
Hereditary mitochondrial disorders (MIDs) affect the
respiratory chain (RC) or oxidative phosphorylation (OXPHOS)
in the majority of the cases. Mitochondrial disorders are due to
mutations in either mitochondrial DNA (mtDNA) or nuclear
DNA (nDNA) located genes, why transmission of these
mutations follows an autosomal dominant (AD), autosomal
recessive (AR), X-chromosomal recessive (XL), or maternal
trait. Phenotypically, MIDs present in the majority of cases as
multi-system disease with onset between birth and senescence,
although single-organ affection may dominate at onset of the
disease1,2. MIDs predominantly manifest in tissues/organs with
high-energy requirements3, such as the peripheral nervous
system (PNS), central nervous system (CNS), eyes, inner ears,
endocrine glands, heart, intestines, kidneys, or bone marrow4.
Combinations of organ affection constitute mitochondrial
syndromes (syndromic MIDs), for which well known acronyms
have been adopted (Table 1)4. In the majority of cases, however,
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the phenotype does not comply with one of these syndromes
(non-syndromic MIDs). The CNS is the second most frequently
affected organ in MIDs and ataxia may be a dominant CNS
manifestation of MIDs. If ataxia predominates the presentation
of MIDs (ataxia neuropathy spectrum)5, it may be easily mixed
up with classical heredoataxias.
Classical heredoataxias represent a heterogeneous group of

neurological disorders, clinically characterized by a cerebellar
syndrome with imbalance, progressive gait and limb un-
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coordination, dysarthria, or disturbed eye movements.
Heredoataxias are most frequently classified according to the
mode of inheritance (AD, AR, or XL)6. Mitochondrial disorders
with ataxia as part of the phenotype may also be inherited via an
AD, AR, XL or maternal trait but have gained little attention so

far. With the rapidly increasing prevalence of MIDs, however, an
increasing number of MIDs with ataxia are reported. This review
aims to give an overview of recent advances and current
knowledge about the frequency, clinical presentation, genetic
background, management, and prognosis of hereditary MIDs
associated with sensory, spinal, or cerebellar ataxia.

METHODS
The source of the disorders listed below was a MEDLINE

search covering the years 1966 to February 2009 and using the
key words: ataxia, sensory ataxia, cerebellar ataxia, mito-
chondrial respiratory chain, mitochondrial disorder, and all
acronyms of syndromic MIDs listed in Table 1.

Definitions
Ataxia was defined as uncoordination and unsteadiness due to

cerebral failure to regulate the body's posture or regulate strength
and direction of limb movements7. Ataxia is usually a
manifestation of a cerebral disorder, particularly of the
cerebellum (cerebellar ataxia) or due to a spinal or peripheral
lesion (sensory ataxia). Cerebellar and sensory ataxia manifest as
uncoordinated movements, or unsteady stance and gait.
Additional manifestations of cerebellar ataxia may be nystagmus
or dysarthria, which often distinguish central and peripheral
ataxia. Sensory ataxia can be compensated by opening the eyes,
whereas cerebellar ataxia persists with open or closed eyes7.

Frequency of mitochondrial ataxias
No convenient figures are reported about the prevalence of

ataxia in MIDs. Only figures about the general prevalence of
MIDs are available, estimating that 9/100,000 individuals have a
manifest MID8. Additionally, 16.5/100,000 children and adults
are at risk for the development of a MID8. The prevalence of the
MERRF mutation 8344A>G in North East England is
0.4/1000008. The most common POLG1 mutation, 467A>T, has
been reported to occur in 0.6% of the Belgian population9.

Classification of mitochondrial disorders
Most frequently, MIDs are classified according to the type of

the mutated gene. A first group of MIDs is due to mutations in
mtDNA located genes (Table 2). Mitochondrial disorders due to
mtDNA mutations are further classified as MIDs due to point
mutations, which are maternally inherited and homoplasmic or
exclusively heteroplasmic (Table 2), or as single deletions or
duplications, which are sporadic and heteroplasmic. Point
mutations may either affect tRNA or rRNA genes (MELAS,
MERRF) or genes encoding for RC subunits (LHON, NARP,
MILS). Single deletions or duplications are responsible for
CPEO, PS, or KSS2. The second group of MIDs is due to
mutations in nDNA located genes, which are divided into genes
encoding for RC subunits (LS, non-syndromic MID), for
assembly factors of RC subunits (LS, GRACILE syndrome), for
proteins involved in intergenomic signaling, causing breakage
syndromes (AD-CPEO, AR-CPEO, SANDO, SCAE, AHS,
MNGIE), depletion syndromes (non-syndromic MID, AHS), or
translation defects (MLASA), for proteins involved in the CoQ
metabolism (LS, non-syndromic MID), for proteins involved in
the mitochondrial transport machinery (X-linked DDS (MTS)
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Table 1: Syndromic mitochondrial disorders

ADOAD Autosomal dominant optic atrophy and
deafness

AHS Alpers Huttenlocher syndrome
ANS Ataxia neuropathy spectrum disorders
ARCO Autosomal recessive cardiomyopathy and

ophthalmoplegia
CMT2A Charcot-Marie-Tooth
CPEO Chronic external ophthalmoplegia
DCMA Dilated cardiomyopathy with ataxia
DDS (MTS) Deafness dystonia syndrome (Mohr

Tranebjaerg syndrome)
DIDMOAD (WFS) Diabetes insipidus, diabetes mellitus, optic

atrophy, and deafness syndrome (Wolfram
syndrome)

FA Friedreich ataxia
GRACILE Growth retardation, Fanconi type

aminoaciduria, cholestasis, iron overload
(liver hemosiderosis, hyperferritinemia,
hypotransferrinemia, increased transferrin
iron saturation, and free plasma iron),
profound lactic acidosis, and early death

IOSCA Infantile onset spinocerebellar ataxia
KSS Kearns Sayre syndrome
LHON Leber’s hereditary optic neuropathy
LS Leigh syndrome
MCHS Myo-cerebro-hepato spectrum disorders
MDS Mitochondrial depletion syndrome
MELAS Mitochondrial encephalomyopathy,

lactacidosis, stroke-like episodes
MEMSA Myoclonus epilepsy myopathy and sensory

ataxia
MERRF Myoclonic epilepsy and ragged red fibers
MIDD Mitochondrial diabetes and deafness
MILS Maternally inherited Leigh syndrome
MIRAS Mitochondrial recessive ataxia syndrome
MLASA Autosomal recessive sideroblastic anemia with

mitochondrial myopathy and lactic acidosis
MNGIE Mitochondrial neuro-gastro-intestinal

encephalomyopathy
MSL Multiple systemic lipomatosis
NARP Neurogenic muscle weakness, ataxia, and

retinitis pigmentosa
OPA Optic atrophy
PDC Pyruvate dehydrogenase complex deficiency
PS Pearson syndrome
SANDO Sensory ataxic neuropathy, dysarthria,

ophthalmoplegia
SCAE Juvenile-onset spino-cerebellar ataxia and

epilepsy
XLSA X-linked sideroblastic anemia
XLSA/A X-linked sideroblastic anemia with ataxia
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XLSA), or for proteins involved in mitochondrial maintenance
(CMT2A (mitofusin-2))10.

Diagnosis of mitochondrial disorders
The diagnosis of a MID is based on clinical, chemical,

electrophysiological, histological, biochemical, and genetic
investigations. Phenotypic features suggesting a MID include
abnormalities of the PNS (myopathy including ocular muscles,
neuropathy, neuronopathy), CNS (epilepsy, migraine, stroke-like
episodes, ischemic stroke, ataxia, Parkinsonism, dystonia, optic
atrophy, cognitive decline, psychiatric abnormalities, coma),

endocrine glands (short stature, pituitary adenoma, pituitary
insufficiency, thyroid dysfunction, hypoparathyroidism, diabetes
mellitus, hyponatriemia, hypogonadism, hyperhidrosis,
osteoporosis), heart (cardiomyopathy, impulse generation or
propagation abnormalities), eye (cataract, glaucoma, retinitis
pigmentosa), ear (hypoacusis, tinnitus, vertigo), gastrointestinal
tract (vomiting, pseudoobstruction, diarrhea, hepatopathy, liver
cysts, pancreatitis), kidney (renal failure, renal cysts), bone
marrow (anemia, leucopenia, thrombocytopenia, pancytopenia),
bones (facial dysmorphism, hypertelorism), or dermis (lipoma,
psoriasis, excema). Blood chemical investigations may show
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MI: mode of inheritence, mat: maternal inheritance, PM: point mutations, del: deletion, dupl: duplication, uk: unknown, n:
normal

MID  MI Mutated gene(s) mtDNA nDNA 

 

mtDNA genes 

 

1. Point mutations in genes encoding for tRNAs or rRNAs (homoplasmic or heteroplasmic) 

 MELAS mat tRNAs, rRNAs PM (homplasmic or heteroplasmic) n 

 MERRF mat tRNAs, rRNAs  PM (homplasmic or heteroplasmic) n 

 MSL mat tRNAs   PM (homplasmic or heteroplasmic) n 

 MIDD mat tRNAs   PM (homplasmic or heteroplasmic) n 

2. Point mutations in genes encoding for RC subunits (homoplasmic and heteroplasmic) 

 LHON  mat RC subunits  PM  n 

 NARP mat RC subunits  PM n 

 MILS mat RC subunits  PM n 

3. Single deletions/duplications (sporadic, heteroplasmic)  

 PS mat multiple RC subunits, RNAs Single deletion/duplication n 

 KSS mat multiple RC subunits, RNAs Single deletion/duplication n 

 

nDNA genes 

 

RC subunits 

 LS AD, AR RC subunits, assembly factors n PM, deletion 

Intergenomic signaling 

 AD-CPEO AD POLG1, ANT1, twinkle mtDNA breakage syndrome PM 

 AR-CPEO AR POLG1 mtDNA breakage syndrome PM 

 SANDO AR POLG1 mtDNA breakage syndrome PM 

 SCAE AR 16q21-q23  mtDNA breakage syndrome Uk 

 AHS AR POLG1 mtDNA depletion syndrome PM 

 MNGIE AR Thymidine phsophorylase mtDNA breakage syndrome PM 

 IOSCA AR C10orf2 (twinkle) mtDNA depletion syndrome  PM 

 MIRAS AD POLG1 multiple mtDNA deletions PM 

 MEMSA uk POLG1 n PM 

 ADOAD AD OPA1 multiple mtDNA deletions PM  

CoQ production 

 LS AR CoQ pathway Uk Uk 

Mitochondrial transport machinery 

 DDS (MTS)  XL DDS n Deletion 

 XLSA  XL ABC7 n PM  

Mitochondrial maintenance 

 CMT2A AD, AR Mitofusin-2  n PM  

Other  

 LBSL AR DARS2 n PM 

 DIDMOAD AR WFS1, WFS2 multiple mtDNA deletions PM   

 FA AR Frataxin n GAA-expansion 

 DCMA Uk DNAJC19 n PM 

 

Table 2: Classification of mitochondrial disorders according to the genetic background
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increased creatine-kinase, lactate or pyruvate (at rest or upon
exercise). Serum and urine levels of amino acids may be
elevated. Organic acids may be elevated in the urine. Lactate and
pyruvate may be also elevated in the cerebro-spinal fluid (CSF).
Nerve conduction studies may indicate neuropathy or
neuronopathy and electromyography may show myogenic,
neurogenic or non-specific changes. Neuroimaging may show a
variety of abnormalities, including cortical, diffuse, or cerebellar
atrophy, basal ganglia calcification, focal or diffuse
demyelination, stroke-like lesions, laminar cortical necrosis,
lacunas, cysts, or old ischemic lesions, Of paramount diagnostic
importance is the detection of a biochemical defect of one of the
RC complexes or the OXPHOS in any tissue or the detection of
a known or new causative mtDNA or nDNA mutation.

Mitochondrial disorders associated with ataxia
A. Disorders due to mutations in mtDNA genes
Mitochondrial encephalomyopathy, lactacidosis, stroke-like
episodes (MELAS)
Ataxia is not a common feature of MELAS syndrome, but has

been reported in single patients. In a female with a MELAS
phenotype since childhood, cognitive impairment and ataxia
developed during the disease course (Table 3)11. In this patient
MELAS was due to the 7512T>C tRNASer mutation11. Ataxia
has been also reported in a MELAS patient carrying the
3243A>G mutation (Table 4)12.

Myoclonic epilepsy and ragged red fibers (MERRF)
Cerebellar ataxia is a common feature of MERRF syndrome.

Nearly all MERRF patients present with cerebellar ataxia13.
Cerebellar ataxia may be even the presenting manifestation in
quite a number of patients (Table 3)14. In addition, MERRF
patients typically present with myoclonic epilepsy, and
mitochondrial myopathy with ragged-red fibers15. More rarely
patients develop dementia, parkinsonism, hypoacusis, optic
atrophy, multiple lipomas, or foot deformities in the advanced
stages13,16,17. On cerebral magnetic resonance imaging (cMRI)
atrophy of the cerebellar peduncles, the cerebellum, or the
brainstem can be found14. Histopathological findings include
degeneration of the dentate nuclei, globus pallidus, red nuclei,
substantia nigra, inferior olivary nuclei, cerebellar cortex, or
spinal cord. Particularly the posterior columns, the
spinocerebellar tracts, or Clarc’s columns are affected16. MERRF
is most frequently due to point mutations in the tRNALys gene
(Table 4).

Leber’s hereditary optic neuropathy (LHON)
Only in single patients ataxia may be a supplementary feature

in addition to optic atrophy (Table 3)18,19. In such patients cMRI
may reveal cerebellar atrophy19. LHON is due to homoplasmic
mtDNAmutations affecting genes, which encode for subunits of
RC complex I, III, IV, or V. Most frequently subunits of RC
complex I are mutated in LHON. There are three primary LHON
mutations, 3460A>G, 11778A>G, and 14484T>C, which
account for >95% of the cases (Table 4)5,20. Only 50% of males
and 10% of females, harboring a primary LHON-mutation,

actually develop LHON20. The incomplete penetrance and the
predominance of males suggest factors other than the primary
LHON mutations (secondary LHON mutations, nDNA
mutations) play a modifying role.

Neurogenic muscle weakness, ataxia, and retinitis pigmentosa
(NARP)
The cardinal clinical features of NARP include neuropathy,

cerebellar ataxia, and retinitis pigmentosa (Table 3)21. Additional
features include developmental delay, dementia, epilepsy,
deafness, sensory neuropathy, or weakness22. Neuropathological
findings comprise symmetrical lesions in the basal ganglia and
brainstem, resembling those of LS23,24. The syndrome is most
frequently caused by heteroplasmic point mutations in the ATP6
gene (Table 4)21. The mutation load is particularly high in the
cortex, putamen, thalamus, cerebellum, and brainstem24.
Irrespective of the mutation load the ATP6 activity is reduced by
about half of the normal value25.
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CA: cerebellar ataxia, SA: sensory ataxia

Syndrome        Type of ataxia   

 

mtDNA genes 

 Ataxia frequent 

 MERRF   CA 

 NARP   SA 

 MILS   CA 

 KSS   CA 

 Ataxia infrequent 

 MELAS   CA 

 LHON   CA 

 PS   CA 

 MSL   CA 

 MIDD   SA 

nDNA genes 

 Ataxia frequent 

 LS    CA 

 SANDO   CA, SA 

 SCAE   CA, SA 

 AHS   CA, SA 

 XLSA/A   CA 

 IOSCA   CA, SA 

 MIRAS   CA, SA 

 MEMSA   SA 

 LBSL   CA 

 CMT2A   SA 

 FA   CA 

 DCMA   CA 

 Ataxia infrequent 

 AD-CPEO  CA 

 AR-CPEO  CA, SA 

 MNGIE   SA 

 ADOAD   SA  

 DIDMOAD  SA 

 CoQ-deficiency  CA 

 PDC-deficiency  CA 

 

Table 3: Syndromic MIDs associated with ataxia
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Maternally inherited Leigh syndrome (MILS)
Ataxia is present in nearly all patients with MILS. However,

there is broad clinical and genetic heterogeneity. In a family
carrying a mitochondrial ATP6 mutation, clinical manifestations
ranged from late-onset MILS to NARP26. In another patient the
8993T>C mutation caused MILS at early infancy, which
disappeared over time, such that he was near normal at age 18
years21. Maternally inherited Leigh syndrome with predominant
ataxia and neuropathy was diagnosed in a family carrying the
9185T>C mutation in the ATP6 gene with a heteroplasmy rate
>90% (Table 3)27. Other ATP6 mutations may also cause MILS

and ataxia may be the only manifestation in
mutation carriers28. Mito-chondrial genes most
frequently mutated in MILS are the ND1-6,
ATP6, COXIII, and tRNALys genes (Table 4)29.
The mutation load correlates positively with the
severity of the phenotype30.

Pearson syndrome (PS)
Pearson syndrome is an uncommon

syndromic MID in infants, characterized by
pancytopenia31. With disease progression,
however, patients additionally develop muscle
hypotonia, developmental delay, ataxia, tremor,
hepatopathy, renal failure, or exocrine pancreatic
dysfunction31,32. Later on the phenotype may
even turn into KSS or LS31. Muscle biopsy may
show features of mitochondrial myopathy32. So
far about 60 cases have been reported in the
literature31. As with KSS and CPEO, PS is due to
single large-scale mtDNA deletions or
duplications31,32.

Kearns-Sayre syndrome (KSS)
Typical features of KSS include CPEO,

pigmentary retinopathy, and cardiac conduction
disturbances33. Additional features include short
stature, glaucoma, deafness, diabetes, primary
amenorrhea, myopathy with ptosis and limb
weakness, pyramidal signs, ataxia, and increased
CSF protein content (Table 3)33,34. In single
patients KSS may be dominated by an ataxic
syndrome34. In accordance with the clinical
findings, MRI often shows cerebellar or global
atrophy. Additionally, there may be T2-
hyperintensities in the deep gray matter nuclei,
the cerebellar white matter, or the subcortical
white matter35. Kearns-Sayre syndrome is due to
single large-scale mtDNA deletions or
duplications35.

Maternally inherited diabetes and deafness
(MIDD)
Maternally inherited diabetes and deafness

syndrome presents clinically with diabetes and
sensorineural hearing loss36. There are also
families, which additionally present with

features of MELAS syndrome37, including seizures, migraine,
short stature, mental retardation, or stroke-like-episodes38. In
single cases, ataxia may be a feature of the phenotype (Table 3)39.
Maternally inherited diabetes and deafness is due to mutations
in the tRNALeu or tRNALys gene or due to large-scale tandem
duplications or deletions/duplications (Table 4)36,37.

Multiple symmetric lipomatosis (MSL)
Multiple symmetric lipomatosis is a rare condition presenting

with CPEO, hypoacusis, cerebellar ataxia, proximal myopathy,
and polyneuropathy (Table 3)40. Muscle biopsy may indicate
mitochondrial myopathy. The genetic background is hetero-
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Gene Syndrome Reference 

 

mtDNA 

 

tRNASer MELAS [11] 

tRNALeu MERRF [14]  

tRNALys MERRF [95] 

 MSL [40] 

 nsMID [42] 

tRNAIle nsMID [41] 

tRNAGlu nsMID [43]   

ND1 MILS [96] 

ND4 LHON [19] 

ATP6 MILS, NARP [21.26,28]  

Del mtDNA KSS [33,34] 

Del mtDNA PS [31.32]    

 

nDNA 

 

POLG1 MEMSA, ANS [6,52] 

 SANDO [49,50] 

 MIRAS [72,74] 

 AHS [53,56]  

 AR-CPEO [48] 

 SCAE [52]  

C10orf2/PEO1 AD-CPEO [46,47,57]  

 AHS [57] 

 IOSCA [57,74]  

 SANDO [51] 

 SCAE [52]  

ANT1 AD-CPEO [47,52] 

 nsMID [52] 

 SCAE [52]  

NDUFS1-8 LS [29] 

NDUFV1-2 LS [29] 

SURF1 LS [45] 

OPA1 ADOAD [67,68,69]  

DARS2 LBSL [76] 

TP MNGIE [58] 

ABC7 XLSA/A [64,66]  

WFS1, WFS2 DIDMOAD [79,80]  

PDHA1 PDH deficiency/episodic ataxia at infancy [84,85]   

PDHB PDH deficiency/episodic ataxia at infancy [84] 

DNAJC19 DCMA [86] 

Frataxin FA [87,88]  

 

Table 4: Mutated genes responsible for syndromic and non-syndromic
MIDs with ataxia

nsMID: non-syndromic MID
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geneous, but a frequent mutation causing MSL is the 8344A>G
transition in the tRNALys gene (Table 4)40.

Non-syndromic MIDs
In a family with the heteroplasmic tRNAIle gene mutation

4284G>A the index patient’s mother showed truncal ataxia,
dysarthria, severe hearing loss, mental retardation, ptosis,
ophthalmoparesis, distal myoclonus, and diabetes mellitus. RC
complex I and IV activities were low in the muscle of the
affected mother of the index patient41. Ataxia was also a feature
in an Italian family with lipomas due to the mtDNA mutation
8363G>A42. Ataxia was also a phenotypic manifestation of the
14680C>A mtDNA mutation in a 14-year-old boy with exercise
intolerance, weakness and lactic acidosis, who showed a mosaic
pattern of succinate dehydrogenase staining on muscle biopsy43.

B. MIDs due to nDNA mutations
Leigh syndrome (LS)
Leigh syndrome, also termed subacute, necrotizing

encephalopathy, is the most frequent MID in childhood44. It is
clinically characterized by a wide variety of abnormalities from
severe neurological problems to almost absence of any
abnormality. Most frequently the CNS is affected, including
psychomotor retardation, seizures, nystagmus, ophthalmo-
paresis, optic atrophy, ataxia, dystonia, or respiratory failure
(Table 3)45. Some patients additionally present with
polyneuropathy or myopathy, or non-neurological abnormalities,
such as diabetes, short stature, hypertrichosis. cardiomyopathy,
anemia, renal failure, vomiting, or diarrhea (Leigh-like-
syndrome). On MRI, symmetric lesions, particularly in the basal
ganglia, thalamus, or brainstem can be found29. Leigh syndrome
is the MID with the widest genetic heterogeneity of all MIDs and
may be due to mutations in the SURF1, NDUFS1-8, or
NDUFV1-2 genes (Table 4)29.

Autosomal dominant chronic external ophthalmoplegia (AD-
CPEO)
Autosomal dominant chronic external ophthalmoplegia may

not only be restricted to the extra-ocular muscles but may also
involve other systems, manifesting as proximal muscle weakness
and wasting, hearing loss, or cerebellar ataxia (Table 3)46.
Multiple mtDNA deletions may be found in the skeletal muscle
of these patients46. Responsible for the multiple mtDNA
deletions are mutations in the ANT1, C10orf2 (twinkle), or
POLG1 genes47.

Autosomal recessive chronic external ophthalmoplegia (AR-
CPEO)
Rarely, ataxia may be also a feature of AR-CPEO, such as in

a family with CPEO, polyneuropathy, sensorineural hearing loss,
and affective disorder48. The syndrome was due to two
heterozygous missense transitions in the POLG1 gene48.

Sensory ataxia with neuropathy, dysarthria and
ophthalmoparesis (SANDO)
AR Sensory ataxia with neuropathy, dysarthria and

ophthalmoparesis syndrome was first reported in 199749.
Clinically, it is characterized by the triad of sensory or cerebellar

ataxia, dysarthria, and ophthalmoparesis49. Additionally, there
may be dysphagia, neuropathy or myopathy50. Genotypically,
multiple mtDNA deletions due to POLG1 mutations49,50 or more
rarely C10orf2 (twinkle) mutations are made responsible for the
phenotype51.

Spino-cerebellar ataxia and epilepsy (SCAE)
Juvenile-onset SCAE is characterised by a phenotype

resembling that of a spinocerebellar ataxia with the difference
that SCAE patients also develop seizures52. Most frequently
SCAE is due to mutations in the POLG1, C10orf2 (twinkle), or
ANT1 genes respectively52. A patient with CPEO and multiple
mtDNA deletions additionally developed sensory and cerebellar
ataxia peripheral neuropathy, parkinsonism, and depression. The
complex phenotype in this patient resembled SCAE and was
attributed to mutations in ANT1 and POLG1 genes with
deleterious, secondary effects on mtDNA maintenance and
integrity52.

Alpers-Huttenlocher disease (AHS)
Alpers-Huttenlocher disease starts in the first years of life

with sudden onset intractable seizures, developmental delay,
psychomotor regression, stroke-like episodes, muscle hypotonia,
ataxia, cortical blindness, hepatic failure, fasting hypoglycemia,
and death within a short time53,54. Muscle biopsy shows COX-
negative fibers55. Neuropathological investigations reveal
cortical gliosis and subcortical loss of neurons, particularly in the
thalamus55. Alpers-Huttenlocher disease is due to mutations in
the POLG1 gene, secondarily causing mtDNA depletion56. The
diagnosis is established by liver biopsy, muscle biopsy, or
genetic testing. A phenotype similar to AHS, including muscle
hypotonia, athetosis, sensory neuropathy, ataxia, hypoacusis,
ophthalmoplegia, and intractable epilepsy was caused by
C10orf2 (twinkle) mutations, resulting in hepatic mtDNA
depletion57.

Mitochondrial neuro-gastro-intestinal encephalomyopathy
(MNGIE)
Mitochondrial neuro-gastro-intestinal encephalomyopathy is

an AR MID, characterized by nausea, vomiting, diarrhea ascites,
gastrointestinal dysmotility, ophthalmoparesis, neuropathy, and
mitochondrial myopathy58. Complementary features include
ataxic gait, hearing loss, short stature, facial palsy, dysphonia,
dysarthria, sweating, orthostatic hypotension, bladder
dysfunction and hepatosplenomegaly58. Mitochondrial neuro-
gastro-intestinal encephalomyopathy is due to mutations in the
gene encoding for the thymidine-phosphorylase59,60, which plays
an important role in the nucleoside metabolism by regulating the
availability of thymidine for mitochondrial DNA synthesis61.
The mutation secondarily causes mtDNA depletion or multiple
mtDNA deletions. Thymidine-phosphorylase is also implicated
in angiogenesis and cell trophism62.

X-linked sideroblastic anemia with ataxia (XLSA/A)
X-linked sideroblastic anemia with ataxia is a rare syndromic

MID, characterized by mild sideroblastic anemia with
hypochromia and microcytosis and cerebellar ataxia (Table 3)63-
65. Cerebral imaging shows severe cerebellar atrophy. XLSA/A is
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due to mutations in the mitochondrial ATP-binding cassette
transporter ABC7 gene on chromosome Xq1364,66.

Autosomal dominant optic atrophy and deafness (ADOAD)
Ataxia may be also a feature of ADOAD syndrome, which

additionally presents with ataxia, axonal, sensorimotor
neuropathy, CPEO, or mitochondrial myopathy (dominant optic
atrophy “plus” syndrome)67. Muscle biopsy may show mosaic
COX-deficiency68. The syndrome is due to mutations in the
OPA1 gene, encoding for a dynamin-related GTPase, involved in
mitochondrial fusion, cristae organization, and apoptosis67,69.
Affected patients also harbor multiple mtDNA deletions,
suggesting that OPA1 is involved in mtDNA stability67. At onset
OPA1 mutations may manifest exclusively as optic atrophy but
during the disease course most patients develop ADOAD68.

Infantile-onset spinocerebellar ataxia (IOSCA)
AR Infantile-onset spinocerebellar ataxia is clinically

characterized by cerebellar ataxia, epilepsy, athetosis, hypotonia,
hypoacusis, CPEO, hypogonadism, and sensory neuropathy
(Table 3)70,71. Cerebral imaging may show progressive atrophy
of the cerebellum, brainstem, or spinal cord71. Pathoanatomic
studies confirm atrophy of the cerebellum, brainstem and, most
severely, spinal cord70. IOSCA is caused by mutations in the
C10orf2/PEO1 gene leading to an amino acid exchange in the
mitochondrial helicase twinkle72. The mutation secondarily
results in depletion of mtDNA in the brain and liver, which is
why IOSCA is regarded as a depletion syndrome72.
Biochemically, there is deficiency of RC complex I and IV72. In
children there may be mtDNA depletion without demonstration
of any mutation73.

Mitochondrial autosomal recessive ataxia syndrome (MIRAS)
Mitochondrial autosomal recessive ataxia syndrome is a

common cause of AR juvenile- or adult-onset ataxia74. MIRAS is
caused by homozygous or compound heterozygous mutations in
the POLG1 gene resulting in multiple mtDNA deletions and to a
lesser degree than in IOSCA also to mtDNA depletion72.
Multiple mtDNAdeletions are particularly present in the brain of
these patients72. Biochemically, there is reduced activity of RC
complex I and IV. In a study on 27 MIRAS patients they
presented with ataxia, peripheral neuropathy, dysarthria, mild
cognitive impairment, involuntary movements, psychiatric
symptoms, and epileptic seizures75. Because of the high carrier
frequency in Finland, the high number of patients in Norway, and
an ancient European founder chromosome, MIRAS should be
considered as a first-line differential diagnosis of progressive
ataxia syndromes in Europe75.

Myoclonus epilepsy, mitochondrial myopathy, and sensory
ataxia (MEMSA)
Myoclonus epilepsy, mitochondrial myopathy, and sensory

ataxia patients present clinically with myoclonus epilepsy,
mitochondrial myopathy, and sensory ataxia6. Myoclonus
epilepsy, mitochondrial myopathy, and sensory ataxia is due to
mutations in the POLG1 gene. In addition to MEMSA, POLG1
mutations cause myo-cerebro-hepatho spectrum (MCHS)

disorders (SANDO, AHS), ataxia neuropathy spectrum (ANS)
disorders (SCAE, MIRAS), AR-CPEO, and AD-CPEO6.

Leucencephalopathy with brainstem and spinal cord
involvement, and lactacidosis (LBSL)
AR leucencephalopathy with brainstem and spinal cord

involvement, and lactacidosis syndrome, a newly described
entity, is clinically characterized by slowly progressive
cerebellar ataxia, spasticity and dorsal column dysfunction76.
Sometimes mild cognitive impairment may additionally develop.
There is a highly characteristic constellation of abnormalities on
cMRI76. The disorder is caused by mutations in the DARS2 gene,
which encodes for the mitochondrial aspartyl-tRNAsynthetase76.
Though activity of this mitochondrial protein is reduced in
affected patients, function of the RC is intact76.

Diabetes insipidus, diabetes mellitus, optic atrophy, and
deafness (DIDMOAD)
Diabetes insipidus, diabetes mellitus, optic atrophy, and

deafness or Wolfram syndrome (WFS) is a rare AR neuro-
degenerative disorder with juvenile onset77. The phenotype is
characterized by diabetes and optic atrophy. Other less frequent
features comprise psychiatric abnormalities, ataxia, urinary tract
atony, limited joint contractures, cardiovascular and
gastrointestinal autonomic neuropathy, hyper-gonadotropic
hypogonadism, cardiac malformations, or pituitary
dysfunction77,78. Wolfram syndrome is due to mutations in the
WFS1 gene on chromosome 4p16 or mutations in theWFS2 gene
on chromosome 4q22-2479,80. WSF1 and WSF2 mutations
secondarily result in single or multiple mtDNA deletions81.

Coenzyme-Q (CoQ)-deficiency
Coenzyme-Q (CoQ)-deficiency is a genetically heterogenous

disorder, presenting with four distinct phenotypes: a pure
myopathic form, a severe infantile neurologic syndrome with
nephritis, LS, or an ataxic variant82. Patients with the ataxic form
present with epilepsy, weakness, cerebellar ataxia, cerebellar
atrophy, migraine, myoglobinuria, or developmental delay83. The
ataxic variant is the most common form characterized by
cerebellar atrophy and cerebellar ataxia. Biochemically, there is
deficiency of CoQ in muscle or fibroblasts. CoQ-deficiency
responds well to CoQ-substitution82.

Pyruvate-dehydrogenase complex (PDC)-deficiency
The PDC converts pyruvate into acetyl-CoA within the

mitochondrion. Mutations in the PDHA1 gene may cause
recurrent episodes of isolated ataxia in infancy84. Though
patients gain full recovery between the episodes, they later
develop severe encephalopathy and die in their twenties84. Ataxia
in patients with PDC-deficiency due to mutations in the E1beta
subunit (PDHB) is usually less pronounced than in patients
carrying PDHA1 mutations85.

Dilated cardiomyopathy with ataxia (DCMA)
Dilated cardiomyopathy with ataxia was first described in a

family from the Canadian Dariusleut Hutterite population86.
Patients presented with early onset dilated cardiomyopathy with
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conduction defects, non-progressive cerebellar ataxia, testicular
dysgenesis, growth failure, and 3-methylglutaconic aciduria86.
The causative mutation was the point mutation IVS3-1 G>C in
the DNAJC19 gene, encoding a DNAJ domain containing
protein. The DNAJC19 protein is located inside mitochondria of
cardiomyocytes, and shares sequence and organisational
similarity with proteins from several species including the two
yeast mitochondrial inner membrane proteins, Mdj2p and
Tim14, suggesting that the phenotype of DCMA is the result of
defective mitochondrial protein import86.

Friedreich ataxia (FA)
AR Friedreich ataxia is clinically characterized by cerebellar

ataxia, spasticity, pyramidal signs, hypertrophic cardiomyopathy,
and Friedreich’s foot deformity (pes cavus)87. Additional features
may include headache, dysarthria, dysphagia, vertigo, weakness,
chorea, or anemia88,89. Scoliosis is found in two thirds of the
cases and diabetes mellitus in one third88. Friedreich ataxia is the
most common of the inherited ataxias. Friedreich ataxia is
caused by a homozygous expansion of a GAA triplet repeat (96%
of the cases) or point mutations, located within intron 1 of the
frataxin gene on chromosome 9q1387,88. Four percent of the
patients are compound heterozygous, carrying a GAA expansion
on one allele and a point mutation on the other88. Frataxin is a
widely expressed mitochondrial protein, involved in RNA
processing and intra-mitochondrial iron handling87 and directly
involved in mitochondrial iron-binding and detoxification90.
Frataxin mutations cause frataxin deficiency, which leads to iron
accumulation and overload, increased sensitivity to oxidative
stress, and deficient RC-activity87,90. Frataxin deficiency impairs
mitochondrial functions either by a defect of iron/sulphur cluster
construction or by the generation of free radicals.

Non-syndromic MID
Non-syndromic MIDs due to nDNA mutations are the most

prevalent group of MIDs and genetically heterogenous. They
comprise all those MIDs, which do not fit into the phenotype of
any of the mitochondrial syndromes. As with syndromic MIDs
the CNS is frequently involved and ataxia may be a dominant
feature.
Among three patients carrying a mutation in theMPV17 gene,

resulting in hepatocerebral mtDNA depletion, two had severe,
progressive liver disease, and the third patient a milder form but
developed progressive ataxia91. In a patient simultaneously
carrying a POLG1 and ANT1 mutation resulting in multiple
mtDNA deletions, the phenotype included CPEO, sensory and
cerebellar ataxia, neuropathy, parkinsonism and depression52. A
POLG1 mutation also caused a phenotype with sensory ataxia,
myoclonus, epilepsy, cognitive decline, nystagmus, dysarthria,
and thalamic and cerebellar white matter lesions on MRI92.
Another POLG1mutation caused CPEO, polyneuropathy, ataxia,
sensorineural hearing loss, and affective disorder48. In single
cases the common ATP6 mutation 8993T>C may not only cause
NARP or LS but may also manifest as adult onset ataxia and
polyneuropathy93. Ataxia was also a phenotypic feature in a
patient carrying a tRNAGlu mutation. He additionally presented
with exercise intolerance, weakness, and lactic acidosis43.
Cerebellar ataxia was also a phenotypic feature in a 7-year-old
male with CPEO, spasticity, and dystonia attributed to RC

complex I deficiency due to a NDUFV1 mutation94. This
mutation may be also associated with maternally inherited
episodic ataxia93. In a study on five European MID families
ataxia occurred in combination with various other CNS
abnormalities. Cerebral MRI showed thalamic and cerebellar
white matter lesions and autopsy neuronal loss in gray nuclei92.
In eight patients the abnormalities could be attributed to AR
POLG1 mutations92.

DISCUSSION
This review supports the notion that ataxia may be a more or

less prominent feature of syndromic or non-syndromic MIDs
either due to mutations in mtDNA or nDNA located genes.
Mitochondrial disorders are associated with cerebellar as well as
sensory ataxia and both may be present within the same patient
or family. Mitochondrial disorders with ataxia are increasingly
recognized and should be included in the differential diagnoses
or classification of classical heredoataxias. This study also
confirms that most MIDs do not nicely fit into one of the original
acronyms but rather represent individual phenotypes, which
more or less overlap with classical mitochondrial syndromes.
Despite limited therapeutic options, neurologists should be
aware of ataxia as a feature of MIDs, since it may guide them to
the correct diagnosis, particularly if other neurological or non-
neurological manifestations of a MID are present. Limitations of
this study were that not all papers were accessible, that most
studies did not clearly differentiate between cerebellar and
sensory ataxia, and that most studies neither quantified the
degree of ataxia nor described the course or outcome of the
individual phenotypes.

CONCLUSION
This mini review shows that ataxia is a dominant feature of

some MIDs with cerebral involvement. Cerebellar as well as
sensory ataxia may occur in MID patients and may contribute to
the disability in some of these patients. Ataxia is much more
frequent in non-syndromic as compared to syndromic MIDs. As
soon as ataxia is detected in patients with a phenotpye
suggesting a MID, they should undergo a compreshensive
neurological investigation, including cerebral imaging studies.

LIST OF ABBREVIATIONS

AD Autosomal dominant
ADOAD Autosomal dominant optic atrophy and deafness

syndrome
AHS Alpers Huttenlocher syndrome
ANS Ataxia neuropathy spectrum disorders
AR Autosomal recessive
ATP Adenosine-tri-phosphate
ATP6 Subunit of complex V of the RC
CNS Central nervous system
CoQ Coenzyme Q
COX Cytochrome-c-oxidase
CPEO Chronic external ophthalmoplegia
CSF Cerebrospinal fluid
DARS2 Gene, which encodes mitochondrial aspartyl-tRNA

synthetase
DIMOAD (WFS) Diabetes insipidus, diabetes mellitus, optic

atrophy, deafness syndrome (Wolfram syndrome)
IOSCA Infantile-onset spinocerebellar atrophy
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KSS Kearns Sayre syndrome
LBSL Leucencephalopathy with brainstem and spinal cord

involvement, and lactate elevation
LHON Leber’s hereditary optic neuropathy
LS Leigh syndrome
MCHS Myo-cerebro-hepato spectrum disorders
MDS Mitochondrial depletion syndrome
MELAS Mitochondrial encephalomyopathy, lactacidosis,

stroke-like episodes
MEMSA Myoclonus epilepsy, myopathy and sensory ataxia

syndrome
MERRF Myoclonic epilepsy and ragged red fibers
MID Mitochondrial disorder
MIDs Mitochondrial disorders
MIDD Mitochondrial diabetes and deafness syndrome
MILS Maternally inherited Leigh syndrome
MIRAS Mitochondrial recessive ataxia syndrome
MNGIE Mitochondrial neuro-gastro-intestinal

encephalomyopathy
MPV17 Mitochondrial inner membrane protein
cMRI Cerebral magnetic resonance imaging
MSL Multiple systemic lipomatosis
mtDNA Mitochondrial DNA
MTS (DDS) Mohr Tranebjaerg syndrome (deafness

dystonia syndrome)
NARP Neurogenic muscle weakness, ataxia, and retinitis

pigmentosa
ND1 Subunit of complex I of the RC
nDNA Nuclear DNA
OPA1 Optic atrophy 1 gene
OXPHOS Oxidative phosphorylation
PDC Pyruvate dehydrogenase complex
PDHA1 A1 subunit of the pyruvate dehydrogenase complex
PEO1 Progressive external ophthalmoplegia gene 1
PNS Peripheral nervous system
POLG Polymerase gamma
PS Pearson syndrome
PUS1 Pseudouridine synthase 1
RC Respiratory chain
rRNA Ribosomal ribonucleic acid
SANDO Sensory ataxic neuropathy, dysarthria,

ophthalmoplegia syndrome
SCA Spino-cerebellar ataxia and epilepsy
SCAE Juvenile-onset spino-cerebellar ataxia and epilepsy
tRNA Transfer ribonucleic acid
XL X-linked
XLSA/A X-linked sideroblastic anemia with ataxia
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