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FLEXIBLE UTILITY FUNCTION APPROXIMATION VIA CUBIC BEZIER SPLINES
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In intertemporal and risky choice decisions, parametric utility models are widely used for predicting
choice andmeasuring individuals’ impulsivity and risk aversion.However, parametric utilitymodels cannot
describe data deviating from their assumed functional form.We propose a novel method using cubic Bezier
splines (CBS) to flexibly model smooth and monotonic utility functions that can be fit to any dataset. CBS
shows higher descriptive and predictive accuracy over extant parametric models and can identify common
yet novel patterns of behavior that are inconsistent with extant parametric models. Furthermore, CBS
provides measures of impulsivity and risk aversion that do not depend on parametric model assumptions.

Key words: flexible modeling, heterogeneity, intertemporal choice, risky choice, generalized utility func-
tions.

1. Introduction

Intertemporal choices (ITCs) and risky choices (RCs) are heavily studied across many disci-
plines. ITCs are decisions regarding outcomes that occur at different times: for example, deciding
between spending money now versus saving and investing that money for later, smoking now
versus having better health later, or whether to pay an additional price for expedited shipping in
order to receive a package earlier. RCs are decisions made regarding outcomes that occur proba-
bilistically: for example, buying lottery tickets, investing in stock markets, or gambling. ITCs and
RCs are studied both in basic and applied research. In basic research, researchers are interested
in how people make ITCs or RCs and have generated many different proposals for the cognitive
processes that underlie these choices. In applied research, researchers are often interested in how
individual differences in ITC andRC relate to real-world behaviors such as pathological gambling,
smoking, susceptibility to mental illness, drug and alcohol abuse, education level and financial
status (Alessi and Petry 2003; Anderson and Mellor 2008; Brañas-Garza et al. 2007; Kirby et
al. 1999; Krain et al. 2008; Lejuez et al. 2003, 2005; Lempert et al. 2019; Schepis et al. 2011;
Shamosh and Gray 2008).

ITC and RC data are usually modeled using one of three ways: parametric, structured non-
parametric, or fully non-parametric approaches (Fig. 1). Themost popular approach uses paramet-
ric utility models to describe choice (e.g., Table 1). Its popularity is driven by two factors. First,
parametric utility models can distill complex patterns of behavior into one or two interpretable
parameters. For example, the discount rate parameter in ITC models represents the rate at which
the value of future options declines with time delay (parameter k in Table 1); the risk-aversion
parameter in RC models (often substituted by the value function curvature parameter: parameter
α in Table 1) captures the deviation of utilities from risk-neutral expected value. These parameters
are especially useful in applied research that seeks to correlate these measures with other variables
such as health or intelligence. Obtaining these estimates, of course, requires fitting the model to
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data, which highlights a second benefit: minimal data requirements. Parametric models, owing
to their simple forms, often do not require extensive choice datasets. They can be nested inside
logit or probit choice models and fit to any dataset using simple procedures such as maximum
likelihood estimation (MLE).

However, parametric models are not without drawbacks. Due to their simple form, parametric
models have difficulty accounting for the heterogeneity in utility function shapes. Recent evidence
shows that different people behave according to different utility models and that there is no ‘one
correct model’ that can describe everyone’s behavior equally well (Bruhin et al. 2009; Cavagnaro
et al. 2016; Franck et al. 2015;Myerson et al. 2006). Consequently, researchers must ascertain that
their findings are not dependent on their choice of parametric model. To this end, they may have
to perform the same analysis multiple times using different utility models to show the robustness
of their results (e.g., Ballard and Knutson 2009; Kable and Glimcher 2007). However, not only
is this an added burden, it is also an imperfect solution as there always could be another model to
consider. In sum, while parametric models are useful in their simplicity and interpretability, their
assumptions can be questionable at the individual level due to heterogeneous utility functions.

On the other side of the spectrum, there are fully non-parametric approaches (Fig. 1). With
modern generalized prediction algorithms such as Gaussian processes, neural networks, etc., one
can treat choice modeling as a classification problem without needing to specify any structure
or functional form. Given that these algorithms were designed for the goal of prediction, it is
expected that fully non-parametric approacheswill bemore predictive than parametric approaches.
However, achieving this predictive power requires considerably more data. In a dataset of about
100 choices, Arfer and Luhmann (2015) found that support vector machines, random forests, and
k-nearest neighbor clustering algorithms do not have higher predictive capabilities than parametric
models. More importantly, these non-parametric methods are agnostic, ‘black-box’ approaches
that do not readily yield interpretable insights, and therefore have rarely been used in studies
seeking to advance theories of the decision-making processes involved in ITC and RC.

Balancing the interpretability of parametric approaches and the flexibility of non-parametric
approaches are structured non-parametric approaches (Fig. 1). Structured non-parametric
approaches keep the same overall structure of the parametric utility functions (e.g., U =
f (A) ∗ g (D), where ITC utility is modeled as a product of transformed amount and delay,
orU = f (A)∗ h (p), where RC utility is modeled as a product of transformed amount and prob-
ability), but approximate these transformation functions in a non-parametric manner. Hence, com-
pared to parametric approaches, there is greater flexibility, while compared to fully non-parametric
approaches, there is greater interpretability since these transformation functions are understood as
weighting functions for amount, delay or probability. Furthermore, previous research has shown
that the area under the curve (AUC) of these non-parametrically fitted functions can serve as
measures of impulsivity or risk-aversion in lieu of the simple scalar discount rate or risk-aversion
parameters from parametric models (Myerson et al. 2006).

Unfortunately, current structured non-parametric approaches have an important drawback that
limits their widespread use: they require specialized elicitation procedures. In ITC, an adaptive
experimental design has beenused to directly estimate the discounting function g(D) at a fewgiven
delays (Myerson et al. 2006). Hence, this approach cannot be used post-hoc on choice datasets
that do not have the same structure. In RC, specialized elicitation procedures have been designed
to address the problem that the commonly used prospect theory form ofU = f (A) ∗ h (p) is not
identifiable in most choice datasets even for parametric functions. For example, using a power
value function for amount, f (A) = Aα , and Prelec’s (1998) 2-parameter probability weighting
function, h (p) = e−δ(− ln p)γ , a certain smaller monetary option (SA) is equivalent in utility to
a larger risky monetary option (LA) with probability p when SAα = L Aα · e−δ(− ln p)γ . Note
that all terms in this equivalence relationship have exponents that can be arbitrarily increased or
decreased while maintaining the equality (e.g., SA2α = L A2α · e−2δ(− ln p)γ ), showing that the
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Table 1.
Survey of commonly used ITC and RC models

Intertemporal choice
models

Form name Utility function Approx.
by CBS

Samuelson (1937) Exponential (E) U = A · exp (−kD) Y
Mazur (1987) Hyperbolic (H) U = A · (1 + kD)−1 Y
Green et al. (1994) Generalized

Hyperbolic (Gh)
U = A · (1 + kD)−s Y

Roelofsma (1996) Log Time (Lt) U = A · D−k Y
Laibson (1997) Quasi-hyperbolic (Q) U = A · β exp (−kD) Y
McClure et al. (2007) Double Exponential

(De)
U = A ·(

we−aD + (1 − w) e−bD
) Y

Risky choice models Form name Utility function Approx.
by CBS

Von Neumann and
Morgenstern (1945)

Expected Utility
Theory (Eut)

U = Aα · p *Y

Rachlin et al. (1991) Hyperbolic (H) U = A ·
(
1 + h

(
1−p
p

))−1
Y

Goldstein and
Einhorn (1987)

GE-weight Prospect
T. (Ge)

U = Aα ·
(

δpγ

δpγ +(1−p)γ

)
*Y

Tversky and
Kahneman (1992)

TK-weight Prospect
T. (T)

U = Aα ·
(

pγ

(pγ +(1−p)γ )
1
γ

)
*Y

Prelec (1998) Prelec-weight
Prospect T. (P)

U =
Aα · exp (−δ (− ln p)γ

) *Y

Green and Myerson
(2004)

Generalized
Hyperbolic (Gh)

U = A ·
(
1 + h

(
1−p
p

))−s
Y

Markowitz (1959) Risk-Return (R) U = A · p − b · Var N
Slovic and
Lichtenstein (1968)

Attribute (A) U = β0 + β1A + β2 p N

Weber et al. (2004) Coefficient of
Variation (C)

U = A · p − b · CV N

Each row shows, from left to right, the reference of the parametric model, the name of the form (with short
abbreviation), the model specification, and whether the model can be approximated by a CBS function of the
form in this paper. Across all ITC models, utility is expressed as a product of A, the amount of the delayed
outcome, and f(D), which is a function of the delay (we are assuming a linear utility for amount in ITC; to
the extent to which this assumption is violated, the functions we estimate will incorporate influences of both
amount and delay transformations, much like some of the RCmodels). In RCmodels, A is the amount of the
risky outcome, p is the probability of winning that outcome.We only show here the model forms for a simple
gamble in which there is a probability p of winningA and probability 1-p of winning nothing. The RCmodels
marked with an asterisk are approximated by CBS in their analytically converted form ofU = A · f (p) (see
supplemental materials section A for the conversion proof and see Table 2 for the converted form).

value function parameter α and the weighting function elevation parameter δ can tradeoff in their
effects on choice. To get around this problem with identifiability, Wakker and Deneffe (1996)
and Abdellaoui (2003) carefully constructed choice sets to mathematically cancel out the effect
of f (A) or h (p) so that the other function can be estimated without being confounded. This
ingenious method, however, requires a specifically constructed choice set that is quite cognitively
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demanding. Thus, in both ITC and RC, existing structured non-parametric approaches require
specialized elicitation procedures that can limit their widespread use.

Here we provide a novel structured non-parametric approach that can be used on any dataset.
We use a model-based approach that uses cubic Bezier splines (CBS; de Casteljau, 1963) to
approximate smooth monotonic variable transformation functions that can be fitted with MLE.
We also provide the statistical package in MATLAB and R to be used for future research. The
MATLABpackage is available on github (https://github.com/sangillee/CBSm), and theRpackage
can be downloaded from CRAN under the package name ‘CBSr’ (https://CRAN.R-project.org/
package=CBSr) to allow researchers to reproduce and extend our results.

In this paper, consistent with the role for structured non-parametric approaches outlined
in Fig. 1, we demonstrate both the predictive advantages (compared to parametric approaches)
and interpretive advantages (compared to fully non-parametric approaches) of CBS. Predictive
performance is assessed in two ways. First, we show via simulation that CBS does not require
substantially larger amounts of data compared to parametric methods. Second, using an empirical
dataset of ITCandRC,we show thatCBShas higher in-sample andout-of-sample predictive power
compared to various parametric methods. The interpretive benefits of CBS are also demonstrated
in twoways. First, we show that CBS can yield interpretable insights into exactly why it has higher
predictive power compared to parametric methods, thereby pointing to new paths for theoretical
models to be developed. Second, we show that CBS can yield reliable estimates of individual
impulsivity and risk-aversion that are consistent across time, thereby providing an alternative
method to measure these individual traits without using parametric models.

Specifically, the higher predictive power of CBS comes from capturing patterns of discount-
ing and risk aversion that violate the assumptions of most existing parametric models. Existing
parametric models of ITC typically assume constant or decreasing discount rates over time. The
discount rate at a given delay D∗ can be calculated as h(D∗) = ln(− ln( f (D∗))/D∗), which is
a constant in the case of the exponential function: ln(–ln(e−kD∗

)/D∗) = ln(k). All other com-
mon models, as shown in Fig. 2a, show decreasing discount rates over time. Existing parametric
models of RC typically assume that people alternate between risk-averse and risk-seeking behav-
ior no more than once across probabilities. If we convert RC models into a discounting form
of U = A · f (p), we can measure the degree of risk-aversion at a given probability p∗ by
q (p∗) = ln ( f (p∗)/p∗), which is the log odds of subjective to objective probabilities. As shown
in Fig. 2b, expected utility theory and hyperbolic models assume that people are risk-averse or
risk-seeking throughout all probabilities,while prospect theorymodels and generalized hyperbolic
models assume that people’s behavior can ‘switch’ at most once from risk-seeking to risk-aversion
(or vice versa) as probabilities increase (indicated by the change of sign in q (p∗)). We show that
CBS’s main predictive benefits are derived from participants who show increasing discount rates
over time in ITC and who switch multiple times between risk-aversion and risk-seeking across
probabilities in RC.

2. Cubic Bezier Splines Model Specification

We consider structured non-parametric estimation of the form U = A · f (X); in ITC, this
would be U = A · f (D) where amount (A) is discounted as a function of delay (D), and in
RC, this would be U = A · f (p) where amount (A) is discounted as a function of probability
(p). The discounting form has several benefits. First, most ITC models are already in discounting
form, which allows our approach to approximate them well. Second, even for models where the
amount is also transformed (i.e., U = f (A) · g (X)), one can analytically convert them into the
discounting form. This includes some ITC models that have amount transformations and many
RC models such as prospect theory. Hence in this case, our discounting function would measure
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the combined effect of both transformation functions (see supplemental materials A for details
on model conversion). Third, the discounting form is easily identifiable through choice data,
unlike prospect theory forms, which, as previously mentioned, are hard to identify. Finally, the
discounting form allows a measure of impulsivity and risk aversion to be solely contained in one
fitted function, which makes interpretation of the utility function easy. It is important to note,
however, that this form cannot capture all classes of parametric models; for example, it cannot
approximate mean-variance-type models of RC or attribute comparison-type models (Table 1).
Nevertheless, the discounting form covers a large number of extant parametric models and allows
for easy estimation of impulsivity and risk aversion via AUC. Embedding this discounted utility
function inside a binary logit choice model gives us the following specification:

log

(
p (choicet = 1)

p (choicet = 2)

)
= σ (U1t −U2t ) , Ujt = A jt · f

(
X jt

)
, j = 1, 2 (1)

where σ is a free parameter that determines the relationship between the scale of the utilities (U1t ,
U2t ) and choice, and X jt is either delay or probability, depending on the task. The subscript j
denotes the two options (1 and 2), and the subscript t denotes the trial number. Hence, the key
question comes down to this: how to flexibly approximate f

(
X jt

)
?

In approximating f
(
X jt

)
, we seek to incorporate two normative constraints: smoothness

and monotonicity. Given a continuously smooth input variable such as delay or probability, it
makes normative sense that the output variable of utility is also continuously smooth. In ITC, it
makes normative sense for utility to decline monotonically as a function of delay, while in RC, to
increase monotonically as a function of probability. The two normative constraints of smoothness
andmonotonicity are already implicit in almost all of the existing parametric utilitymodels and can
serve as important priors that combat over-flexibility. Hence, the goal was to estimate a smooth,
monotonic univariate transformation of f

(
X jt

)
. However, the monotonicity constraint makes

the use of several methods difficult. Polynomial or Fourier basis regressions, while continuously
smooth, control the flexibility of the curve by changing the order of the equation, which unfor-
tunately also changes the order of the derivative and complicates the constraining problem (see
supplemental materials B for discussion on B-splines). Hence, we find instead that by chaining
multiple pieces of cubic-order Bezier splines, each of them separately monotonically constrained,
we can approximate f (X) in a smooth, monotonic manner, without requiring specialized datasets.

Piecewise-connected CBS are already widely used in graphics software, fonts, and interpo-
lations, but have seen limited use as function approximators compared to other types of splines.
This is because while most splines are defined in the form of y = f (x), where the ycoordinate
is expressed as a function of x , CBS’s functional form is much more general: both the x and y
coordinates are independently expressed as functions of a third variable t . A single piece of CBS
is defined by four points (P0x , P0y), (P1x , P1y), (P2x , P2y), (P3x , P3y) (Fig. 3a). The coordinates
of these four points become the parameters of the CBS as the x and y-coordinates of the spline
are controlled independently by two separate cubic functions.

x = m (t) = (1 − t)3 P0x + 3 (1 − t)2 t P1x + 3 (1 − t) t2P2x + t3P3x , 0 � t � 1 (2)

y = n (t) = (1 − t)3 P0y + 3 (1 − t)2 t P1y + 3 (1 − t) t2P2y + t3P3y, 0 � t � 1 (3)

These two functions can jointly be used to approximate the function f (D) in ITC or f (p) in RC
by y = n

(
m−1 (x)

)
as long as x = m(t) and y = n (t) are both monotonic functions of t . We find

that the constraint for monotonicity is very simple: if the x and y coordinates of the two middle
points (P1 and P2) stay between that of the end points (P0 and P3), the resulting CBS is monotonic
(i.e., P1x , P2x ∈ [P0x , P3x ], and P1y, P2y ∈ [

P0y, P3y
]
; see supplemental materials C, D, E for

proof). It is also important to note that the CBS’s local derivative at the end point equals the slope
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Figure 3.
Example 1-piece and 2-piece CBS (a and b, respectively), and model specification of ITC (c) and RC (d) using 1-piece
(left) and 2-piece CBS (right). Example 1-piece CBS is shown in (a), and 2-piece CBS is shown in (b). While each piece
requires 4 points, because adjoining points overlap, 2-piece CBS requires 7 points. c Shows how CBS is used to flexibly
model the delay discounting function and d shows how CBS is used to flexibly model the probability weighting function.
In both ITC and RC, the coordinates of the points are free parameters that are estimated. The parameter constraints are
shown on the right of each panel in dotted boxes. In the case of 2-piece CBS, there is one less degree of freedom than
number of parameters due to the necessity of (x2, y2), (x3, y3), and (x4, y4) being on the same line

of the line connecting the end point with its neighboring point (i.e., ¯P2P3 in Fig. 3a). Using this
property, multiple pieces of CBS can be smoothly joined by equating the local derivative (i.e.,
ensuring that three points P2P3P4 are on the same line in Fig. 3b). Figure 3c, d shows the CBS
parameters involved in modeling f (D) and f (p) in ITC and RC using either 1-piece or 2-pieces
of CBS.

Because the CBS form (y = n
(
m−1 (x)

)
, Eqs. 2 and 3) cannot be succinctly expressed as

y = f (x), the likelihood function for the choice model using CBS also cannot be succinctly
expressed. Instead, shown below are the general MLE steps (a pseudo-algorithm) used to fit a
CBS-based choice model:

1. Start with some initial CBS points (Fig. 3 shows relevant points for each case)
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Table 2.
Simulating utility functions for CBS recovery

Simulating function Equivalent expression
in U = A · f (X)

form

Simulating parameters

Exponential f (D) = exp (−kD) ln k ∈ {−8, −6, −4, −2}
Hyperbola f (D) = (1 + kD)−1 ln k ∈ {−8, −6, −4, −2}
General Hyp. f (D) = (1 + kD)−s (ln k, s) ∈ {(−7, 0.5) , (−7, 2) , (−4, 0.5) , (−4, 2)}
Logarithmic Time f (D) = D−k k ∈ {0.4, 0.2, 0.1, 0.05}
Quasi-hyperbolic f (D) = β exp (−kD) (β, ln k) ∈ {(0.4, −7) , (0.4, −4) , (0.8, −7) , (0.8, −4)}
Double Exp. f (D) = we−aD +

(1 − w) e−bD
ln a = −8, ln b = −3, w ∈ {0.7, 0.5, 0.3, 0.1}

EUT f (p) = p1/α α ∈ {0.2, 0.6, 1, 2}
Hyperbola f (p) =(

1 + h
(
p−1 − 1

))−1
h ∈ {0.1, 0.5, 2, 7}

GE weighting f (p) =(
δpγ

δpγ +(1−p)γ

)1/α α = 0.8, (δ, γ ) ∈ {(0.5, 0.5) , (0.5, 2) , (2, 0.5) , (2, 2)}

TK weighting f (p) =(
pγ

(pγ +(1−p)γ )
1
γ

)1/α
α = 0.8, γ ∈ {0.25, 0.5, 1, 3}

Prelec weighting f (p) =
exp

(
− δ

α (− ln p)γ
) α = 0.8, (δ, γ ) ∈ {(0.5, 0.5) , (0.5, 2) , (2, 0.5) , (2, 2)}

General Hyp. f (p) =(
1 + h

(
p−1 − 1

))−s
(h, s) ∈ {(2, 0.3) , (7, 0.3) , (2, 1.5) , (7, 1.5)}

Shown above are the ITC models and RC models used for assessing CBS’ function recovery expressed in
U = A · f (X) form (see Supplemental Materials A for transformation proof). The parameter sets used to
simulate choice datasets are shown on the right column.

2. For all X jt (delay or probability), find t∗j t that satisfies X jt = m
(
t∗j t

)
as given in Eq. 2.

In our statistical package, we use a numerical search since the root is bounded within [0
1] and the analytical roots are unstable and computationally costly due to radicals and
transcendentals (depending on which cubic formula is used).

3. Then, calculate Ujt = A jt · n(t∗j t ) as given in Eq. 3
4. Use Eq. 1 to calculate the log-likelihood of all choices
5. Propose new parameters using gradient descent while maintaining constraints in Fig. 3.

This can be done using a general-purpose optimization tool that supports linear and
nonlinear constraints using Lagrangian multipliers. In this paper, we used MATLAB’s
optimization tool (fmincon).

6. Repeat step 2 through 5 until convergence

For this paper, we only entertain 1piece and 2piece CBS as they seem sufficient in approximating
the parametric utilitymodels shown in Table 1. All empirical and simulated data aswell as analysis
codes are included in this article in its supplementary information files.
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3. Methods

3.1. Predictive Accuracy

We assess the predictive capacity of CBS in two ways. First, we simulate choice data from
various parametric utility functions to examine how well CBS can recover the true functions at
different dataset sizes. We simulate binary choices from 6 models for ITC and 6 models for RC,
each with 4 parameter combinations. The chosen models and their 4 parameter combinations are
shown in Table 2. Each simulated choice is between a smaller monetary amount of $20 (fixed
across all trials), and a larger monetary amount that varies from trial to trial. The larger monetary
amount is either delayed (for ITC models) or probabilistic (for RC models). The amount of the
largermonetary option on each trial is created by uniformly sampling the ratio between the smaller
and larger monetary amount (0 ∼ 1; e.g., ratio of 0.5 means the smaller amount is half that of the
larger amount). In ITC simulations, the delays are uniformly sampled from 0 ∼ 180 days, and
in RC simulations, the probabilities are uniformly sampled from 0 to 1. Dataset sizes range from
72 = 49 to 202 = 400 choices based on how finely we sample the range of delay/probability and
amount. The difference in utilities of the two options is used in a logit model to generate choice
probabilities, according to which we generate binary choices:

log

(
p (choicet = 1)

p (choicet = 2)

)
= σ (U1t −U2t ) (4)

where σ models the overall scale of the utility difference between the two options. For simulation,
the scaling parameter σ is fixed at 1, as it is not a variable of interest in our study. The utilities
of each option on each trial (U1t ,U2t ) are modeled according to the forms shown in Table 2. For
each of the (6 + 6) × 4 = 48 functions x 14 dataset size conditions (72 ∼ 202), we simulate
200 datasets. All simulated datasets are then fitted with the 6 parametric models and CBS (both
1-piece and 2-piece). We measure the mean absolute error (MAE) between the fitted functions
and the true simulating functions to assess each model’s recovery of the true functions. Since
the error is measured relative to the true function, the MAE here is best interpreted as an out-of-
sample measure; it is not given that more flexible models will have lower MAEs as it may overfit
the choice noise instead of the true function. Rather, simple models may have lower MAEs in
smaller datasets, while more complex models may have lower MAEs in larger datasets due to the
bias-variance tradeoff. The key question is at which dataset size (if any) CBS, the more complex
model, outperforms parametric models, which are simpler.

Our second assessment of predictive capacity comes from in-sample and out-of-sample pre-
diction in real ITC and RC data. We utilize ITC and RC data collected in Kable et al. (2017).
166 participants completed binary choice tasks in ITC and RC and 128 of them returned after 10
weeks to perform the same task again in session 2. In each session, participants made 120 binary
choices each in the ITC task and RC task. The choices in the ITC tasks were between a smaller
immediate monetary reward that was always $20 today (i.e., the day of the experiment) and a
larger later monetary reward (e.g., $Y in D days; D ∼ [20 180], Y ∼ [22,85]). The choices in
the RC tasks were between a smaller certain monetary reward that was always $20 and a larger
probabilistic monetary reward (e.g., $Y with probability p;p ∼ [.09 .98], Y ∼ [21 85]). We treat
session 1 and 2 as if they are separate participants and only include sessions with at least two or
more of each choice type (i.e., at least two smaller reward choices and two larger reward choices
in 120 trials), which rules out 9 sessions for ITC and 4 sessions for RC. This is because at least two
of each choice type is necessary for leave-one-trial-out cross-validation; otherwise the training
dataset may have entirely one-sided choices (i.e., all smaller reward choices or all larger reward
choices).
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In the empirical data, we compare the descriptive and predictive capabilities of CBS against
other parametric models in Table 1. For all models (including CBS), we measure their in-sample
and out-of-sample prediction accuracies and Tjur’s D. Tjur’s D (coefficient of discrimination) is
the difference of the mean choice probabilities of each choice type. For example, a good model
of ITC should have high p(delayed choice) for delayed choices but low p(delayed choice) for
immediate choices. Hence, the difference between the mean of those two choice probabilities
is bounded between 0 (random model) and 1 (perfect model) and tells how well the two choice
types are discriminated in out-of-sample predictions. Even if two models have the same hit rate
accuracy, Tjur’s D is higher for models that classify the trials with larger discrimination in choice
probabilities. All models are fitted at the individual level, and out-of-sample prediction is per-
formed using a leave-one-out cross-validation (LOOCV) procedure where the model is fit on all
but one trial of the data and used to predict the left out trial. This cross-validation procedure
allows us to maximally retain the training dataset size for each individual, since k-fold or hold-out
cross-validation would require substantially reducing the size of the training dataset. All models
are fit using a logit choice model (Eq. 4). We have also tried a linear probability model (LPM)
specification for choice and, to the extent we have evaluated it, all our main conclusions also hold
under a LPM. These comparative results are available from the authors upon request.

3.2. Interpretability

We demonstrate two ways in which CBS fits yield interpretable insights. First, we use CBS
to demonstrate novel patterns of behavior that are not captured by extant parametric models. We
achieve this by quantitatively calculating the delay-specific discount rates and probability-specific
risk-aversion of each individual and assessing the patterns in which CBS has higher predictive
performance over extant parametric methods. Using the out-of-sample prediction values of Tjur’s
D, we show that a portion of participants are better fit by CBS models because they exhibit
behavior violating the assumptions of extant parametric models. Specifically, we show that, in
ITC, some participants exhibit increasing discount rates over time, and in RC, some participants
exhibit multiple alternations between risk aversion and risk seeking across probabilities.

Second, we use CBS to obtain measures of impulsivity and risk-aversion without assuming
a parametric utility model. The CBS measures of impulsivity and risk-aversion can be obtained
by measuring the area under the curve (AUC) of the fitted CBS function (see supplemental
materials F for analytic expression). Since CBS models ITC and RC utility in discounting form
(U = A · f (X)), the AUC of the discounting function f (X) serves as a measure of how much
the amount is discounted as a function of delay or probability. In previous research, AUC of
discounting form utility functions has been proposed and used as a measure of impulsivity and
risk-aversion in non-parametric utility estimation (Myerson et al. 2006). We show that the AUC
of CBS fits can serve as stable, subject-specific measure of impulsivity and risk-aversion, just like
the parameter estimates of extant parametric models, by testing cross-session consistency (i.e.,
correlation) of ITC and RC AUC. We also provide the standard error of the AUC estimates by
performing a jackknife resampling procedure.

4. Results

4.1. Utility Function Recovery & Dataset Size

CBS shows excellent recovery of various latent utility functions even at small dataset sizes.
Figure 4 shows the mean absolute error (MAE) of CBS and parametric fits to various simulating
utility functions at various dataset sizes. The MAEs of correctly specified parametric models
(shown in dark dotted lines) serve as the empirical lower bound of MAE but are unlikely to be
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Figure 4.
Choice dataset simulations and recovery results. a, b Shows the average MAE of parametric and CBS functions under
different simulating utility functions for ITC and RC, respectively. The large graphs on the left side show the average
MAEs across all six simulating functions, while the small graphs on the right side show them for each of the six simulating
functions separately. The dotted line shows the MAE of parametric models, while the solid line shows the MAE of CBS
models. The dark dotted line shows the MAE of correctly specified parametric models, which serves as the theoretical
lower bound of MAE at different dataset sizes

achieved in real data since we cannot know the true generating function. The average MAEs of
parametric models (shown in grey dotted lines) serve as the estimated error one would expect
to get by using any one of the parametric utility models in Table 2 when the underlying choice
data has heterogeneity and is generated from various utility functions. Due to formal similarities
between many parametric models, the average MAEs of parametric models are not too big, nor
do they vary greatly. Nevertheless, in both ITC and RC, the estimation error of CBS functions is
lower than the average estimation errors of parametric models, even for smaller dataset sizes of
49 choices. This suggests that even in small dataset sizes, the estimation error one would get from
using a parametric model (that is correct 1/6th of the time) is greater than the estimation error
one would get from using CBS. We may, however, see that the error of 2-piece CBS functions
is greater than parametric models in even smaller datasets, especially in RC. Also, generally
we find that 1-piece CBS functions have lower estimation errors than 2-piece CBS functions
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except for certain simulating functions where 1-piece does not provide sufficient flexibility (see
supplemental materials G for average CBS fits compared against true functions that can illuminate
which functions required 2-piece CBS fits).

4.2. Increased Descriptive & Predictive Power

In an empirical dataset of 120 choices, CBS shows higher in-sample and out-of-sample
accuracies and Tjur’s D than all of the tested parametric models (Fig. 5). For both in-sample
accuracy and Tjur’s D, we find that the 2-piece CBS function provides performance superior
to all other methods in both ITC and RC, followed by 1-piece CBS. These in-sample results
are somewhat expected given that models with more parameters are generally more likely to
provide higher performance metrics. However, even in out-of-sample prediction CBS provides
the highest accuracy and Tjur’s D compared to all other parametric models in both ITC and
RC. This clearly demonstrates that CBS is not simply providing a flexible function that overfits
empirical data; rather its flexibility is important in capturing individual characteristics so as to
increase descriptive and predictive power. In ITC, out-of-sample accuracy is highest for the 1-
piece CBS model followed by the 2-piece CBS model, while out-of-sample Tjur’s D is highest
for the 2-piece CBS model followed by the 1-piece CBS model. This may suggest that while the
1-piece CBS model may provide the highest hit rate accuracy, the 2-piece CBS model may be
able to better separate the two choice types. In RC, both out-of-sample accuracy and Tjur’s D are
highest for the 2-piece CBS model, by a substantial margin over the next runner-up 1-piece CBS
model. This pattern may suggest that RC data may generally require more complex functions than
ITC data in order to adequately model behavior.

4.3. Identifying Novel Patterns of Behavior

To provide further insight into why CBS shows increased predictive power over parametric
models, we first present example participants’ data that span the variety of choice patterns we
observe. Example participants’ choices and model fits are shown for ITC in Fig. 6 and for RC
in Fig. 7. Both the choices and fits are shown in relative amounts. The relative amount is the
immediate amount divided by the larger amount; for example, in ITC, a choice of $20 versus $40
in 6 days is essentially asking if f (D = 6) is greater or less than 0.5, which is the relative amount
of 20/40. By plotting each question in terms of relative amount and delay, we can see whether the
fitted function (drawn in solid black line) is appropriately dividing the two choice types (shown
in circles and Xs). Panel A in both Figures shows 4 participants’ data whose highest LOOCV
Tjur’s D is from extant parametric models. The top row shows the parametric model fits while the
middle row shows the CBS model fits. In these cases, participants’ choices are well aligned with
known parametric models and CBS shows good approximations of them. Given larger datasets,
CBS will likely match the parametric models in these participants. On the other hand, Panel B in
both Figures shows 4 participants’ data whose highest LOOCV Tjur’s D is from CBS. We can see
in the top row that even the best extant parametric models are unable to separate the choices well.
In contrast, CBS fits a rather unconventional, but flexible, monotonic function that separates the
two choice types.

More specifically, participants who are best fit by CBS in Figs. 6 and 7 seem to exhibit choice
patterns that cannot be accounted for by parametric models. Figure 6 shows that in ITC, several
participants exhibit a discounting function that decreases sharply at certain delays. Such sharp
decreases in utility indicate suddenly increasing impatience and discount rates, which cannot be
accounted for by any of the parametric models we considered. Figure 7 shows that in RC, several
participants exhibit a complex discounting function with multiple inflection points. Generally,
these participants are risk-averse in low probabilities (as shown by the fitted curve being below the
identity line), risk-seeking around p = .5, and risk-averse again above .5. This pattern of multiple
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Figure 6.
Plots of eight example participants’ choices in ITC, their best parametric fits and their best CBS fits as determined by
LOOCV. a Shows 4 participants whose highest LOOCVTjur’s D came from parametric models and b shows 4 participants
whose highest LOOCVTjur’s D came fromCBS. In each panel, the top row shows the best parametric model (by LOOCV)
and the bottom row shows the CBS fit. a participants are selected such that the diverse parametric forms can be shown; b
participants are selected to show a variety of CBS fits that did not conform to parametric forms

switches between risk-aversion and risk-seeking behavior deviates from the established parametric
models which can only account for either overall risk-aversion or risk-seeking throughout all
probabilities, or a one-time switch between risk-aversion and risk-seeking.

Group-level summaries confirm that the predictive advantages of CBS are largest when par-
ticipants exhibit these novel systematic patterns of choice behavior. In ITC, the novel choice
pattern is that many participants have increasing daily discount rates, which is inconsistent with
all the parametric models we examine. When we group the fitted CBS functions based on the
average daily change in discount rate, the best parametric model’s LOOCV Tjur’s D is as good
as that of CBS models when participants have decreasing discount rates, which is the commonly
assumed pattern. However, when the average daily discount rates are increasing, the CBS models
significantly outperform the best parametric models in LOOCV (Fig. 8a). When we examine the
fitted CBS functions, we find that when the average daily change in discount rate is negative, the
median CBS function looks very similar to other ITC parametric models; on the other hand, when
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Figure 7.
Plots of eight example participants’ choices in RC, their best parametric fits and their best CBS fits as determined by
LOOCV. a Shows 4 participants whose highest LOOCVTjur’s D came from parametric models and b shows 4 participants
whose highest LOOCVTjur’s D came fromCBS. In each panel, the top row shows the best parametric model (by LOOCV)
and the bottom row shows the CBS fit. a Participants are selected such that the diverse parametric forms can be shown; b
Participants are selected to show a variety of CBS fits that did not conform to parametric forms

the average daily change in discount rate is positive (i.e., increasing discount rates over time), we
find that the median CBS function becomes linear or even concave, neither of which could be
accounted for by parametric ITC models (Fig. 8b).

In RC, the novel choice pattern is that many participants switch multiple times between risk-
aversion and risk-seeking as probabilities increase, which is inconsistent with all the parametric
models we examine. Concordantly, CBS’s LOOCV Tjur’s D are significantly higher than the best
parametricmodels’ LOOCVTjur’sD for participantswith 2 ormore switches (Fig. 8c). This result
suggests that participants exhibit potentially much more complex patterns of behavior than what
most parametricmodels assume. Interestingly, even in participants that do not switch between risk-
aversion and risk-seeking, we find that CBS significantly outperforms other parametric models in
LOOCV. Figure 8d shows the median CBS-fitted functions grouped by the number of switches
between risk-averse and risk-seeking behavior (as seen by how many times the function crosses
the identity line). When participants switch once, their average function resembles a typical
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Figure 8.
Deviation from common parametric forms. a Shows CBS prediction performance minus the maximum of parametric
models’ prediction performance in ITC. CBS shows increasingly better predictions as the average daily change in discount
rate becomes positive. b Shows the average fitted CBS functions for ITC grouped by the average daily change in discount
rate. The solid line is the median function, with gray shade showing the standard errors. c Shows that, in RC, CBS provides
better predictions in participants who do not alternate between risk aversion and risk seeking or alternate more than one
time. Panel D shows the average fitted CBS functions for RC grouped by the number of switches between risk-aversion
and risk-seeking behavior. *t test against 0, p < .05. **p < .01, ***p < .001

prospect theory S-shaped function (albeit risk-averse in low probabilities). This simple form
is likely captured well by most parametric utility models, thereby leading to similar predictive
performance between parametric and CBS models. However, when participants’ risk aversion
switches twice or three times, the average function clearly cannot be captured by any of the
parametric RC models. Furthermore, although the parametric utility models can account for non-
switching behavior as well, the average function for non-switching behavior has some inflection
points that cannot be captured by the parametric models (cf. Fig. 2b).

4.4. Model-Agnostic Measures of Impulsivity and Risk Aversion

We find the CBS measures of impulsivity and risk-aversion are highly correlated across the 2
sessions, 10 weeks apart (Fig. 9). This result suggests that CBS measures of impulsivity and risk-
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Figure 9.
Cross-session correlations and standard errors of overall measures of delay discounting (a, c) and risk aversion (b, d) as
estimated by the Area Under the Curve (AUC) of CBS. In a, b, the abscissa marks the AUCmeasure of each participant in
session 1 and the ordinate marks the AUC measure of each participant in session 2. The cross-session Pearson correlation
measure of AUC was 0.79 for ITC and 0.60 for RC, both with p-values less than .001. c, d shows the standard errors of
the AUC estimates obtained through a jackknife procedure

aversion can pick up stable individual traits that are often needed in applied ITC and RC research.
Using the 2-piece CBS fits to the real choice data, we calculate, for each session, an overall
measure of impulsivity and risk aversion by calculating the AUC of the fitted CBS function.
The cross-session Pearson correlations of the AUCs are very high at r = 0.79 (p < .001)
for ITC and r = 0.60 (p < .001) for RC. These measures are comparable to the cross-session
consistencies of extant parametric models’ impulsivity and risk aversion measures; the hyperbolic
model’s discount rate (logk) has a cross-session correlation of r = 0.80, and EUT’s risk-aversion
measure (log α) has a cross-session correlation of r = 0.65. Furthermore, the standard error of
the AUCmeasures in CBS is quite low (generally below .01); higher standard errors are observed,
expectedly, from cases where participants’ choices are heavily one-sided and do not allow for
good measurement (i.e., extreme ends of AUC measures on Fig. 9c, d). This shows that CBS
fits can yield a stable individual-specific measure of overall impulsivity or risk aversion without
assuming a fully parametric model.
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5. Discussion

Cubic Bezier Splines are a promising flexible method that can approximate individual util-
ity functions without fully parametric assumptions. As a structured non-parametric method, it
maintains the interpretable utility function structure found in parametric models but relaxes the
parametric assumptions, thereby increasing descriptive and predictive capabilities. Unlike previ-
ous structured non-parametric approaches however (e.g., Abdellaoui 2003; Myerson et al. 2006;
Wakker and Deneffe 1996), CBS can be estimated from any choice dataset without large or
specially structured datasets. Such properties allow us to demonstrate both the predictive and
interpretive advantages of CBS modeling in a general ITC and RC dataset that was not specifi-
cally designed toward non-parametric estimation.

In prediction, we show that CBS can provide higher descriptive and predictive performance
compared to extant parametric models. Through simulation, we show that the benefit of a flexi-
ble CBS approximation outweighs the benefit of parsimonious parametric models even in small
datasets of around 50 binary choices. Hence, unlike fully non-parametric approaches which seem
to require large datasets (Arfer and Luhmann 2015), a CBS-based structured non-parametric
approach does not seem to require substantially larger datasets than what would be normally
used for parametric model estimation. We empirically validate this result by showing that in a
real dataset of 120 choices, CBS shows higher in-sample and out-of-sample predictive perfor-
mance compared to all tested parametric models. This is likely due to CBS’s ability to provide
individually tailored utility functions, which lead to improved descriptive (in-sample) and pre-
dictive (out-of-sample) capabilities. In datasets with heterogeneous utility functions, having an
individually tailored utility function allows researchers to circumvent potential model misspecifi-
cations. Using CBS approximations provides a stronger defense against model misspecifications
than entertaining a multitude of models as empirical data may not be describable by any known
parametric models.

CBS, as a structured non-parametric approach, also yields interpretable insights andmeasures
from data that cannot be obtained as easily from fully non-parametric models. First, CBS can be
used to detect novel patterns of behavior that violate extant models’ assumptions. In the current
paper, we identify two novel patterns of behavior from ITC and RC data. In ITC, we find that
there are participants who exhibit increasing discount rates and therefore cannot be accounted for
by the currently established parametric models of ITC. Such participants exhibit concave utility
functions which may be indicative of a heuristic (e.g., deciding not to wait after a certain delay).
In RC, we find that there are participants who alternate between risk-aversion and risk-seeking
multiple times within the probability range of [0 1]. Such complex patterns of behavior cannot be
described by the established parametric models of RC which assume at most one switch between
risk-aversion and risk-seeking behavior. Future studies in ITC and RC may be able to identify
new ways of clustering these kinds of patterns to identify participants who may use different
sets of psychological processes when making decisions (e.g., Reeck et al. 2017). Second, CBS
provides measures of impatience and risk aversion that do not depend on a specific parametric
utility model. Given the heterogeneity of utility functions in choice data, there has always been
a need to characterize individual’s overall behavior without having to rely on a specific model
(Myerson et al. 2006). The area under the curve (AUC) of the estimated CBS function serves as
an overall measure of impulsivity or risk aversion that is robust to model misspecifications even
in the face of heterogeneous data.

CBS also has the potential to aid other research questions, some of which we list here. First, it
can aid the study of choice stochasticity bymore accurately dissociating betweenmodel misspeci-
fication and choice noise. Goodness-of-fit measures for parametric utility functions do not provide
good assessments of choice noise because one cannot distinguishwhether the data is stochastically
noisy or if the utility model is simply misspecified. Previous research has focused on the mono-
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tonicity of utility functions to make a theoretical distinction between model misspecification and
genuine noise (Johnson and Bickel 2008). Since the CBS models that we present here have only
the general normative assumption of monotonicity, the noise estimates from CBS only includes
the stochasticity that cannot be explained with a monotonic utility function. Future research may
seek to correlate choice stochasticity with other measures such as impulsivity, risk-aversion, age,
education, and/or IQ.

Second, CBS can provide more accurate estimates of latent utilities, which will also aid
current efforts to relate such utilities to other behavioral and neural measures (Levy and Glimcher
2012; Venkatraman et al. 2014). For example, numerous studies have examined drift-diffusion
and similar models that can incorporate both response time and choice data (Busemeyer and
Townsend 1993; Clithero 2018; Dai and Busemeyer 2014; Forstmann et al. 2016; Ratcliff et al.
2016). By using utility estimates that can describe participants’ choices better than traditional
parametric utility estimates, development and validation of these models can be improved. Also,
decision neuroscience research often requires estimates of utilities that can be used to search
for correlates of valuation in the brain (e.g., Kable and Glimcher 2007; Knutson 2005). These
efforts can also benefit from more refined estimates of utility that better predicts participants’
choices.

Despite these substantial benefits, it is important to note that there are some drawbacks
of flexible approaches like CBS. CBS, or at least the current version, is best used on datasets
that have reasonable coverage over a range of values, as there is no ‘default’ shape that CBS
tends toward in absence of data. In future research, CBS’s extrapolation capabilities can be
enhanced by using priors or penalties toward a commonly used utility function (e.g., hyper-
bolic, or EUT) such that CBS can default to more simple forms in the absence of data, but take
on a more complex form given sufficient data. Furthermore, while the form of CBS function
used in this paper can approximate a large number of extant parametric models, there are sev-
eral models that cannot be fully approximated by CBS such as attribute comparison models (Dai
and Busemeyer 2014) and mean-variance models of risky choice (Markowitz 1959; Weber et al.
2004).

As we provide CBS as a new tool for describing, understanding, and predicting decisions,
we hope that this research is the start of using flexible models to explore many topics not only
related to economic decision-making, but also other cognitive, affective, and social behaviors
whose models have latent variables. We hope that across many areas of human behavior, the
behavioral patterns and heterogeneity that went unnoticed under formal parametric assumptions
can now easily be brought to surface and studied.
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