PopSim, is based on the Census International Database
(IDB)historical populationdata andprojection for theyears 1990–2050 (U.S.Department of the
Census. 2016). This database contains population data stratified by sex and year of age;
mortality rates for each relevant cause, by age cohort; and natality (birth) rates by age.

For each country, the tool also includes estimates of net migration in and out of each
country. For the USA, we developed netmigration estimates by subtracting estimated deaths
calculated using CDC mortality data from annual cohort population change reported in
U.S. Census-based population estimates. For Chile, the tool includes estimates of net
migration that we developed by subtracting estimated deaths calculated using historical
mortality rates from the Global Burden of Disease study (2013), as estimated by Abubakar
et al. (2015) and projected IDBmortality rates from the projected population. The data in this
module are protected to preserve a static baseline fromwhich gains and losses in attributable
deaths, life years, and life expectancy are measured.

The Regulatory Life Table component begins with the same data contained in the
Baseline component, and then applies adjustment factors (from the Hazards component)
to the baseline mortality rates taken from the CDC data. As a result, the population
simulation in the Regulatory component reflects the mortality rates implied by user’s
scenario specifications (entered in the Inputs component). The calculations in the Regulatory
and Baseline components are equivalent, with the exception of the mortality rate, which is
calculated as follows:

Pregulatory deathð Þ = Pbaseline deathð Þ �MHAF: (2)

2.2 Application of the PopSim model

We used PopSim to explore the effect of historical PM changes on the USA population aged
0–99 from 1990 to 2015 resulting from the application of air quality policies including but
not limited to the U.S. Clean Air Act (U.S. Policy scenario), and the effect of air quality
management actions taken by Chile over a similar period to reduce PM2.5 exposures to the
population of Santiago, Chile aged 0–99 (Santiago Policy scenario). For the USA, we
applied the domestic version of PopSim that accompanies the BenMAP-CE tool, version
1.5.0.4. For the Santiago analysis, we modified the International version of PopSim to
estimate the Santiago city population from the country-level data in the PopSim tool. We
scaled the Chilean population based on historic data on the proportion of the Chilean
population residing in Santiago, which was relatively stable over the study period
(Departamento de Demografia). Birth rates are held constant in both models. Specific model
inputs for each PopSim run are presented in the Supplementary Material.

We applied the Krewski et al. (2009) PM concentration-response (C-R) function for all-
cause mortality from BenMAP-CE, which estimates a roughly 6 % increase in mortality
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associated with a 10 μgm�3 increase in annual mean PM2.5.We coupled this function with a
20-year distributed cessation lag with no threshold or age-specific hazard adjustments. We
also compared the results from the PopSim model for the USA to results derived using
BenMAP-CE(U.S. EPA, 2020), where the latter represent a standard static, pulse-type of
analysis.

As noted above, the baseline scenario in the PopSimmodels is not modifiable by the user,
and since our analysis is backward-looking, we assume that PopSim’s Baseline population
data already reflect the air quality changes we are analyzing. We thus designed a counter-
factual scenario for both simulations in which PM2.5 concentrations and thus the fraction of
PM2.5-attributable mortality were assumed to be constant over the analysis period, with the
difference between the two scenarios representing the impact of the USA or Chilean policy
implementation.

For both countries, we estimated the historical average annual population-weighted
PM2.5 concentrations for each year where data were available and used these data points
to establish a PM2.5 concentration trend over time. PopSim currently only allows for five
specified changes in PM2.5 over the study period; therefore, after developing these trend
lines, we chose 6 years each for the USA and Santiago that best capture that location’s trend
in PM2.5 concentrations from 1990 forward. We assume that concentrations follow a linear
trend from one chosen point to the next.

For theU.S. PopSim analysis, we used a combined dataset ofmodeled andmonitored data
to estimate average annual concentrations for each county in the USA. For the years 1990–
2000, we used PM2.5 concentrations from research associated with theMulti-Ethnic Study of
Atherosclerosis (MESA) study (Kim et al., 2017) that used spatio-temporal modeling to
estimatemeasurements of PMprior to the adoption ofwidespread PM2.5monitoring in 1999.
For the later period of the analysis after 2001, we relied on monitored PM concentration data
from EPA’s Air Quality System (AQS) that were pre-loaded in BenMAP-CE to calculate
average annual concentration for each county in the USA. To generate a single average
annual population-weighted concentration for the USA for each year, we merged this
county-level PM2.5 concentration with county-level data for populations aged 30 and
up. We obtained all population data from the U.S. Census, using Census data for 2010
and intercensal data for every other year (U.S. Department of the Census, 2018). Figure 2
demonstrates the roughly linear trend of average annual PM2.5 concentration in the USA
from 1990 to 2013 (R2 = 0.93). The chosen data points for input to PopSim were for 1995,
2000, 2004, 2010, and 2013. Table 1 below summarizes the years chosen, the concentrations
in each year and changes in PM2.5 concentration from the previous year in the table (labeled
“Delta”). 1990 is included as the first year in the time period.

In the Santiago analysis, we obtained 5-year population estimates from the Chilean
National Institute of Statistics (INE) and used these projections to generate Comuna-level
population by age and sex from 1990 to 2015 in the Santiago Metropolitan Region
(Departamento de Demografia, 2021).1 Population-weighting was performed as in the
USA analysis. For Santiago, we apply average annual PM2.5 concentrations for each of
11 monitors using data obtained from the ChileanMinistry of Environment. We population-
weight these data using data for the given year in the Comuna where each monitor is located.
In Figure 3 below, we plotted the average annual population-weighted concentration for the

1A comuna is a subdivision of Chile, similar to a U.S. county; Santiago consists of 32 separate comunas.
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Santiago Metropolitan region across all monitors. We fit the concentration data over time
using a spline model. The spline model has an R2 of 0.97. From this trend line, we chose
1995, 2000, 2005, 2010, and 2014 for our analysis as shown in Table 2. For both case
studies, the air quality change in 2015 is assumed to persist unchanged for the remainder of
the study period.

Because it calculates changes in mortality for each year and for each single year of age,
PopSim can quantify and report multiple metrics to describe the survival curve shifts and
corresponding lifespan changes resulting from changes in PM2.5. These metrics include the
estimated changes in the numbers of deaths annually, the number of life years, and changes
to life expectancy by age compared to baseline for the USA and Santiago case studies.

We estimate the economic value of projected mortality changes based on recommenda-
tions in federal guidance for economic analyses (U.S. EPA, 2014). Such economic analyses
consider the marginal rate of substitution of wealth for mortality risk, or in simpler terms, the

Figure 2. USA average annual PM2.5 concentration, population weighted.

Table 1. PM2.5 concentration inputs for U.S. PopSim model.

Year PM2.5 concentration (μg/m3) Delta

1990 15.2
1995 13.6 1.5
2000 12.6 1.1
2004 11.8 0.8
2010 9.6 2.2
2013 8.8 0.8

204 Henry Roman et al.

https://doi.org/10.1017/bca.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2022.5


amounts that individuals are willing to pay for small reductions in mortality risk (“Value of
Statistical Life [VSL]”) and the changes in VSL over time as real income grows (“income
elasticity” of willingness to pay). The VSL represents a standardized unit, normalized to
represent the amount that a population of size X is willing to trade to avoid a risk of 1/X (for
small changes in risk). To estimate VSL values for each year of the USA analysis, we follow
the approach applied by Achakulwisut et al. (2019) to generate historical and projected VSL
values in 2015 dollars from an assumed base VSL of $10.0 million for 2015 and an income
elasticity of 0.4 consistent with the BenMAP-CE default (U.S. EPA, 2020). For Santiago, we
apply this method using a VSL based on a locally conducted stated preference survey that
estimated a value of $1.09 M (2015$) (Greenlab UC, 2014). For changes in the risk of
attributable deaths, we apply VSL estimates; for changes in life years, we derive a unit value
per statistical life year (VSLY) by dividing the VSL by the discounted number of expected
remaining life years among the exposed group, following the method used in Robinson et al.
(2019). This method generates a constant VSLY for each year based on a year-specific VSL,
and year-specific difference between the central estimate of themedian age of the population
and the average life expectancy for each country from the UN World Population Prospects

Figure 3. Santiago average annual PM2.5 concentration, population weighted.

Table 2. PM2.5 concentration inputs for Santiago PopSim model.

Year PM2.5 concentration (μg/m3) Delta

1990 68.4
1995 56.2 12.2
2000 33.8 22.4
2005 24.7 9.1
2010 24.5 0.2
2014 26.4 �1.9

Journal of Benefit-Cost Analysis 205

https://doi.org/10.1017/bca.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2022.5


(2019) and World Bank World Development Indicators (2021), respectively. For the
Santiago analysis, we use a combination of historical population and GDP growth data,
OECD growth projections for 2021–2022, and a GDP growth rate of 3 % for 2023 and
beyond based on a 10-year pre-pandemic average of the historical data (Organisation for
Economic Co-operation and Development, 2020). We estimate the NPV of the reduction of
PM-attributable mortality and life-years gained benefits by discounting the stream of annual
monetized values to generate ametric suitable for comparing benefits and costs.We generate
two NPV estimates: one using a 3 % discount rate and one using a 7 % rate.

We also conducted a sensitivity analysis of the PopSim results focused on the impact of
alternative cessation lag models on results. We apply three models fromwork byWalton (n.d.)
that vary the timing and speed of risk adjustments to the USA and Santiago runs. Model A
presents a steep and rapid realization of the risk reduction over 8 years;Model C presents amore
gradual realization over 15 years, and the last is a steady incremental accrual over 30 years.

3. Results

Tables 3–8 below provide the output from the PopSimmodel for theUSA and Santiago runs,
including changes in PM-attributable deaths per year, life-years gained, and life expectancy,
as well as the value of these benefits (calculated separately). Tables 3 and 4 provide the
estimated change in number of deaths per year by age cohort for the simulation period 1990–
2050. Positive values represent fewer deaths for that age group in the given year; negative
values represent an increased number of deaths. The estimates presented are for a single year,
but as discussed reflect the summed impact of current and laggedmortality risk impacts from
previous years’ improvements.

For the USA case, we see substantial reductions in deaths overall and in most age
categories, with the number of PM-attributable deaths reduced growing larger for most
age categories until somewhere between 2020 and 2030. However, in some cases, the results
are negative (increased deaths), which may appear counterintuitive. Not surprisingly,
initially, all age groups experience fewer deaths in the cleaner U.S. Policy scenario, and
the result of this change is that more individuals are alive to survive to older age bins that
have higher baseline mortality rates. As a result, the oldest age category begins to quickly
experiencemore deaths under theU.S. Control scenario, and the number of additional deaths
grows in this group cohort over time. This phenomenon is only seen in the oldest cohort – in
all other cohorts, there are fewer deaths in the U.S. Policy scenario, though eventually, the
countervailing effect of population shifts begins to erode the total size of these benefits.

The NPV of these mortality risk reductions is also substantial, with individual-year
“pulse” style benefits topping out between $91 and $201 billion in the decade between
2010 and 2020 due to the added impacts of discounting on the monetized values. The
cumulative life-table estimated benefits are considerably larger, continuing to increase
throughout the study period and reaching a total of between $3 and $8 trillion when
improvements across all years are taken into account.

For Santiago, the results in Table 4 show consistent and substantial reductions in PM-
attributable deaths in all except the oldest age groups, with smaller overall values reflecting
the smaller geographic scale (and population) of the Santiago analysis. The tapering of
mortality-related benefits over time is less pronounced in these results, with most categories
peaking or nearing their peak in the last decade of the analysis. This delay in peak impact is
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Table 3. Estimated attributable deaths avoided and valuation ($2015, millions) for U.S. PM2.5 air quality improvements 1990–2013.

Age categories 1990 2000 2010 2020 2030 2040 2050

Deaths
30–39 0 638 1,282 1,666 1,514 1,162 894
40–49 0 1,340 2,929 3,062 2,878 2,543 1,970
50–59 0 2,088 6,201 7,449 5,981 5,506 4,972
60–69 0 3,241 8,606 13,413 12,522 10,204 9,963
70–79 0 5,613 10,344 17,155 21,485 20,597 18,469
80–89 0 5,024 9,350 10,955 13,384 16,312 18,504
90–99 0 779 �2,532 �8,067 �14,254 �21,979 �27,863
Total avoided 0 18,723 36,180 45,633 43,510 34,345 26,909
Valuation
NPV, 3 %DR, single-year 0 $140,000 $201,000 $201,000 $150,000 $95,000 $59,000
NPV, 3 %DR, cumulative 0 $760,000 $2,400,000 $4,600,000 $6,200,000 $7,400,000 $8,100,000
NPV, 7 %DR, single-year $90,000 $91,000 $62,000 $32,000 $14,000 $5,800
NPV, 7 %DR, cumulative $581,000 $1,500,000 $2,300,000 $2,700,000 $3,000,000 $3,000,000

Abbreviations: DR, discount rate; NPV, net present value.
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mainly due to the more dramatic initial decline in PM concentrations in Santiago versus the
USA. The negative deaths (effectively more deaths) in the oldest cohort, and for the age 80–
89 cohort in 2050, reflect that the pollution control scenario again allows the population to
live longer lives, resulting in a shifting of mortality to older age groups. The net effect across
all cohorts, though, remains positive throughout the simulation, evenwith a slight increase in
PM concentrations in 2014.

Valuation of the Santiago benefits also shows some evidence of an early peak in “pulse”
style valuations, particularly when applying the 7 % discount rate, peaking in 2000 at $1.4
billion; this peak is delayed to 2030 when using the lower discount rate, but the pulse values
quickly approach the peak and remain steady within 10–15% of $2.7 billion for much of the
study period. This pattern most likely reflects the dramatic early decline in PM concentra-
tions followed by declines in later years that are a combination of the lag from the large initial
benefits and benefits of smaller reductions in later years. The cumulative benefit estimates
again are an order of magnitude or two greater, continuing to increase over the course of the
study period to a total of $46–$140 billion, depending on the discount rate.

Tables 5 and 6 illustrate a second output from the PopSim model, estimated life-years
gained by age group and year of the simulation. These estimates effectively compare the
number of individuals in each age group in the two simulations; in other words, each
additional individual in a group represents an additional life-year lived for that group. In the
USA case, life-years gained from air qualitymanagement efforts are positive for all groups in
all years; that is, populations in each age group are larger in the USA policy scenario than in
the Baseline scenario. The same is true for Santiago, with the number of life years increasing
substantially as the population shifts toward an older age structure, all else equal. In theUSA,
air quality management results in 1.5 million additional life years in 2050 and over 5 million
additional life years lived in the USA population summed across the 6 years shown in

Table 4. Estimated attributable deaths avoided and valuation ($2015, millions)
for Santiago, Chile PM2.5 air quality improvements 1990–2015.

Age 1990 2000 2010 2020 2030 2040 2050

Deaths
30–39 0 167 248 322 396 413 496
40–49 0 245 493 532 722 909 907
50–59 0 401 814 1,240 1,390 1,907 2,291
60–69 0 618 1,228 1,937 2,996 3,344 4,316
70–79 0 853 1,428 2,076 3,264 4,679 4,557
80–89 0 696 816 554 368 101 �1,386
90–99 0 35 �295 �937 �1,620 �2,654 �4,136
Total avoided deaths 0 3,015 4,732 5,724 7,516 8,699 7,045
Valuation
NPV, 3 %DR, single-year 0 $2,100 $2,700 $2,600 $2,700 $2,500 $1,600
NPV, 3 %DR, cumulative 0 $9,400 $36,000 $62,000 $88,000 $110,000 $140,000
NPV, 7 %DR, single-year 0 $1,400 $1,300 $810 $590 $370 $170
NPV, 7 %DR, cumulative 0 $7,100 $22,000 $32,000 $38,000 $43,000 $46,000

Abbreviations: DR, discount rate; NPV, net present value.
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Table 5. Estimated life-years gained and valuation ($2015, millions) for U.S. PM2.5 air quality improvements 1990–2013.

Age categories 1990 2000 2010 2020 2030 2040 2050

Life years gained
30–39 0 1,764 4,018 6,959 6,758 5,199 3,966
40–49 0 4,556 16,076 24,646 27,828 25,415 19,507
50–59 0 6,896 34,833 66,729 67,548 67,513 60,641
60–69 0 11,253 51,004 132,409 161,932 143,971 139,500
70–79 0 21,409 69,982 180,797 302,504 322,286 280,526
80–89 0 24,793 98,533 199,575 358,675 522,430 544,483
90–99 0 11,554 49,182 133,713 193,128 329,351 481,587
Total years gained 0 82,225 323,628 744,828 1,118,373 1,416,165 1,530,210
Valuation
NPV, 3 %DR, single-year 0 $26,000 $77,000 $140,000 $170,000 $170,000 $140,000
NPV, 3 %DR, cumulative 0 $92,000 $620,000 $1,700,000 $3,200,000 $4,900,000 $6,400,000
NPV, 7 %DR, single-year 0 $30,000 $62,000 $77,000 $62,000 $43,000 $25,000
NPV, 7 %DR, cumulative 0 $110,000 $580,000 $1,300,000 $1,900,000 $2,400,000 $2,700,000

Abbreviations: DR, discount rate; NPV, net present value.
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Table 6. Estimated life-years gained and valuation ($2015, millions) for Santiago, Chile PM2.5 air quality improvements 1990–2015.

Age categories 1990 2000 2010 2020 2030 2040 2050

Life years gained
30–39 0 378 978 1,242 1,604 1,617 1,988
40–49 0 702 3,442 4,481 5,945 7,501 7,650
50–59 0 1,134 5,546 11,149 13,094 17,659 22,094
60–69 0 1,807 8,853 18,149 30,897 35,290 47,243
70–79 0 2,670 12,391 25,211 44,292 70,601 77,485
80–89 0 2,864 14,232 26,156 43,766 70,851 101,357
90–99 0 566 4,743 11,582 17,813 27,308 42,109
Total life years 0 10,121 50,185 97,970 157,411 230,827 299,926
Valuation
NPV, 3 %DR, single-year 0 $270 $1,200 $1,800 $2,400 $3,000 $3,300
NPV, 3 %DR, cumulative 0 $870 $8,200 $23,000 $44,000 $71,000 $102,000
NPV, 7 %DR, single-year 0 $340 $980 $1,000 $920 $760 $550
NPV, 7 %DR, cumulative 0 $1,100 $8,100 $18,000 $27,000 $35,000 $41,000

Abbreviations: DR, discount rate; NPV, net present value.
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Table 5. In the case of Santiago, air quality management results in 300,000 additional life
years in 2050 and 850,000 additional life years in the Santiago population summed across
the 6 years shown in Table 6.

Tables 7 and 8 provide estimates of the increase in life expectancy from the PopSim
model, specifically period conditional life expectancy (PCLE). The PCLE metric is con-
structed using age-specific mortality rates for a single year, with no allowance for projected
changes in mortality. PopSim also provides estimates of changes in cohort life expectancy,
which represent the probability of a person in an age cohort (same year of birth) dying at each
age throughout his or her lifetime, factoring in changes in age-specific mortality rates over
time (Office for National Statistics, 2017). While all individuals will experience a future,
unknown risk ofmortality that unfolds through their lifetime, we focus on PCLE because it is
the methodology generally reported by the CDC and, for past years, in particular, PCLE
provides a measure that can be compared to CDC’s estimates over time (Office for National
Statistics, 2017). In the USA, effects on life expectancy are immediately experienced across
all cohorts and grow rapidly to a gain of approximately 0.3 year for women as early as 2010
in the youngest cohorts and eventually reaching similar magnitude for the age 60 cohort by
2050. The gains for men start more slowly, at about 0.2 years additional in 2010, but grow to
a slightly higher value than that for women by 2050. For Chile, in Table 8, the gains are
higher due to a much greater decline in average annual PM2.5 concentration from 1990 to
2015 compared to the USA. The life expectancy gains for those aged 30 or 40 of both
genders are as high as 2 years in 2050.

Table 7. Increase in period conditional life expectancy for USA population due to PM2.5

air quality improvements 1990–2015.

Females

Age categories 1990 2000 2010 2020 2030 2040 2050

30–39 0.00 0.11 0.31 0.33 0.34 0.33 0.31
40–49 0.00 0.10 0.29 0.32 0.33 0.32 0.30
50–59 0.00 0.10 0.27 0.30 0.30 0.30 0.29
60–69 0.00 0.08 0.23 0.26 0.28 0.27 0.27
70–79 0.00 0.07 0.18 0.22 0.23 0.23 0.23
80–89 0.00 0.05 0.12 0.17 0.17 0.17 0.18
90–99 0.00 0.02 0.03 0.06 0.06 0.06 0.05

Males

Age categories 1990 2000 2010 2020 2030 2040 2050

30–39 0.00 0.12 0.21 0.36 0.36 0.35 0.33
40–49 0.00 0.11 0.20 0.34 0.35 0.34 0.32
50–59 0.00 0.10 0.18 0.31 0.32 0.31 0.31
60–69 0.00 0.08 0.16 0.27 0.28 0.28 0.27
70–79 0.00 0.07 0.12 0.21 0.22 0.22 0.23
80–89 0.00 0.05 0.08 0.14 0.15 0.15 0.16
90–99 0.00 0.02 0.03 0.06 0.07 0.07 0.07
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It is challenging to compare these PopSim results against BenMAP estimates using the
pulse approach, because as Table 9 shows, the tools have numerous differences that render the
conclusions of any comparison partial at best. Figure 4 compares the PopSim results for
changes in PM-attributablemortality in the USA example against a small set of BenMAP runs
for individual years, where we have corrected for some of these differences by applying the
standard U.S. EPA 20-year cessation lag model to BenMAP and then stacking the resulting
time series of benefits across the three runs. Compared to any individual year’s pulse results,
the PopSim model’s cumulative benefits appear substantially greater – nearly a factor of two
compared to the first year’s impacts from PM changes in 2013. However, when summed with
lagged pulse results from previous years, the figure suggests that summing the results of
multiple years of BenMAP-CE analyses should begin to approximate the PopSim estimate.

These differences also need to be understood in the context of the projected demographic
changes in the population during the study period. Figure 5 shows the predicted growth in
key relevant population segments for PM-attributable mortality and in the mortality rate for
those subpopulations. From 1990 to 2050, the USA population aged 65 and older is
predicted to increase dramatically, expanding 1.5 times by 2030 and nearly doubling by
2050, whilemortality rates exhibit moremodest declines. The population trends in BenMAP
are likely similar but may not match exactly, since BenMAP bases its population growth
estimates on projection data from Woods and Poole that supports finer scale estimations of
population growth than the national-scale Census estimates used in PopSim.

Figure 4 also illustrates that the number of reduced PM-attributable deaths are not
monotonically increasing over time, but peak and begin to decline in the USA starting

Table 8. Increase in period conditional life expectancy for Santiago population due to
Santiago, Chile PM2.5 air quality improvements 1990–2015.

Females

Age categories 1990 2000 2010 2020 2030 2040 2050

30–39 0.00 1.24 2.05 2.13 2.09 2.03 1.99
40–49 0.00 1.20 1.98 2.06 2.00 1.93 1.88
50–59 0.00 1.13 1.87 1.92 1.86 1.77 1.69
60–69 0.00 1.00 1.68 1.72 1.63 1.51 1.41
70–79 0.00 0.85 1.43 1.45 1.35 1.20 1.08
80–89 0.00 0.62 1.05 1.09 1.05 0.97 0.89
90–99 0.00 0.19 0.32 0.36 0.38 0.41 0.42

Males

Age categories 1990 2000 2010 2020 2030 2040 2050

30–39 0.00 1.36 2.25 2.32 2.27 2.22 2.19
40–49 0.00 1.28 2.12 2.18 2.11 2.03 1.98
50–59 0.00 1.17 1.94 1.99 1.90 1.79 1.72
60–69 0.00 1.01 1.69 1.71 1.59 1.46 1.36
70–79 0.00 0.82 1.38 1.38 1.25 1.09 0.97
80–89 0.00 0.61 1.03 1.06 0.99 0.89 0.80
90–99 0.00 0.21 0.35 0.38 0.40 0.42 0.42
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about 2015, reflecting the eventually increasing numbers of deaths observed in the oldest age
groups in Tables 3 and 4. Figure 6 shows that the reduction in PM-attributable mortalities in
the Santiago case study peak much later, reaching a high of 8,700 PM-attributable deaths
reduced in 2040. Figure 7 compares the trajectory for the two cases for life years gained; the
peak of the life years metric lags that of PM-attributable mortalities, with the USA reaching
its peak in the last decade of the analysis and Santiago life years continuing to increase
through the end of the study period. Figure 7 also shows the effect of these additional life
years on the per cent of individuals aged 65 and older, with a 1.6 % point increase in this
fraction of the population in the Santiago case.

Figure 8 illustrates the sensitivity of the PopSim results to alternative cessation lagmodels
on results. Not surprisingly, the steeper models result in more jagged, earlier peaks in
attributable death reduction coupled with corresponding earlier and steeper declines as
deaths in benefits begin to increase earlier in the older populations, as compared with the
standard U.S. EPA lag, shown in gray. The resulting NPV estimates of models A and C are
modestly different from the main model. However, the more gradual and lengthier models
provide more interesting results. They smooth out the effect seen in Model A and shift the
peak later, as expected, but they also eventually result in peaks as large or in the case of
Santiago, larger than those of the other models. This effect reflects the interaction of the lag

Table 9. A comparison of BenMAP and PopSim tools.

BenMAP-CE PopSim

Risk assessment method Pulse Life-Table
Number of AQ changes

assessed per run
One Up to five

Time span per run Single year Multiple years, up to
1990–2050

Geographic resolution Accommodates air quality and
other spatial data at various
scales (e.g., 12 km cells)

Single spatial scale; uses
national population-
weighted AQ by
default, other scales
require user supplied
data.

Includes cessation lag? Not built-in Yes
Allows alternative

cessation lag models?
No Yes

Accounts for population
projections

Yes Yes

Accounts for mortality
projection

Yes Yes

Updates population
estimates for past AQ
changes?

No Yes

Results for a given year
reflect…

Total impact of air quality
changes in that year

Impacts of current and
past AQ changes in
study period

Journal of Benefit-Cost Analysis 213

https://doi.org/10.1017/bca.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2022.5


0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

20
41

20
42

20
43

20
44

20
45

20
46

20
47

20
48

20
49

20
50

Ch
an

ge
 in

 P
M

2.
5-

A�
rib

ut
ab

le
 D

ea
th

s

Year
BenMAP 2013 Lagged BenMAP 2010 Lagged BenMAP 2004 Lagged PopSim

Figure 4. Conceptual comparison of change in attributable deaths using dynamic (PopSim)
and static (BenMAP) approaches for USA case study, 1990–2050.

Figure 5. Baseline projections for population and mortality in PopSim model.
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with changes in the population structure; the 30-year model delays the period of maximum
risk reduction until the point where we see the maximum increase in the 65þ age category in
each population. As observed in the NPV estimates for this model, this interaction mitigates
the effect of discounting on the results for each model.

4. Discussion

The application of life-table-based models such as PopSim is a useful complement to the
traditional method of air quality benefits assessment, augmenting it in several key ways: it
provides an efficient way to estimate on a national or regional scale the cumulative effects of
reductions in mortality risks on the size and structure of an exposed population over time;
produces alternative characterizations of the risk-reduction benefits of air quality manage-
ment that can supplement the traditional attributable deaths metric; and enables the encap-
sulation of decades of public health benefits into a single estimate of NPV. The results of
applying PopSim to these two case studies, in particular, demonstrate in each case a
substantial cumulative effect of USA andChilean air qualitymanagement on their respective
populations and add insights into the life expectancy gains attributable to cleaner air.

The number of PM-attributable deaths estimated each year from PopSim is fundamen-
tally and conceptually different from that estimated by BenMAP-CE. While BenMAP-CE
estimates the number of PM-attributable deaths that will eventually be reduced as a result of a
single pulse reduction in air pollutant exposure for a given year, the PopSim estimate for that
same year estimates these as the sum of a series of processes capturing the overlapping
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Figure 6. Reduction in PM2.5-attributable deaths using dynamic (PopSim) approach for
Santiago, Chile, 1990–2050.
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lagged benefits of past exposure changes plus a portion of the current year’s benefits applied
to a population cohort whose age distribution, size, and mortality rates reflect the impacts of
previous years. We can see from this approach that in the absence of other perturbations, a
series of reductions in mortality rates from improved air quality will yield additional
cumulative benefits resulting from changes to the underlying at-risk population over time
that the pulse approach does not capture.

While the comparison of PopSim and BenMAP-CE results in Figure 4 suggests that one
could roughly approximate PopSim by running BenMAP-CE for every year of analysis and
summing those results, in reality, such an approach would not only be unwieldy, but would
not capture the compounding effects of population changes that are automatically endogen-
ized into the PopSim model. In the case of both the USA and Santiago analyses, this
additional effect is likely to be substantial. The potential magnitude is easiest to explore for
the USA case, where the PM concentrations decrease roughly linearly over the study period
and thus could be approximately by a series of equally sized PM reductions of the average
decrease (3.2 μg/m3) from 1990 to 2015. A back-of-the-envelope calculation using those
changes, the Krewski et al.RR, and a static estimate of 2.5million deaths per year suggests a
change of about 1.2 million cumulative attributable deaths, while PopSim is reporting a
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change of about 2 million attributable deaths. This substantial gap is most likely due to the
substantial projected increases in the population aged 65 and older, which far outweighs the
projected baseline reduction in mortality rates for that group. This effect is also likely
enhanced because the cessation lag model we applied focuses much of the mortality risk
changes in the period of steepest population growth. Theoretically, we could account for this
population change by conductingmany BenMAP runs that incorporate that tool’s projection
estimates and that will narrow the gap; however, those runs will not capture the compound-
ing effect of these changes because it does not update its population estimates from year to
year for past changes.

U.S.

Santiago

NPV, #% DR ($,billions)
USEP A 8,100

Walton A 8,600
Walton C 7,600

30 Year 6,400

NPV, #% DR ($,billions)
USEP A 135

Walton A 139
Walton C 131

30 Year 121

Figure 8. Sensitivity analysis for alternative cessation lag models.
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PopSim also illustrates how benefits from improved air quality will at some point peak
and begin to decline as the age structure and mortality risk profile of the population changes,
as shown in Figure 4. To be clear, air quality regulations are not the cause of these additional
deaths – it is merely that the life-extending benefits of breathing less polluted air yield higher
numbers of individuals surviving to cohorts with high non-pollution-related mortality rates.
As the population age structure shifts toward larger elderly populations, the presence of
greater populations in age bins with higher mortality rates begins to outweigh the impact of
the reduced mortality rates at lower ages. Of note, the number of reduced PM-attributable
mortalities appears to peak sooner than the number of life years gained.

In Figure 6 for Santiago, the number of annual reduced PM-attributable deaths does not
peak until the penultimate decade of the analysis; the peak occurs sooner in the USA, with
positive, though steadily declining values in much of the USA analysis. There are two
primary reasons for this difference. First, the historical USA air quality changes exhibit more
gradual, steady declines over the study period that follow a largely linear trajectory, while
Santiago begins the study period with a dramatically sharp and large decline in PM2.5 that
continues to reverberate through the population for much of the study period. Second, the
age profiles of the two populations differ. Santiago’s population is skewed toward younger
ages at the start as shown in Figure 7 so it takes longer to shift the population enough to
overcome the substantial risk reduction benefits from those initial reductions.

Considerations of life-years gained estimates from the model provide additional context
for understanding the effects of air quality on health, because it illustrates the magnitude of
life extension that can be expected as mortality risk reductions play out against expected
future demographic and health changes in the population. It also illustrates the effect of the
trajectory of air quality changes on benefits. For example, examination of Table 5 shows that
the dynamic approach estimates more than 1.5 million life-years saved in the USA in 2050
due to the current air quality management regime compared to 300,000 additional life years
expected in the Santiago case. Chile and Santiago’s rapid and dramatic actions on air quality
yielded 20 % of the USA scenario benefits, even though its population of adults 30–99 was
less than 2 % of the corresponding USA population at the start of the analysis. This is due
both to the larger magnitude of PM2.5 reductions, and to the fact that they were achieved
quickly in the early years. As a result, much if not all of the lagged impact is captured in the
study period and the resulting changes in the size and structure of the at-risk population early
in the analysis contribute to larger benefits of later PM2.5 reductions. It also has a strong
enough effect on the population to effectively carry through a strong lives-saved benefit to
the end of the simulation, with life-years gained continuing to increase through 2050 and
likely beyond. The change in population age structure is also both substantial and dramat-
ically different in each case: the air quality actions are expected to lead to significant
increases in the percentage of the population aged 65 and older – on the order of 0.3 % in
the USA (1.4 million people) and 1.6 % in Santiago (about 260,000 people) above and
beyond projected demographic trends in aging.

The estimation of changes in life expectancy by the PopSim tool provides yet another
perspective on the public health benefits of air quality. Our USA results find that adults
between 30 and 49 would experience an approximately 0.2–0.3 year gain in life expectancy
from the changes in PM2.5 from 1990 to 2015 starting in 2020 and persisting through 2050.
These results are generally consistent with or more conservative than estimates reported by
other researchers (Correia et al., 2013; Fann et al., 2017; Schwartz et al., 2018). Of note,
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Schwartz et al. found an increase in life expectancy of 0.9 years comparing areas with annual
mean PM2.5 of 12 and 7.5 μg/m3 using causal modeling methods instead of life-tables.

Our estimates for the change in life expectancy in Santiago are in the vicinity of 2 years for
adults 30–49, from 2010 to 2050. We have fewer points of comparison for estimates of this
magnitude, but a study of China’s Huai River policy by Chen et al. (2013) suggested air
pollution concentrations in China may be reducing life expectancy in some areas by as much
as 5 years. We note, however, that our analysis uses the Krewski et al. (2009) concentration-
response function, which assumes an essentially linear response to the absolute amount of
PM and may potentially bias our estimates upwards for Santiago, given recent work by
Cohen et al. (2017) and Burnett et al. (2018) on nonlinear functions showing flatter slopes at
higher PM concentrations. Interestingly, while it is typically stated that older cohorts are the
main recipients of the benefits of cleaner air, we note risk changes across all categories result
in younger adults seeing a larger life expectancy gain in absolute terms, although older adults
would see a larger gain in terms of the percentage of their remaining life expectancy.

The comparison ofmonetized benefits usingVSL and a constant VSLY illustrates that the
monetized benefits of the life-years gained are modestly but consistently smaller than those
generated using VSL, though still quite substantial (a cumulative $2.7 to $6.4 trillion in the
USA in 2050 and $47 to $120 billion in Santiago for a 3 or 7 % discount rate, respectively).
These values are about 80–95 % of the VSL-based valuation in the USA and Santiago. This
reflects in part the fact that the PM-attributable deaths reduced skew toward older individuals
who have fewer remaining life years than the general population. Additionally, we derive an
estimate of VSLY from VSL – a standard approach (Robinson et al., 2019), but necessary
due to the lack of reliable directly elicited estimates of VSLY in the peer-reviewed literature.
The VSLY method adopted here reflects the current standard but strong assumption
valuation that a life-year is proportional to discounted remaining life years, though this
pattern is not consistently observed in revealed (Aldy&Viscusi, 2007) and stated preference
studies of VSL by age (see also Hammitt, 2013). Recently, Yin et al. (2021) has applied an
age-adjustedmeasure of VSLY that reflects not only remaining life expectancy but quality of
life in older age. That work acknowledges that the complex interplay of age-dependent
health, longevity, and wealth, as well as the choice of a discount rate, complicates the
estimation of age-specific VSLY; however, we note that no consensus has yet been reached
on applying age-adjusted VSLY. The method demonstrated in Yin et al. (2021), could be
combined with the dynamic life-expectancy calculation in PopSim (rather than the static life
expectancy inYin et al.), as a potentially interesting extension of ourwork that could provide
some insights into potential uncertainties in VSLY estimates used with PopSim results.

The eventual peak and then gradual decline of benefits seen in the lives and life-years
metrics is also reflected in themonetized benefit values usingVSL andVSLY, but the peak is
shifted earlier due to the effects of discounting the value of the health benefits, particularly
when using a 7% discount rate. Regardless, we still see in the Santiago example that it could
take several decades, all else equal, for the benefits of substantial improvements in PM2.5 to
peak if aggressive action is taken. This illustrates that life-table-based benefit estimates using
PopSim or other tools represent an important supplement to the traditional VSL based
monetized benefits found in many air pollution assessments, including U.S. EPA (2011).

There are several limitations to acknowledge related to the life-table approach generally
and the PopSim tool specifically. The life-table approach enables us to estimate the change in
PM-attributable deaths between two different air quality scenarios using standard damage
assessment methods, survival curve data, and concentration-response relationships that are
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proportional to baseline death rates. We also use these data to generate the best estimate of
impacts on life-years gained in the population assuming that changes in attributable deaths
are distributed proportionally to baseline death rates, a reasonable assumption consistent
with the epidemiological literature. However, as explained in Hammitt et al. (2020), we
cannot know with certainty from these data alone the specific distribution of attributable
death differences across and within the various age categories and as a result, the effect on
life-years gainedmay be larger or smaller than estimated by PopSim.With regard to PopSim,
the estimates generated by PopSim are specific to the particular population projection used in
that tool. As noted above, additional sensitivity analysis to understand the impacts of model
uncertainty in these projections would be beneficial. Results are also sensitive to the specific
cessation lag model applied, though as our results show, these impacts on the timing of risk
reduction interact with the specific population projection and age-distribution assumptions,
which can have either a mitigating or exacerbating effect on the NPV of benefits.

Finally, use of the life-table approach highlights the need to better elucidate variations, if
any, in the effect of PM2.5 on mortality by age. Mortality health impact functions used
historically by EPA, such as the Krewski et al. (2009) function used in our analyses, employ
a single impact estimate for a large age range (e.g., 30 and older). In recent years cohort
studies have shifted toward using larger data sets of the 65 and older Medicare population
(e.g., Di et al., 2017), which can help shed some light on whether the mortality effect might
vary with age. If age does modify this effect, then our results would be sensitive to these
differences, because of the significant shifts in age distribution over time in the populations
we studied. Future life-table analyses could be improved by exploring the use of age-specific
mortality functions to account for effects of projected demographic changes on the health
impacts of changes in PM2.5 concentrations over time.

5. Further research

The dynamic life-table method described above is not meant to replace static estimates from
BenMAP-CE, but rather provides a richer representation of the effects over time at the cohort
level. We note that this additional information comes at the expense of geographic resolu-
tion, due to the increased computational complexity of the life table approach. BenMAP-CE
allows changes in PM and the resulting mortality effects to be expressed at a finer spatial
scale than currently allowed by PopSim. The spatial scale of BenMAP-CE is particularly
important in benefits analysis where the location of an air quality improvement and whether
the improvement occurs in a highly populated area can have a large effect. A key future
improvement to PopSimwould be to allow for finer spatial resolutionwithin the simulation –
for example, multistate regional estimation for the USA. A future version of the PopSim
model could be configured to support Environmental Justice analyses by (i) incorporating
race or ethnicity-specific baseline death rates; and (ii) using Hazard Ratios that account for
effect modification of air pollution risk by race (Di et al., 2017; Fann et al., 2017; Rosofsky
et al., 2018).

In addition, our estimates for Santiago are limited by the lack of detailed population
projections for the metropolitan area; our proof-of-concept analysis proves the PopSim
model is capable of conducting analyses at this scale, but further evaluation of effects on the
Santiago population should be informed by geographically specific, age-stratified projec-
tions of population reflecting local health and demographic trends.

220 Henry Roman et al.

https://doi.org/10.1017/bca.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2022.5


The PopSim tool is currently programmed using widely available software to ensure it is
accessible to most users. Improvements to the computational speed will be necessary to
facilitate analyses at a finer geographic scale and accommodate treatment of uncertainty
either at the concentration-response function level or at the scenario-level in terms of
alternative population and health forecasts. Other potential improvements include accom-
modating the use of recent nonlinear concentration-response functions, such as the Inte-
grated Exposure Response function (Cohen et al., 2017) and the Global Exposure Mortality
Model (Burnett et al., 2018), which may be more appropriate for high concentration
scenarios such as Santiago. Additional research on this topic includes investigating appli-
cations using cause-modified life tables (Brand, 2005; Stieb et al., 2015) that employ closed-
form mathematical relationships and simplifying assumptions to expand applicability of the
life-table approach while reducing the computational burden.
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