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Abstract

Consider a (real) projective plane which is topologically locally flatly embedded in S4. It is known that it
always admits a 2-disk bundle neighborhood, whose boundary is homeomorphic to the quaternion space
Q, the total space of the nonorientable S'-bundle over RP2 with Euler number ±2 , with fundamental
group isomorphic to the quaternion group of order eight. Conversely let / : Q —*• S4 be an arbitrary
locally flat topological embedding. Then we show that the closure of each connected component of
S4 - / ( Q ) is always homeomorphic to the exterior of a topologically locally flatly embedded projective
plane in S4. We also show that, for a large class of embedded projective planes in 54, a pair of exteriors
of such embedded projective planes is always realized as the closures of the connected components of
54 - f(Q) for some locally flat topological embedding / : Q —• S4.

1991 Mathematics subject classification (Amer. Math. Soc): primary 57N35; secondary 57N13, 57N5O,
57Q45.

1. Introduction

Consider a connected 1-dimensional polyhedron embedded in S3. (In this paragraph,
we work in the piecewise linear category.) Then the boundary of its regular neigh-
borhood in S3 is a closed connected orientable surface F, and thus one obtains an
embedding of F into S3. Conversely, let / : F —> S3 be an arbitrary embedding. It
follows from the Alexander duality that S3 — f(F) consists of two connected com-
ponents. Then Fox [4] has shown that the closure of each connected component is
homeomorphic to the closure of the complement of a regular neighborhood of some
connected 1-dimensional polyhedron embedded in S3.

In this paper, we consider a 4-dimensional analogue of the above result of Fox in
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the topological category as follows. Let P be a topologically locally flatly embedded
(real) projective plane in S4. Then by [6, Section 9.3], P has always a 2-disk bundle
neighborhood N(P), which is unique up to ambient isotopy. It is known that the
boundary of N(P) is always homeomorphic to the quaternion space Q, which is the
total space of the nonorientable S'-bundle over/?/32 with Euler number ±2 ([14, 15]).
Thus we obtain a locally flat topological embedding of Q into S4. Recall that Q is
homeomorphic to S3/D8, where S3 is the unit sphere in the quaternionic field H and
Ds is the quaternion group of order eight. In the terminology of [17, Section 5.2], Q
is the Seifert fibered space with Seifert invariants {-1; (o,. 0); (2, 1), (2, 1), (2, 1)}.

Conversely, let / : Q —> S4 be an arbitrary locally flat topological embedding.
It follows from the Alexander duality that S4 — f(Q) consists of two connected
components. The main result of this paper is the following.

THEOREM 1.1. Let f : Q -> S4 be a locally flat topological embedding of the
quaternion space Q. Then the closure of each connected component of S4 — f(Q)
is homeomorphic to the closure of S4 — N(P) for some topologically locally flatly
embedded projective plane P in S4, where N(P) denotes a 2-disk bundle neighborhood
ofPinS4.

The above theorem gives a positive answer to Yamada's problem [23, Section 1] in
the topological category. Note that a similar result for 5' x S2 instead of Q has been
obtained in [13,20].

In the second part of the paper, we give an existence theorem of embeddings
of Q into S4 as follows. Let £, (/ = 1, 2) be the closure of S4 - /V(P,), where
Pi are topologically locally flatly embedded projective planes in S4. We consider
the following problem: does there exist a locally flat topological embedding f :
Q —> S4 such that the closures of the two connected components of S4 - f(Q) are
homeomorphic to E\ and E2^ The second result of this paper is an affirmative answer
to this question for a large class of embedded projective planes (see Corollary 3.3);
for example, if either Px or P2 is the connected sum of the standardly embedded
projective plane in S4 (see [12,19]) with a locally flat 2-knot (see [7-9]), then the
answer is affirmative.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. The
idea of the proof is to find an appropriate self-homeomorphism h of Q such that the
closed 4-manifold obtained by gluing the closure of a component of S4 — f(Q) and
the 2-disk bundle over RP2 by using h is homeomorphic to S4. This will be done by
using the topological characterization of the 4-sphere, which is due to Freedman [5].
In Section 3, we prove the existence result Corollary 3.3. In Section 4, we discuss
related problems in dimension four which are natural generalizations of Fox's problem
in dimension three.
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Throughout the paper, we work in the topological category unless otherwise in-
dicated. The symbol "~" denotes a homeomorphism between topological spaces
and the symbol " = " denotes an appropriate isomorphism between algebraic objects.
Homology and cohomology groups are always with integral coefficients.

The authors would like to express their sincere gratitude to Yuichi Yamada and
Masakazu Teragaito for stimulating discussions and invaluable advice. They also
would like to thank Takao Matumoto for his constant encouragement.

2. Proof of Theorem 1.1

Let Q be the quaternion space, which is the total space of the nonorientable S]-
bundle over RP2 with Euler number ±2. Let a be an element of n\(Q) which
corresponds to a fiber and b an element which corresponds to a section over the center
circle of a Mobius band embedded in RP2. Then it is known that Jti(Q) has the
presentation (a, b \ a2 = b2 = (ab)2} (see [18]).

Recall that the outerautomorphism group of n\(Q) consists of six elements corre-
sponding to the following automorphisms:

Yo

Y\

Yi

Yi

YA

Yi

a

a

a

a

a

a

(->-

! - •

1—>

h - > •

i—y

\—>

a, b

a, b

ab, b

b, b

ab, b

b, b

i-+ b,

i-> ab

\+a.

\-> a,

h+ b,

i-> ab

Let J({Q) denote the mapping class group of Q; more precisely, Jt(Q) is the group
of isotopy classes of orientation preserving self-homeomorphisms of Q. Then Price
[ 18] has shown the following theorem.

THEOREM 2.1. The mapping class group ^{Q) is isomorphic to the outerauto-
morphism group ofTi\(Q), where the isomorphism is induced by the correspondence
which associates the induced automorphism to each self-homeomorphism.

Let us begin the proof of Theorem 1.1. Let Wt (i = 1, 2) denote the closures of
the connected components of S4 — f(Q). In the following, we identify d Wt, 3 W2 and
dN(RP2) with Q, where N(RP2) is the nonorientable 2-disk bundle over Iff2 with
Euler number ±2. We will show that there exists a homeomorphism hi : dN(RP2) %
Q -+ Q % dW, (i = 1, 2) such that the closed 4-manifold W, Uh. N(RP2) obtained
by gluing Wt and N(RP2) by using h{ is homeomorphic to S4.
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For the moment, let h,• : Q —> Q be an arbitrary homeomorphism and set X, =
Wj Uh. N(RP2). Since the Euler characteristic of X,- is equal to 2, X, is a homotopy
4-sphere if and only if it is simply connected. Thus, by virtue of Freedman's solution
of the 4-dimensional Poincare conjecture in the topological category [5], we have only
to show that X, is simply connected for some ht.

We need the following lemma.

LEMMA 2.2. //,(W,) = Z2far i = 1,2.

PROOF. By Alexander duality and Poincare duality, we have

(1) HiiWt) 0 H](W2) =• Ht(S
4 - f{Q)) = H\Q) = H,{Q) = Z2®Z2.

By a similar argument, we have H2(W{) = 0 = H2(W2). Suppose that Hi(W2) = 0.
Then by Alexander duality and the universal coefficient theorem, we have

//,(W,) = H2(W2) = Hom(H2(W2),Z)® Tor(//,(W2),Z) = 0,

which contradicts (1). By a similar argument, we also see that H\(W\) is not zero.
Hence, by (1), we have H\(W\) = H\{W2) = Z2. This completes the proof.

Consider X,. (The argument for X2 is exactly the same.) By the definition of
W\ and W2, there exists a homeomorphism g : Q % 3W2 —>• dWt % Q such that
W{ Ug W2 % 54. Note that //, (Wt) = Z2 by the above lemma and that TT, (N(RP2)) =
H,(N(RP2))=Z2.

Consider Figure 1, where id, id| and id2 are the identity maps, /, , i2, j , w0, wt,

w2, WQ, W\ and w2 are the inclusion maps, and k = fi o a is the composite of the

Hurewicz map a : n\(W2) —*• H\(W2) and an isomorphism p : H^(W2) = Z2 —>
Z2 = nx(N(RP2)).

Set 4>o = u>o* o ((hit)~
] o g j = wu o iu o hu ° ((h]ty

] o gt) = w2t o j t o id2 o
((/jit)~'og,),</)i = wuo id,and<£2 = w2tok. Ifthecommutativity0O = <t>\°i\*°g* =
<p2 o i2t o id, holds, then there exists a unique homomorphism k : 7r,(54) —*• n{{X\)
such that 0/ = Ao wit (i = 0, 1, 2) by van Kampen's theorem (for example, see [3,
Chapter V, Section 3]). Note that then k is surjective, since so are id and k. Since
ii\(S4) is trivial, it will follow that n\(X\) is also trivial. So we have only to show that
there exists a self-homeomorphism h \ of Q for which the above commutativity holds.

Since <j)0 = <px o iu o gt is clear, we have only to consider the commutativity
(p0 = 02 o i2* ° id]. Recall that 0o = u>2* ° j* ° ^2 o ((/jit)^' o gt) and 4>2 = w2t, o k.
If the commutativity k o i2t o id, = 7* o id2o ((hlt)~

l o gt) holds, then the required
commutativity follows. Thus we have only to show the existence of a homeomorphism
h\ : Q ->• Q such that k o i2t = j t o ((hu)~

l o gt).
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7T|(G) XdQ)

°g*

it,(N(RP2))

FIGURE 1

Recall that, by Theorem 2.1, every automorphism of n^Q) is realized by an
orientation preserving self-homeomorphism. If there exists an automorphism \\> :
X\(Q) —>• X\(Q) such that j t o \j/ = k o i2t, then we can find a self-homeomorphism
h | such that hit, = gtoxjr~l and then the required commutativity holds for such an h \.
It suffices to verify the existence of an automorphism xj/ : n\(Q) —> n\(Q) such that
j t o xj/ = i o i2* ( s e e Figure 2).

Recall that n\(Q) has the presentation of the form (a, b \ a2 = b2 = (ab)2). Then
by identifying Q with dN(RP2) in a natural manner, we see that j*{b) generates
n]{N(RP2)) = Z2 and j,(a) is the identity element. Let c e H\(W2) = Z2 denote
the generator. Thus we want to find an automorphism xjj which makes Figure 3
commutative, where Z2{.\) denotes the cyclic group of order two generated by x.

Let us consider Figure 4, where a' is the Hurewicz homomorphism. Note that
this is a commutative figure. Consider the homology exact sequence of the pair
(W2,dW2) = (W2, Q):

H\(Q) -^ H\(W2) — • HX(W2, Q).

By excision, we have Hl(W2, Q) = / / , (5 4 , W,) = 0. Thus i2t : H\{Q) ->• H\{W2)
is surjective. Therefore, in Figure 4, a o i2t is also surjective. Thus we have the
following three possibilities fora o i2t : n\(Q) —> H\(W2):

(1) a i—> c, b\—> 1,
(2) a i—> 1, b\—> c,
(3) a i—> c, b i—> c.
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where 1 e H](W2) = Z2(c) denotes the identity element. Put

Yi ( ° r Yi) (case (1))

Yn (or Y\ ) (case (2))

y4(ory5) (case (3)),

where y, are the automorphisms of Tt\{Q) as defined at the beginning of this section.
Then it is easy to check that the automorphism \j/ makes the required figure (Figure 3)
commutative. This completes the proof of Theorem 1.1.

REMARK 2.3. Theorem 1.1 gives an affirmative answer in the topological category
to a question posed by Yamada [23, Section 1].

REMARK 2.4. We can also obtain a similar result in the smooth category, provided
that we replace S4 by homotopy 4-spheres.

3. Embeddings with prescribed complements

Let P be a topologically locally flatly embedded projective plane in S4. We denote
by E(P) the closure of S4 — N(P), where N(P) is a 2-disk bundle neighborhood of
P in S4 (see [6, Section 9.3]). We call E(P) the exterior of the projective plane P.
In this section, we show that, for a large class of embedded projective planes in S4,
a pair of exteriors of such projective planes is always realized as the closures of the
connected components of S4 — f(Q) for some embedding / : Q -» S4.

PROPOSITION 3.1. Let P, (J = 1, 2) be topologically locally flatly embedded pro-
jective planes in S4. Suppose that the kernel of the homomorphism ijt : n\{dE(Pj)) —»
7Ti(£(Py)) is of order four either for j = 1 or for j = 2, where ij : dE(Pj) —>• E(Pj)
is the inclusion map (j = 1, 2). Then there exists a homeomorphism h : dE(P2) —>•
3£(P,) such that the closed A-manifold £ (P , ) U,, E(P2) obtained by gluing £(P, )
and E(P2) bx using h along their boundaries is homeomorphic to S4.

REMARK 3.2. It is easy to show that the order of ker ijt is always equal to one, two or
four. When it is equal to one, the order of the element w € n\(E(Pj)) corresponding
to the meridian of Ps is equal to four. Otherwise, the order of m is equal to two [19,
Section VI].

PROOF OF PROPOSITION 3.1. Set Ej = E{P/) (j = 1,2). Since the Euler char-
acteristic of the closed 4-manifold Mh = £, UA £2 is equal to 2 for any home-
omorphism h, we have only to show that Mh is simply connected for some h by
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virtue of Freedman's result [5]. We assume that the kernel of the homomorphism
fi, : 7r,(3£(Pi)) - • 7T, (£(/>,)) is of order four.

In the following, we identify 3£> = 9/V(P,) with Q so that the S1 -bundle structure
of Q coincides with that of dN(Pj) induced from the D2-bundle structure of N(Pj).
Recall that Tt\(Q) has the presentation (a, b \ a2 = b2 = (ab)2), where a corresponds
to a fiber. Since S4 is simply connected, it is easy to see that n\(Ej) is normally
generated by /,*(«).

It is an easy exercise to list all the subgroups of G = rt\ (Q) of order four, which
are as follows:

Ga = /; = {l,b,b2,b3}.Gah =

where 1 € G denotes the identity element. By our assumption, ker / u must coincide
with one of the above subgroups. Note that ker// t does not contain a, since the
homology class in Ht(Ej) = Z2 corresponding to ijt(a) e TTI(£/) does not vanish.
Thus ker / u must coincide with Gb or Gah.

7T,(£, U,, E2)

71, (£ , )

':*

FIGURE 5

Suppose that ker / u = Gh. We denote by g,• : Q -» Q (i = 0. 1 5) a self-
homeomorphism of Q which corresponds to the automorphism y, (see Theorem 2.1).
Then set /J = g3. Let us consider Figure 5, which is commutative, where /, (y = 1. 2)
are the inclusion maps. By van Kampen's theorem, TT^M,,) = 7T|(£| U,, £ : ) is
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gene ra t ed by ijir(n\ (£,•)) (./ = 1.2) a n d h a s r e l a t ions

i\* ° 'u ° h.t(a) = /> o i2*(a) and iu o iu o ht(b) = /2» ° h*(b)-

By the construction of /? together with our assumption on ker / u , these two relations
are equivalent to

(\* o i2t(a) = 1 and iu o i\*(a) = ij* o /2*(b).

Since /2*(a) normally generates n\(E2), we see that /2,(7T|(£2)) IS the trivial group
in Tt](Mh). Thus, by the second relation, we have that i]t o iit(a) = 1 in j[\{Mh).
Since i\*(a) normally generates 7T\(E\), we see that ilt(n\(E\)) is also trivial. Hence
7Ti(M/,) is the trivial group.

In the other case where ker / u = Gah, we can use a similar argument to show the
required result. This completes the proof.

As a direct consequence of the above proposition, we have the following corollary.

COROLLARY 3.3. Let P, (j = 1.2) be topologically locally flatly embedded projec-
tive planes in S4. Suppose that the kernel of the homomorphism ijt : n\(dE(Pj)) —>
7T\(E(Pj)) is of order four either for j = 1 or for j = 2, where i/ : dE(Pj) —>• E(Pj)
is the inclusion map (j = 1. 2). Then there exists a locally flat topological embedding
f : Q —> SA such that the closures of the two connected components of S4 — f(Q)
are homeomorphic to E(P\) and E(P2).

REMARK 3.4. We do not know if, in Proposition 3.1 and Corollary 3.3, the condition
on the order of ker/1„ orker/2* is necessary or not.

In the following, P{) will denote a standardly embedded projective plane in S4 (see,
for example, [11, 12, 15, 19.21]). In fact, by f 12], it is characterized by the property
that 7T|(54 — Pn) = Z2. In the following, a topologically locally flatly embedded
2-sphere in S4 will be called a 2-knot in S4. For a 2-knot K, we denote by PQ$K the
connected sum of P<, and K in S4. In other words, PQQK is the embedding constructed
from K by replacing a small 2-disk with a standard Mobius band (see [7-9]).

COROLLARY 3.5. Let P and P' be topologically locally flatly embedded projective
planes in S4 such that P — PniK for a 2-knot K in S4. Then there exists a locally
flat topological embedding f : Q —• S4 such that the closures of the two connected
components of S4 — f{Q) are homeomorphic to E{P) and E(P').

The above corollary follows from the fact, which is easy to prove, that if P is of
the form P = P{)£K for a 2-knot # , then ker(/, : n{ (dE) -> nx (E)) is of order four,
where E = E(P) and /' : dE —>• E is the inclusion map.
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REMARK 3.6. In the differentiable category, if each of P and P' is the connected
sum of PQ and a smooth 2-knot, then a result corresponding to Corollary 3.5 has
already been obtained in [23,24].

REMARK 3.7. As far as the authors know, all the known examples of projective
planes embedded in S4 are the connected sum of a standard projective plane Ptt with
a 2-knot. In fact, there is a conjecture that every projective plane embedded in S4 is
of this form, which is called the Kinoshita Conjecture (for example, see [7-9] and
[19, Section V]). Although this conjecture has not appeared in the literature, it has
been known to knot theorists in Japan for many years (for example, see [25]). We
have a weaker conjecture that for an embedded projective plane P in S4, the kernel of
the homomorphism /« : 7Ti(3£) —>• 7T\(E) is always of order four, where E = E(P)
and / : 3 £ —<• E is the inclusion map. We also do not know if P is topologically
equivalent to the connected sum of P() and a 2-knot when ken, is of order four.

REMARK 3.8. We can obtain results similar to the above also in the smooth category.
However, as in Remark 2.4, we should replace S4 with homotopy 4-spheres.

REMARK 3.9. In Proposition 3.1, if />, = P2, then we obtain a twisted double
decomposition of S4. Compare this observation with the results in [21,22].

4. Related problems

In this section, we first work in the piecewise linear category. Let F and A be
compact connected polyhedrons. We suppose that there exist "standard" embeddings
<po : T - • S4 and Vo : A - • S4 such that <pQ(D n iAo(A) = M. Nr U N± = S4 and
JVrnWA = dNr = 3/VA, where Nr and /VA are regular neighborhoods of <po(F)
and T/f()(A) in S4 respectively. Set M = dNr = 3NA, which is a closed connected
orientable 3-manifold.

Note that many examples of such decompositions of S4 as above are known. We
will give explicit examples later in this section.

PROBLEM 4.1. Let / : M —*• S4 be an arbitrary piecewise linear (locally flat)
embedding and A and B the closures of the connected components of S4 — f(M).
Then, do there exist embeddings <p : F —>• S4 and \j/ : A —>• S4 such that A and B
(or B and A) are homeomorphic to the closures of S4 — N(<p(D) and S4 - N(\f/( A))
respectively, where N((p(V)) and N(\ff(A)) are regular neighborhoods of <p(F) and

in 5"* respectively?

The above problem can be regarded as a generalization to 4-dimensions of the
problem considered by Fox [4].
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EXAMPLE 4.2. Let r and A be distinct two points in S4. Then S4 decomposes as
54 = Nr U NA, where Nr and NA are homeomorphic to the 4-dimensional disk D4.
Thus M = S} and the above problem is nothing but the Schoenflies conjecture for
dimension four, which has not been solved until now. Note that it has been solved in
the topological category by Brown [1,2].

EXAMPLE 4.3. Let P be a circle and A a 2-sphere. Let Vo : A —• S4 be the standard
embedding and cp0 : P —*• S4 — i/r()(A) an embedding such that <po(0 and xlro(A) have
linking number ±1 in S4. Then S4 decomposes as S4 = Nr U N&, where Nr is
homeomorphic to S' x D3 and NA is homeomorphic to S2 x D2. In this case, we
have M = S1 x S2. Then Problem 4.1 has been solved for this case in the topological
category in [13,20]. In fact, every locally flat topological embedding of S1 x S2 into
S4 bounds D2 x S2 embedded in S4.

EXAMPLE 4.4. Let f = A = RP2 and <p{) : RP2 -» S4 a standard embedding
(see, for example, [11, 12, 15, 19,21]). In other words, (po(RP2) is constructed from
the standard embedding of S2 by replacing a small 2-disk with a standard Mobius
band. Then it is well-known that the closure of S4 — N(<po(RP2)) is also a regular
neighborhood of a standardly embedded/? P2 in S4, by which we define IJ/Q : A —• S4.
Thus S4 decomposes as S4 = Nr U NA and in this case M is the quaternion space Q.
Then our Theorem 1.1 gives an affirmative answer to Problem 4.1 for this case in the
topological category.

EXAMPLE 4.5. For an integer n > 2, let X,, be the polyhedron consisting of a circle
S' together with a 2-disk D2 attached to Sl by an «-fold covering map 9 D2 —> S1. Note
that X2 is homeomorphic to/? P2. SetF = A = X,,. Then Yamada [21 ] has shown that
there exists a "standard" embedding <p0 : P —»• 54 such that the closure of the comple-
ment of its regular neighborhood is again a regular neighborhood of a "standard" em-
bedding of X,, into S4, by which we define \j/0 : A —> S4. In this case, M is the Seifert
fibered 3-manifold with Seifert invariants { — 1; (o,, 0); (n, 1), («, 1). («, « — 1)}. The
authors do not know an answer to Problem 4.1 for this case.

EXAMPLE 4.6. Let P be the 2-dimensional torus and (p0 : P —> 54 the standard
embedding, that is, it bounds an embedded S1 x D2 in S4. The closure of the
complement of a regular neighborhood of <Po(P) in S4 is known as Montesinos' twin
[16], which is denoted by 7V. In fact, Tw; is a regular neighborhood of a polyhedron
A embedded in S4 which consists of two unknotted 2-spheres intersecting each other
transversely at two points with distinct signs. We define ^o : A -> S4 by the inclusion
map. Then for the decomposition S4 = Nr U Â A with Nr = T2 x D2 and Â A = Tw,
the 3-manifold M is the 3-dimensional torus T3. The authors do not know an answer
to Problem 4.1 for embeddings of T3 into S4.
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One can construct a lot of examples of embeddings of T* into S4 as follows. (The
authors are indebted to Masakazu Teragaito for the idea of the construction.) Let
D+ be the upper hemisphere of S4 (and D^ the lower hemisphere of S4), which
is homeomorphic to D4. Let Dr be the union of two 2-disks which is properly
embedded in D+ such that (D+, Dr) is homeomorphic to (D2, {2 points}) x D2. Take
an embedded circle CA in 3 D+ which does not intersect Dt such that the 3-component
link dDr U CA in 3D+ is the Borromean ring (see, for example, [10, the rightmost
figure of Figure 5.2, p. 14]). Then let DA be a 2-disk properly embedded in D_ such
that (D_, DA) is homeomorphic to (D2, {apoint}) x D~. Let Hr and HA be small
regular neighborhoods of Dr in D+ and DA in D respectively. Then it is not difficult
to show that (S4, Nr, NA) is homeomorphic to (D+ U D .. N'r, N'A), where N'r is the
closure of (D+ - Hr) U HA and N'A is the closure of (D - HA) U Hr. In fact, Tw
has a handlebody structure consisting of a 0-handle, a 1-handle and two 2-handles.
and the union of the 0-handle and the 1-handle corresponds to the closure of D — HA

and the two 2-handles correspond to Hr (see [16, Section 3]). Furthermore, T2 x D2

has a handlebody structure consisting of a 0-handle, two 1-handles and a 2-handle,
and the union of the 0-handle and the two 1-handles corresponds to the closure of
D+ — Hr and the 2-handle corresponds to HA (see, for example, [10, Example 5.3,
p. 14 and pp. 41^-2]). Then the standard embedding of 7"1 into S4 is nothing but
9/Vp = dN'A. Therefore, replacing Dr c D+ and DA c D_ with arbitrary linked
two 2-disks Dv and an arbitrary knotted 2-disk DA respectively, one obtains a more
complicated embedding of 7"\ For example, if both Dv and DA are "sufficiently
nontrivial", then the closures of the connected components of the complement are not
homeomorphic to T2 x D2 nor Tw. Note that for embeddings of T3 thus constructed,
the answer to Problem 4.1 is affirmative.
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