
Precise Stellar Radial Velocities 
ASP Conference Series, Vol. 185, 1999 
J. B. Hearnshaw and C. D. Scarfe, eds. 

Exact ly W h a t Is Stellar 'Radial Velocity'? 

Lennart Lindegren, Dainis Dravins and S0ren Madsen 

Lund Observatory, Box 43, SE-22100 Lund, Sweden 

Abstract. Accuracy levels of metres per second require the concept of 
'radial velocity' to be examined, in particular with respect to relativistic 
velocity effects and spectroscopic measurements made inside gravitational 
fields. Already in a classical (non-relativistic) framework the line-of-sight 
velocity component is an ambiguous concept. In the relativistic context, 
the observed wavelength shifts depend e.g. on the transverse velocity of 
the star and the gravitational potential at the source. We argue that 
the observational quantity resulting from high-precision radial-velocity 
measurements is not a physical velocity but a spectroscopic radial-velocity 
measure, which only for historic and practical reasons is expressed in 
velocity units. This radial-velocity measure may be defined as cz, where 
c is the speed of light and z is the observed relative wavelength shift 
reduced to the solar system barycentre. To first order, cz equals the 
line-of-sight velocity, but its precise interpretation is model dependent. 

1. Introduction 

It is known that the interpretation of spectroscopic line shifts in terms of stellar 
radial velocity becomes quite complicated at an accuracy level below ~ 1 km s_ 1, 
due to the many physical effects in stellar atmospheres contributing to the ob
served wavelength shifts (e.g. Dravins 1998; Dravins et al. 1998). In this paper 
we are not concerned with shifts caused for instance by stellar convection, but 
with the fundamental question how the concept 'radial velocity' may be defined. 
In general, radial velocity cannot be treated separately from the other five co
ordinates in phase space, or their observational equivalents — the astrometric 
position and proper motion (in two coordinates each), and parallax. Indeed, our 
discussion is based on formulations found in textbooks on relativistic astrometry 
and celestial mechanics, e.g. Murray (1983), Soffel (1989) and Brumberg (1991). 

2. Classical Treatment 

In a Euclidean metric with origin at the solar system barycentre (SSB) and with 
t denoting coordinate time, let r0(t) be the motion of the star, v0 = dr0/dt its 
barycentric space velocity, and u0 = r0/ro the barycentric direction to the star. 
Radial velocity is classically defined as the component of vo along u0, or 

dr0 
VR = u0 • v0 = -— 
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Due to the finite speed of light (c) we must however distinguish between the time 
of light emission at the star, to, and the time of light reception at the observer, 
t\. With Ti{t) denoting the position of the observer, the events are related by 

c(*i - to) = | r 0 ( i o ) - r i ( t i ) | . (2) 

Assume first that the observer is fixed at the SSB (ri = 0), so that the barycen-
tric distance is ro = c{t\ —to). To calculate VR we may insert this ro into Eq. (1). 
But the question then arises whether the t in Eq. (1) should be identified with 
t0 or t\. The answer depends on one's point of view. If radial velocity is re
garded as a component of the star's space velocity, and thus as a 'property' of 
the star, it is natural to use to; but from an observational point of view t\ may 
be considered more natural.1 The two choices give different expressions for VR: 

, _ dr0 (Ah S\ „ _ dr0 / dt0\ 

The difference, v'R — vR = v'RvR/c ~ vR/c, exceeds 0.1 km s _ 1 for \VR\ > 
173 km s_ 1 and 1 km s _ 1 for \VR\ > 548 km s_ 1. We thus have an ambiguity 
already in the classical definition of radial velocity. Since relative velocities 
in our Galaxy can reach several hundred km s_ 1, this ambiguity has practical 
relevance in the context of precise stellar radial velocities. 

It is seen from Eq. (3) that the ambiguity arises when the quantity dti/dto 
is transformed into a velocity, i.e. when a model is used to interpret the data. 
dti/dto, on the other hand, is a direct, model-independent relation between the 
basic events of light emission and reception. From an observational viewpoint, 
we must then regard dti/dto as more fundamental than VR. Differentiation of 
Eq. (2) in the general case when the observer is not at the SSB gives 

Ati_ _ 1 + u • VQ/C 

dt0
 _ 1 + u • v i /c ^ ' 

where u = (ro — i*i)/|ro — r i | is the unit vector from the observer to the source. 

3. Relativistic Formulation 

In a general-relativistic context the coordinates (t, r) used to describe the light 
emission/reception processes are essentially arbitrary (metric-dependent) labels 
of space-time events. Spectroscopy is however about comparing atomic oscil
lators or clocks, which keep local proper time r. It is therefore necessary to 
include the proper time at the source (ro) and at the observer {T{) in the dis
cussion. Suppose that n = vodro cycles of radiation are emitted at frequency 
v0 in the interval dro of proper time at the source. Then n cycles are received 
in the interval dri of proper time at the observer, who derives the frequency 
vi = n/dri — z/odTb/dri. In terms of wavelength (A = c/v) we can write 

_ Aobs _ Ai_ _ d n _ d£i At^ dip_ , . , 
° S _ Aiab

 — A0 dr0 Ati dt0 dr0 ' 

1There is an analogous problem in the definition of proper motion, i.e. the rate of change in 
direction uo, but here there is a consensus that proper motion means duo/dt i , not duo/dto. 

https://doi.org/10.1017/S0252921100048387 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100048387


Exactly What Is Stellar 'Radial Velocity'? 75 

where z has its usual meaning of a relative wavelength shift. 
The factors dri/dti, dti/dto and dto/dro involve the space-time coordinates 

(U, rt) and the coordinate velocities v,- (i = 0,1), and thus depend on the chosen 
metric (while dri/dro is of course independent of the metric). However, for a 
metric that is asymptotically flat far away from the masses, the weak-field or 
post-Newtonian approximation yields (e.g. Soffel 1989) 

dr' = i-5-^)W«). (6) dh c2 2 c 

Here $; = £ • Grrij/rij is the total Newtonian gravitational potential at r,-. 
For the derivation of dti/dto one needs the relativistic version of Eq. (2), 

in which the right-hand side is supplemented with a small term representing the 
relativistic time delay along the photon track: 

c(h - t0) = |r0(i0) - ri(*i)| + A ( n , r 0 ) . (7) 

Formulae for A(ri, ro) can be found e.g. in Murray (1983). The time derivative 
of the delay term is usually negligible and the classical expression, Eq. (4), can 
be used also in the relativistic case. However, the term dA/dio could become 
measurable in special cases, e.g. during microlensing events (Kislik 1985). The 
effect is expected to be small, and may be overshadowed by other effects such 
as caused by differential magnification of the stellar disk (Maoz & Gould 1994). 

Other factors which might conceivably affect the measured z0ks in special 
situations or over large distances include gravitational waves in the intervening 
space (Detweiler 1979; Fakir 1994) and cosmological redshift. Although gravita-
tionally bound systems, such as our Galaxy, do not follow the general expansion 
of the universe (Dicke & Peebles 1964), the local expansion rate is not reduced 
to exactly zero (Noerdlinger & Petrosian 1971). 

Introducing a factor 1 + X to take into account such exotic phenomena, 
the complete expression for the observed wavelength shift becomes, in the post-
Newtonian approximation, 

_ 1 - $ x / c 2 - y 2 / 2 c 2 1 + U • Vp/C 
1 + -Jobs = T— -, (1 + A ) . „ 2 / „ . (8) 

1 + u • Vi/c 1 - $o/c2 - v5/2c2 

It may be useful to recall the meaning and typical size of the various terms in 
Eq. (8). The term containing $ i accounts for the gravitational blueshift due to 
the potential at the observer, while v2 includes the transverse Doppler effect from 
the motion of the observer; each term contributes ~ —3 m s _ 1 for an observer 
on the Earth, u • vi is the component of the observer's motion along the line of 
sight, which for a terrestrial observer may amount to ±30 000 m s_ 1 . Similarly, 
u • vo represents the radial velocity of the star, 3>o determines its gravitational 
redshift (~ +300 to 1000 m s_ 1 for main-sequence stars, but ranging from +30 
to 30 000 m s _ 1 for other stellar types; Dravins et al. 1998), and v^ its transverse 
Doppler effect (~ +100 m s _ 1 for fast-moving stars). Only the first factor on 
the right-hand-side of Eq. (8) is accurately known; the rest of the expression 
depends on quantities (other than the stellar radial velocity) which are generally 
unavailable to the observer, viz. $o> |vo| and X. 
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To compare different observations they should be standardised through 
transformation to a fictitious observer located at the SSB, but unaffected by 
the gravitational field of the solar system. This corresponds to having $1 = 0 
and vj = 0 in Eq. (8). The resulting barycentric wavelength shift z is given by 

\ -\- \x . Vi /C 
1 + Z = (1 + *obS) z ^ , 3 2 / 0 2 • (9) 

1 - <&i/e2 - Vj/2c2 v ' 

This z (or, in velocity units, cz) is conceptually a well-defined result of the 
measurement, but it cannot readily be interpreted as a precise physical velocity. 

4. Conclusions 

Somewhat surprisingly, we find that the naive notion of radial velocity as the 
line-of-sight component of the stellar velocity is ambiguous already in a classical 
(non-relativistic) formulation. In a relativistic framework the observed shift 
depends on additional factors, such as the transverse velocity and gravitational 
potential of the source and, ultimately, the cosmological redshift. Since these 
factors are generally not (accurately) known to the spectroscopic observer, it is 
impossible to convert the observed shift into a precise kinematic quantity. 

What can be derived from spectroscopic radial-velocity measurements is 
the wavelength shift z reduced to the solar system barycentre through Eq. (9). 
For convenience, the shift can be expressed in velocity units as cz. Although this 
quantity approximately corresponds to radial velocity, its precise interpretation 
is model dependent and one should therefore avoid calling it 'radial velocity'. We 
propose the term radial-velocity measure for cz, emphasizing both its connection 
with the traditional spectroscopic method and the fact that it is not quite the 
radial velocity in the usual sense. 
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