ON POLYNOMIAL EXTENSIONS OF RINGS

MICHIO YOSHIDA

Let A be a commutative ring with unit element, and let A[x] be a ring of polynomials in an indeterminate x with coefficients in A. There are a number of well-known properties which A shares with A[x]. We shall state one of them in the following.

THEOREM. If A is an integrally closed integral domain, then so also is A[x].

In an earlier volume of this journal, Messrs. Butts, Hall and Mann (1) gave a proof of the theorem. The purpose of the present note is to give a simpler elementary proof and another valuation-theoretic one.

First proof. Let K be the quotient field of A. At first we assume that K is algebraically closed. If $f(x) \in K(x)$ is integral over A[x], then $f(x) \in K[x]$, since K[x] is integrally closed. Since f(x) satisfies a monic equation with coefficients in A[x], for any element ξ in A, $f(\xi)$ is integral over A, that is, $f(\xi) \in A$. Set

$$f(x) = a_0 + a_1 x + \ldots + a_m x^m \qquad (a_i \in K),$$

and take m+1 distinct elements ξ_j $(0 \le j \le m)$ in A. Then

$$a_0 + a_1\xi_j + \ldots + a_m\xi_j^m = \zeta_j, \quad \text{with } \zeta_j \in A \ (0 \leq j \leq m).$$

We solve these equations with respect to a_0, a_1, \ldots, a_m and obtain

$$a_i = \frac{\eta_i}{D}$$
, where $\eta_i \in A, D = \prod_{i < j} (\xi_i - \xi_j)$

Here we notice that ξ_j $(0 \le j \le m)$ can be chosen such that D = 1, since any monic equation of the form $(x - \xi_1)(x - \xi_2) \dots (x - \xi_k) = 1$, with $\xi_i \in A$, has a solution in A.

We now turn to the case in which K is not algebraically closed. Let \overline{K} be the algebraic closure of K and let \overline{A} be the integral closure of A in \overline{K} . Then the integral closure of A[x] in K(x) is contained in $K(x) \cap \overline{A}[x] = A[x]$.

Second proof. We first recall the following fact. Let ν be a valuation of a field K, then ν can be extended to a valuation $\overline{\nu}$ of K(x) by setting, for any polynomial

$$f(x) = a_0 + a_1 x + \ldots + a_m x^m$$

in K[x],

$$\bar{v}[f(x)] = \min_{0 \leq i \leq m} \nu(a_i).$$

Received June 15, 1955.

MICHIO YOSHIDA

Since A is integrally closed, A can be represented as an intersection of a set of valuation rings of $K: A = \bigcap R_i$. Denote by \overline{R}_i the valuation ring of K(x), which is uniquely deduced from R_i in the manner described just above. Then we have obviously

$$A[x] = \bigcap \bar{R}_{\iota} \bigcap K[x].$$

Since \bar{R}_{ι} and K[x] are integrally closed, so is A[x].

Remark. An element a of K is said to be *almost integral over* A, if there exists an element $b \neq 0$ of A such that $ba^n \in A$ for all n. If any element of K which is almost integral over A is contained in A, A is said to be *fully integrally closed*. We note that in our theorem the phrase "integrally closed" can be replaced by "fully integrally closed." This can be proved as follows.

Let $f(x) \in K(x)$ be almost integral over A[x], so that $f(x) \in K[x]$. We shall show that $f(x) \in A[x]$, by induction with respect to the degree of f(x). By the definition of "almost integral," there exists a non-zero polynomial g(x) in A[x], such that

$$g(x) f(x)^{\nu} \in A[x]$$

for any positive integer ν . Let b, a be the leading coefficients of g(x) and f(x) respectively, and put $f(x) = ax^m + f_1(x)$. Then $ba^{\nu} \in A$, hence $a \in A$; consequently

$$g(x) f_1(x)^{\nu} = g(x)[f(x) - ax^m]^{\nu} \in A[x],$$

whence by the induction assumption, $f_1(x) \in A[x]$, hence $f(x) \in A[x]$.

References

1. H. Butts, M. Hall and H. B. Mann, On integral closure, Can. J. Math., 6 (1954), 471-473.

Hiroshima University