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Dietary restriction (DR) has been shown to extend both median and maximum lifespan
in a range of animals, although recent findings suggest that these effects are not universally
enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly
strain-specific and there is little current evidence that DR induces a positive effect on
all-cause mortality in non-human primates. However, the positive effects of DR on health
appear to be highly conserved across the vast majority of species, including human subjects.
Despite these effects on health, it is highly unlikely that DR will become a realistic or popu-
lar life choice for most human subjects given the level of restraint required. Consequently
significant research is focusing on identifying compounds that will bestow the benefits of
DR without the obligation to adhere to stringent reductions in daily food intake. Several
such compounds, including rapamycin, metformin and resveratrol, have been identified as
potential DR mimetics. Although these compounds show significant promise, there is a
need to properly understand the mechanisms through which these drugs act. This review
will discuss the importance in understanding the role that genetic background and hetero-
geneity play in mediating the lifespan and healthspan effects of DR. It will also provide
an overview of the most promising current DR mimetics and their effects on
healthy lifespan.

Caloric restriction: Ageing: Rapamycin: Resveratrol: Metformin

Caloric restriction is defined as a reduction in energy
intake relative to that consumed normally by individuals
with free (ad libitum (AL)) access to food, while main-
taining nutrient intake(1). For the purposes of this review,
the term dietary restriction (DR) will be used exclusively.
In this context, DR will include both caloric restriction,
as defined earlier, but will also encompass those inter-
ventions in which specific macro/micronutrients (e.g.
protein, carbohydrate andamino acids) are restrictedwith-
out any reduction in energy intake per se(1–4). While the
periods of fasting undertaken by religious ascetics have
been known for centuries to increase awareness and ac-
tivity(5), the first experimental evidence that a restricted
diet could impact positively on lifespan was provided by
Osborne et al. almost 100 years ago(6). These authors

reported that DR caused stunting of female rats, resulting
in extended lifespan and a longer reproductive period,
relative to non-stunted controls. Approximately 10 years
later, McCay et al. reported that lifespan could be ex-
tended in brook trout (Salvelinus fontinalis) fed a low-
protein diet(7), and then went on to generate a significant
body of work over several decades examining howDR im-
pacted on lifespan primarily in white rats (reviewed in(8)).
Their initial observations showed that lifespan ofmale rats
was increased by DR when initiated immediately after
weaning or from 2weeks post-weaning(9).While they initi-
ally detected no effect in female rats(9), later studies did
find significant DR-induced lifespan extension across
both genders(10). McCay et al. also provided the first tan-
gible evidence that DR could benefit health, as several
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chronic diseases, including cancer, were delayed and/or
decreased in incidence relative to AL controls(10).

The universality of dietary restriction on lifespan
and healthspan

Since the findings of Osborne et al.(6), a huge body
of work has examined DR across many species, primarily
in the quest to unravel the mechanisms driving the
ageing process. This research clearly demonstrates that
DR is the most reproducible environmental intervention
through which median and maximum lifespan can be
extended(11–16). The positive effects of DR on lifespan
have been reported in model organisms such as yeast
(Saccharomyces cervisiae), nematodes (Caenorhabditis
elegans), fruit flies (Drosophila sp.), mice and rats(11),
but also in non-model organisms, including spiders(17),
Hereford cattle(18) and Labrador dogs(19). This has led
to the widely held belief that DR effects on longevity
are universal, although, as discussed later in this review,
recent findings suggest that this is not the case.

As reported by McCay et al.(10) in their early studies
and substantiated subsequently in many other studies is
that DR postpones and/or ameliorates a wide range of
both age-related and non-age-related pathologies (for
discussion see(11,14)). Rodents under DR are significantly
less susceptible to spontaneous cancers, showing a delay
in the initiation and an attenuation in the progression of
various tumours(11). Similarly, the growth
of transplanted and induced tumours is slowed by
DR(20,21). DR rodents are also significantly leaner than
AL animals, and present a broad-spectrum attenuation
in many age-associated pathologies including insulin re-
sistance, glucose intolerance, immune dysfunction, cog-
nitive decline, sarcopaenia and cataracts(11–14,22–24).
DR also enhances stem cell function in skeletal mus-
cle(25), and reduces pathology in mouse disease models,
including Alzheimer’s disease(26), pancreatic cancer(27),
amyotropic lateral sclerosis(28) and viral myocarditis(29).

While the effects of DR on lifespan in rhesus
monkeys (Macaca mulatta) are currently unclear (see
the following and references therein), DR does confer
many health benefits in these animals(30,31). Rhesus mon-
keys on DR enjoy a greater period of their life free from
several age-related diseases including type 2 diabetes,
cancer and CVD ((30), but see also(31)). DR also protects
rhesus monkeys against sarcopaenia, adiposity, brain
atrophy, heightened stress-associated behaviours and
significantly reduces plasma TAG and fasting glucose
levels(30–35). However, as in rodents, it appears that ulti-
mately those diseases that cause death in AL and DR
monkeys are somewhat similar, that is DR compresses
the period of morbidity suffered in old age(31).

Evidence against the universality of dietary
restriction on lifespan

Although significant conservation exists in the beneficial
effects of DR on lifespan across evolutionary distant

organisms, several studies report DR having no effect,
or indeed a negative effect, on lifespan(31,36–41).
The precise reasons as to why some species or genetic
strains within a species respond differently to DR is cur-
rently unclear, but there is great current interest in using
comparative approaches to examine this(42–44). In mice,
at least, the genetic background appears to be an im-
portant factor in the DR response with the DBA/2
mouse being a case in point. Although a debate exists
on whether this strain actually responds positively(45) or
negatively to DR(46,47), several studies have employed
this strain as a ‘negative’ responder(41,48–50). While the
effects of DR on the lifespan in DBA/2 mice are ambigu-
ous, when a positive effect on lifespan has been reported
it tends to be more moderate compared with strains such
as C57BL/6(45). It is also clear that these two strains show
significant differences in physiology both under AL and
the DR diets. For example, under AL conditions, the
DBA/2 mice are relatively more hyperinsulinaemic, insu-
lin resistant and fatter than C57BL/6 mice, with reduced
bone mineral density and higher mass-specific resting
metabolic rates(41,51–55). In addition, the improvement in
glucose tolerance seen following short-term DR is signifi-
cantly slower in DBA/2 mice than in C57BL/6 mice(51).

In ageing studies in mice the strain of choice has
been C57BL/6, although even here significant inter-study
differences exist in how DR affects lifespan. On using
a meta-analysis-type approach to examine twenty-two
separate DR experiments in C57BL/6 mice, the effect
of DR on median lifespan ranged from a 26·8% increase
to a 32·8% decrease, relative to AL controls(8). Indeed,
the average increase across all the studies was only
6·7%(8). There are many potential reasons as to why dis-
parity exists across the studies. Differences in animal hus-
bandry and housing (e.g. health status and diet) and
experimental design (e.g. age at initiation of DR, level
of DR and gender) may all effect on the level of lifespan
extension reported(8,13,56,57). For example, C57BL/6 mice
appear sensitive to both the age at which DR is initiated
and to exactly how DR is introduced(8), i.e. full DR
started immediately or a step-down regimen to full
DR(58,59). In mice, the later DR is initiated in the lifespan
continuum the smaller the magnitude of lifespan exten-
sion(60–62), with some studies reporting no effect(63) or a
negative effect(47) when DR is started in middle-age or
late in life. The absence of significant lifespan effects in
some studies may be due to small sample sizes, whereby
single individuals have a large effect on the overall group
survival(13,57). Indeed, and as reviewed in detail else-
where(8), contemporary analysis of some of the early
rat DR studies suggest that the lifespan extension effects
reported may have been somewhat overestimated. Large
sample sizes may also produce negligible but significant
lifespan effects that might have little relevance to the
actual biology(8). There are also some suggestions that
DR may affect the ageing trajectory differently in mice
and rats, and this may also be the case within different
strains. For example, demographic studies have sug-
gested that in rats the rate of ageing is retarded following
DR but that the onset of ageing (initial mortality rate) is
delayed in mice(64), although other studies report that the
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ageing rate is retarded in both(65). Another popular no-
tion is that DR extends median lifespan by a similar ex-
tent to the level of restriction imposed, i.e. 30% DR will
increase lifespan by ∼30%, 40% DR will increase lifespan
by ∼40% and so on to an upper limit whereby starvation
is imposed. Swindell(8) recently examined 125 rodent DR
lifespan studies (fifty-three rat/seventy-two mouse) run
between 1934 and 2012 and reported that the increases
in lifespan following DR are much more conservative,
particularly in mice. DR increased rat median lifespan
by 30% and maximum lifespan by 32%, but in mice the
increase was only 15% and 18% for median and maxi-
mum lifespan, respectively(8). Indeed, a quarter of rat stu-
dies showed an increase in median lifespan of 13·8%,
whereas in mice a similar analysis uncovered an increase
of only 4·1%(8). This same study also reported contrast-
ing gender effects, with males rats, but female mice,
showing the biggest effects of DR on lifespan(8).

The impact of dietary restriction on lifespan in
ILSXISS recombinant inbred mice

The relevance of genetic background to the DR response
was recently demonstrated by two studies undertaken
at the University of Texas(66) and the University of
Colorado(67). Both studies used an unbiased screening
approach to examine lifespan in ILSXISS recombinant
inbred mouse strains; a heterogeneous stock derived
from eight distinct mouse strains used initially to exam-
ine ethanol sensitivity(68). In the first study(66), lifespan
in male (forty-one strains) and female (thirty-nine
strains) mice was assayed following exposure to 40%
DR initiated between ages ∼60 and 150d. Surprisingly,
DR reduced lifespan in more strains than it increased.
Indeed, only 5% of male (Fig. 1a) and 21% of female
(Fig. 1b) strains showed a significant lifespan extension
under DR, with more (27% and 26% for males and
females, respectively) showing a reduction in lifespan
relative to AL controls. In the second study(67), females
from forty-two different strains under 40% DR were
studied. DR was initiated between ages 28 and 40d,
and included twenty-nine strains also used in the earlier
study(66). A significant increase in lifespan following
DR was reported in 21% of strains (Fig. 1c), with a simi-
lar number (19%) showing a significant shortening of life-
span following DR(67). No association was detected
between AL and DR mean lifespan, implying that
different processes may modulate lifespan under different
feeding conditions, although maximum lifespan did
correlate(67). The factors leading to these strain-specific
responses are unclear, but lifespan extension under DR
was inversely correlated with fat loss(69). A recent reana-
lysis of this data indicates that when the positive and
negative responders are separated, the negative relation-
ship between lifespan and fat mass is detected only in
the negative responders(14). This implies that losing fat
mass may not be central to lifespan extension but that
DR may push the negative responders past a point
whereby DR is beneficial due to energy imbalance(14).
What is clear is that the ILSXISS inbred strains are likely

to be invaluable in attempting to disentangle the precise
molecular mechanisms underlying DR. The number of
animals used in these studies ranged between five and
six individuals per group, which may, as discussed ear-
lier, invite some criticism that single animals may have
had large effects on overall group survival(13,57), although
this is pretty much unavoidable in these large-scale
screening experiments. It is also currently unclear as to
whether the separate strains on DR (or AL) died of dif-
ferent things. However, as the authors themselves allude
to the critical next steps will be to repeat the DR studies
using larger sample sizes, examine strain-specific
responses to different grades of DR and examine cause
of mortality across the different strains(14,66).

Positive response

Negative response

No response

Positive response

Negative response

No response

Positive response

Negative response

No response

(a)

(b)

(c)

Fig. 1. The percentage of ILSXISS strains from the studies of Liao
et al.(66) and Rikke et al.(67) demonstrating significant positive
(black), significant negative (grey) or non-significant (unfilled)
effects of 40% DR on mean lifespan (relative to AL controls;
significance P<0·05). A total of forty-one male (a) and thirty-nine
female (b) strains were studied by Liao et al.(66), with forty-two
female (c) strains studied by Rikke et al.(67); n 5 and 5–6 per strain
for(66) and(67), respectively. Each dot represents 1% of total.

C. Selman262

https://doi.org/10.1017/S0029665113003832 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665113003832


P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So
ci
et
y

Dietary restriction in non-human primates

As discussed earlier, the beneficial impact of DR on a
wide spectrum of health-related pathologies is apparent
in primates, even if the effects on lifespan are less
clear(30,31). In the earliest study by Colman et al.(30),
run at The Wisconsin National Primate Research
Centre (WNPRC), DR had no effect on survival when
all-cause mortality was reported. However, the lifespan
curves of the two groups appear to be clearly separating,
with <50% of the DR animals actually dead at the time
this research was published. However, when non-ageing
related causes of mortality were excluded from the sur-
vival analysis (gastric bloat, endometriosis, injury and
anaesthesia), a statistically significant increase in lifespan
was detected in the DR cohort. This suggests that pri-
mates under DR are more prone to non-age-
related causes of mortality. In the second study under-
taken by the National Institute of Aging (NIA), DR
initiated in early- or late-life had no beneficial effect
on lifespan for all-cause mortality or for age-related
mortality (P=0·06) in the young-onset cohort(31).
Again, a completed mortality data set for the young-
onset group is unlikely to be completed for at least
10–15 years from now, but unlike the WNPRC study,
there does not appear to be any clear inkling that
lifespan will be extended in the DR animals upon
completion.

It is important to note that both studies differed in
several aspects of the experimental design and husbandry
that may explain some of the differences reported(31,70).
In the WNPRC study, the control animals had no set
limit to their daily food intake(30), whereas food intake
of controls in the NIA study was regulated to help
avoid obesity, resulting in slight DR(31). Moderate DR
(8%) can delay age-related changes in skeletal muscle in
rats for example(71). Therefore, the lack of effect of DR
on lifespan in the NIA study may, as they themselves
suggest, potentially be because the additional benefits
of full DR on lifespan was minimal relative to those
provided by moderate DR in the controls(31). Further
variability between the two experimental designs in-
cluded diets with different dietary composition (e.g.
28·5% sucrose in WNPRC and 3·9% in NIA), differences
in mineral and vitamin supplementation given to the
DR animals, distinct countries of origin of the animals
which impacted on genetic diversity between experi-
mental cohorts, and also differences in the age of onset
of DR(30,31,70,72). One final difference between the
studies was that the WNPRC employed a medical
intervention policy while the NIA originally did not,
although they did subsequently intervene to treat
endometriosis(31).

Is dietary restriction a realistic intervention in
human subjects?

The lack of any clear effect on lifespan in the non-human
primate studies is perhaps slightly sobering for propo-
nents of DR in human subjects. Certainly the question

of whether DR is capable of extending lifespan
in human subjects is a continued source of de-
bate(14,62,73–75), although this is unlikely to be answered
any time soon given that randomised control trials track-
ing human lifespan are improbable. In rodents the later
in life DR is started then the more modest the effects
on lifespan are(60–62), with extrapolations from rodent
studies suggesting that an individual commencing on
DR at ∼48 years, will only add an additional 2·8 years
to their average lifespan of 78 years(62). However, what
is unequivocal is that DR induces significant health
benefits in many animals, and arguably what is really im-
portant is a greater period of total life free from
age-related disease rather than an extension of lifespan
per se. In human subjects, it is evident that even short-
term and relatively moderate DR in overweight and
obese individuals, and in non-obese individuals, can
confer a multitude of health benefits(75–78). For example,
DR appears to protect against a range of age-related
diseases in human subjects, including obesity, CVD,
arteriosclerosis and hypertension(75–81). DR also slows
age-related declines in left ventricular diastolic function,
increases insulin sensitivity and reduces the levels of sev-
eral inflammatory cytokines(75). It also can slow the pro-
gression of sarcopaenia, possibly through the induction
of skeletal muscle mitochondrial biogenesis and a reduc-
tion in muscle DNA damage(82).

Dietary restriction mimetics

It is clear that despite the significant beneficial effects
of DR on multiple markers of health in human subjects,
the reality is that life-long DR is unlikely to be a realistic
or popular life choice for most of the human population.
Consequently, substantial research effort is currently
being focused on identifying DR mimetics, i.e. com-
pounds that can capture the benefits of DR without the
requirement for chronic food restriction. A whole host
of putative DR mimetics have been reviewed in detail
elsewhere(83–86), but this review will concentrate on
three compounds currently enjoying much of the lime-
light as plausible DR mimetics; rapamycin, metformin
and resveratrol.

Rapamycin

Rapamycin is a microlide drug originally isolated from
soil-derived bacteria on Easter Island. It has extensive
clinical use as an immunosuppressant and as a treat-
ment for various cancers, acting primarily to inhibit the
nutrient-sensing target of rapamycin (TOR), a kinase
complex involved in growth and metabolism(87–89). The
TOR kinase in mammals (mTOR) acts as the catalytic
subunit in two distinct complexes, mTORC1 and
mTORC2(89,90). Originally it was suspected that rapamy-
cin only inhibited mTORC1, although more recently
chronic rapamycin treatment has also been shown to
inhibit mTORC2(89). In genetically heterogeneous
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(HET3) mice, dietary rapamycin treatment initiated
either early or late in life significantly extended lifespan
in both male and female animals(91,92). Intermittent
rapamycin treatment via injections three times per week
over a 2-week period every month also increased lifespan
in female cancer prone mice(93) and in tumour bearing fe-
male 129/Sv mice(94). In adult Drosophila, treatment with
rapamycin has been shown to increase lifespan and stress
resistance(95), with genetic modulation of the TOR sig-
nalling clearly appearing to be a highly conserved modu-
lator of ageing in multicellular animals(96–99).

In a recent, comprehensive study of ∼150 molecular,
cellular, functional and pathological age-related traits
measured in about twenty-five different tissues alongside
mortality curves in male C57BL/6 mice, it was shown
that rapamycin extended lifespan when initiated at
three different ages (4, 13 and 20–22 months)(100).
However, rapamycin’s effect on the various age-related
traits was less clear, appearing to induce many age-
independent effects rather than altering ageing
per se(100). In cancer-prone mice, rapamycin treatment
has been shown to decrease the average number of
mammary adenocarcinomas per mouse and reduced
intrinsic tumour size(93). A reduction in spontaneous can-
cer was also reported in rapamycin-treated mice(94), with
the severity of age-related liver degeneration (males),
endometrial hyperplasia (females), and incidence of
atypical myocardial nuclei and adrenal tumour (both
sexes) reduced relative to age-matched controls(101).
Rapamycin has also been shown to protect aged mice
against pneumococcus infection(102), and elicits beneficial
effects on both dendritic cells and specific stem cell
populations(103) Similarly, long-lived female mice glo-
bally null for S6K1, a key downstream effector of
mTOR, are long-lived and resistant to several age-related
pathologies(96). S6K1 null mice also show significant
transcriptional overlap in liver compared with DR
mice(96), and possess many phenotypic similarities to
DR mice(96,104).

Rapamycin, however, has several side-effects including
immunosuppression in human subjects(105), although its
effects on adaptive and innate immunity appear com-
plex(103,106). In mice, rapamycin treatment increased
testicular degeneration and cataract incidence(101), and
caused insulin resistance in some mouse strains. In a set
of elegant studies, it was recently reported that the
longevity effects of DR (via inhibition of mTORC1)
can be uncoupled from the insulin-resistant effects (via
inhibition of mTORC2(89)). In line with this, life-long
insulin resistance is not a pre-requisite for lifespan ex-
tension in mice(107,108). The effects of rapamycin on in-
sulin resistance also appear complex, inducing insulin
resistance in C57BL/6 mice(89) and Sprague–Dawley
rats(109), but not in genetically heterozygous (HET3)
mice(87). The duration of rapamycin treatment also
appears important in terms of side-effects. For example,
in mice a hyperinsulinaemic, insulin resistant and glucose
intolerant phenotype was reported in mice after 2 weeks
of treatment but this was replaced by a hypoinsulinaemic
and insulin sensitive phenotype following 20 weeks of
treatment(110).

Metformin

Metformin is a widely prescribed biguanide antihyper-
glycaemic drug used to treat type 2 diabetes. It primarily
acts to reduce hepatic glucose output, apparently through
reducing ATP and cyclic AMP production, suppressing
glucagon signalling and activating AMPK(102,111).
The first evidence that metformin could modulate life-
span was provided by Anisimov et al. almost 10 years
ago. They showed that metformin given in drinking
water extended mean and maximum lifespan of mam-
mary cancer-prone FVB/N HER-2/neu transgenic mice,
and reduced the incidence and size of adenocarcino-
mas(112). Metformin also reduced the growth of trans-
planted mammary tumours in FVB/N male mice(98).
However, its effects in inbred 129/Sv mice were sex-
specific, extending lifespan and reducing spontaneous
tumour incidence in females but reducing lifespan and
having no effect on tumour incidence inmales(113). Similar
to DR, the age at which metformin treatment is started
appears important to any lifespan effects. In female
outbred Swiss-derived mice, lifespan extension was seen
when metformin treatment was initiated at age 3 months,
but not when initiated at age 15 months(114). In this same
study, metformin delayed age-related irregularities in oes-
trous cycle, although no effect on serum glucose, insulin
and total cholesterol or TAG levels was reported(114). In
mice, 8 weeks metformin treatment recapitulate the tran-
scriptional effects of long-term DR in liver more rapidly
than 8 weeks DR(83). Metformin also extends lifespan in
C. elegans(115,116); with the most recent of these studies
demonstrating that these effects are mediated through
alterations in folate and methionine metabolism in the
worm’s Escherichia coli food source. This suggests that
the efficacy of metformin on lifespan may be dependent
on exactly how it impacts on the gut microbiota(116). Met-
formin also promotes neurogenesis and improves spatial
memory in adult mice(117), reverse fatty liver disease in
ob/ob mice(118), slows sarcopaenia in elderly men(119) and
is associated with a reduced risk of cancer in type 2
diabetics(120).

However, the effects of metformin on longevity are not
universal. In Fischer-344 rats, despite metformin treat-
ment reducing body mass and food intake relative to
controls, no effect on lifespan was reported(121). Simi-
larly, while metformin in Drosophila both reduced lipid
stores and activated AMPK, no effect on lifespan was
reported in either male or female flies(122). Metformin
treatment also did not rescue the lifespan of the SOD1
(G93A) mouse model of amyotrophic lateral scler-
osis(123), although did increase lifespan of male (but not
female) Huntington’s disease mice(124). Finally, in con-
trast to rapamycin, resveratrol and several other com-
pounds, metformin does not appear to have any effect
on the generation of pluriponent stem cells in mice(125).

Resveratrol

Perhaps no compound has created greater debate on its
effects on lifespan and health, on its precise mode of
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action and on its potential as a DR mimetic as the
polyphenol resveratrol has(126–128). Resveratrol has
been shown to increased lifespan in yeast, C. elegans
and Drosophila apparently through the activation
of NAD-dependent histone deacetylases called sir-
tuins(129,130), with SIRT1 activation reported to underlie
the effects of DR in mammals(130). In male C57BL/6
mice fed a high-fat diet (HFD), combined with resvera-
trol supplementation from age 12 months showed in-
creased lifespan relative to HFD-only fed mice(131).
In terms of healthspan, resveratrol has been shown to
increase insulin sensitivity, improve motor function,
induce mitochondrial biogenesis, increase running time
and prevent development of fatty liver in mice(131–133).
In addition, hepatic transcriptional profiles in the HFD
animals supplemented with resveratrol were shifted
back towards those of the chow-fed controls(131). Resver-
atrol treatment has also been reported to reduce neurode-
generation in Alzheimer’s mouse models(134), and extend
lifespan in both the annual fish Notobranchi guenther(135)

and in honey bees Apis mellifera(136). Excitingly, even
supplementation over 30d with resveratrol in obese
human subjects induced significant DR-like effects on
metabolism(137,138). However, in contrast, other studies
have reported no effects on lifespan following resveratrol
treatment in C. elegans or Drosophila(139) or any effect
following dSir2 overexpression(140). In addition, resvera-
trol supplementation from age 12 months in mice main-
tained on normal chow did not increase lifespan,
although the incidence of several age-related pathologies,
including aortic stiffening and cataracts, was slowed
and/or reduced(132,141,142). In contrast to the effects of
DR(143), resveratrol decreased the proliferative capacity
and survival of neural progenitor cells in the hippo-
campal dentate gyrus of mice, and was associated with
diminished cognitive function(144).

Alternate-day-fasting and the manipulation of
dietary macro/micronutrients

It should be noted that alternative protocols perhaps
more ‘palatable’ to human subjects can also induce wide-
spectrum benefits to lifespan and health in rodents. For
example, alternate-day-fasting, a protocol whereby ani-
mals have AL access to food for 24h and then no access
to food for 24h, reduces serum glucose, serum insulin
and protects neurones against excitotoxic stress in mice,
despite average food intake and body mass mirroring
those of AL controls(145). Short periods of
alternate-day-fasting (4 months) initiated in middle-age
in mice significantly reduced lymphoma incidence and
mitochondrial reactive oxygen species(146). Alternate-
day-fasting also increased lifespan in three distinct
mouse strains when initiated at age 1·5 months, although
complex age and strain interactions were observed when
initiated later in life(147). Interestingly mice given only 8h
of access to a HFD daily ate equivalent calories to ani-
mals with free access to the same HFD but were pro-
tected against a range of pathologies including hepatic
steatosis, hyperinsulinaemia and obesity(148). In addition,

short-term DR (days/weeks) causes a transcriptional shift
mirroring long-term caloric restriction in a range of tis-
sues in mice(61,149), and can have wide-ranging benefits
to aspects of physiology(51,150). In adulthood, dietary
shifts from DR to AL (or AL to DR) in
Drosophila(151) and rats(152) and shifts from AL to DR
in mice(61) rapidly alters the mortality risk to that the
dietary group the animals are switched to. A significant
memory effect to both early-life and adult-onset DR
has been also been reported in mice, particularly on glu-
cose tolerance, even 1 year following a dietary switch
back to AL feeding(153,154). Manipulations in specific
dietary micronutrients, specifically amino acids, can
also extend lifespan and improve aspects of health in ani-
mals including rodents(3,155,156), and excitingly research
recently uncoupled the effects of DR on lifespan and fec-
undity in Drosophila through manipulation of single
amino acids(2).

Conclusion

It is highly unlikely that the majority of human beings
could actually commit, or want to commit, to years of
reduced food intake given the profound levels of restraint
required. However, for the vast majority of us it may be
that all is not lost given that several realistic DR
mimetics have been identified. These may ultimately
lead to the generation of compounds that can provide
some/all of the beneficial effects of DR without any
need to modulate diet. However, it is also clear that a
note of caution should be sounded before there is a
scramble to prescribe rapamycin, metformin or resvera-
trol whole-sale to human subjects. It is clear that we
need to firstly understand the mechanisms through
which these potential DR mimetics work, and get a bet-
ter feel for why the reported species-, strain- and gender-
specific effects exist both following DR and following
supplementation with these compounds. This knowledge
should help in the design of safer analogues(90), or com-
pounds which act on downstream targets, e.g.
PF-4708671 that inhibits S6 kinase(157). In addition,
interventions that limit food intake periodically or ma-
nipulate dietary components without affecting energy in-
take also look promising. However, these objectives are
not straightforward, particularly given that while a cen-
tury has passed since the first report came out that DR
extends lifespan(6), we have still not identified the pri-
mary mechanism underlying DR. In particular, using
comparative approaches to understand how DR works,
using resources such as the ILXISS recombinant mice
and non-model organisms, should help dissect out the
mechanisms underlying DR. It is clear that this field of
research is moving apace and so we should retain opti-
mism that safer DR mimetics, which will extend vitality
in old age, can be developed at some point in the future.
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