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ABSTRACT. Using a Monte Carlo (MC) method, we determine the accumulation-rate profile along a
flowband, the influx of ice into the upstream end of the flowband and the age of an internal layer. The
data comprise the depth profile of the internal layer, a few velocity measurements at the surface and
the average accumulation at one location. The data in our example were collected at Taylor Mouth, a
flank site off Taylor Dome, Antarctica. We present three alternative formulations of this inverse problem.
Depending on the formulation used, this particular inverse problem can have up to four solutions, each
corresponding to a different spatial accumulation-rate pattern. This study demonstrates the ability of a
MC method to find several solutions to this inverse problem, and how to use a Metropolis algorithm
to determine the probability distribution of each of these different solutions. The only disadvantage of
the MC method is that it is computationally more expensive than other inverse methods, such as the
Gradient method.

1. INTRODUCTION
With the increase in computing power in recent years,
solving inverse problems has become feasible. In a forward
problem, the values of the model parameters are known, and
observable quantities are calculated based on those known
parameters. For the corresponding inverse problem, the goal
is to determine the values of the model parameters, based
on observed data. Many inverse problems in glaciology can
be formulated and reliably solved. An example of an inverse
problem is the estimation of basal sliding frommeasurements
of the ice-surface velocity and the geometry of a flowband
(e.g. Truffer, 2004). Formulating a formal inverse problem
makes it possible to deduce information about parameters
that are not otherwise easily measured. Solving an inverse
problem requires a well-defined forward problem, which
consists of an algorithm that calculates observable quantities
from specific model parameters. An inverse problem can
be formulated in different ways. Formulating an inverse
problem is an important step, since it is at this stage that
any a priori information about the solution, or constraints
on the solution, can be introduced into the problem. Once
the inverse problem has been formulated and a forward
algorithm has been developed, a variety of tools are available
to solve the formulated inverse problem. Each tool has
advantages and disadvantages, and the most appropriate tool
must be chosen carefully, according to the specific problem.
Whenever possible, it is important to use several tools to
solve an inverse problem, since multiple approaches may
reveal more information about the solution.
Waddington and others (2007) formulated a steady-state

inverse problem to recover spatial patterns of accumulation
using deep internal layers, ice-sheet surface and bed
topography, and other available data. As part of this inverse
problem, the associated forward algorithm generates an
internal layer in a flowband based on model parameters of
accumulation rate, layer age, and the influx of ice at the

upstream end of the flowband. Internal layers, which are
interpreted as horizons of constant age, can be detected
using ice-penetrating radars (e.g. Paren and Robin, 1975).
The inverse problem formulated by Waddington and others
(2007) seeks model parameters that generate an internal layer
that fits the available data at an objective tolerance criterion.
Their formulation finds a spatially smooth accumulation-
rate solution. The forward algorithm of Waddington and
others (2007) tracks particles along a steady-state flowband
of non-uniform width by integrating the velocity field. The
positions of particles of equal age map out a calculated
internal layer. In this inverse problem, followingWaddington
and others (2007), we define a layer to be deep when
its depth cannot be reproduced from local accumulation
and strain rates; the entire particle trajectories must be
considered.
Waddington and others (2007) solved the inverse problem

using the Gradient method (e.g. Tarantola, 2005). The
Gradient method performs a local search for the maximum-
likelihood solution for the model parameters. This method
can find only a single solution, unless a range of initial
guesses are made. The solution found using the Gradient
method could be a secondary solution if several solutions
are present. This drawback can prevent the search from
revealing the best model that could generate the observed
data (Mosegaard and Tarantola, 1995). Since the Gradient-
method solution consists of only one set of model param-
eters, information about the correct solution could be lost.
The advantage of this method is that it requires relatively little
computation and therefore can run relatively fast. In contrast
to the Gradient method, the Monte Carlo (MC) method does
a global search, sampling models from the entire solution
space in correspondence to our a priori information about
the solution and the data and their uncertainties. This method
has the ability to discover whether multiple solutions fit
the data. Based on statistics, it can provide the mean and
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Fig. 1. Inset shows location of study area, Taylor Mouth, in Antarctica. Black solid curve represents our flowline. Taylor Dome ice core is
marked by a solid dot. Taylor Mouth core site is shown with an open dot.

standard deviation of the solution(s). The disadvantage of this
method is that it requires more computation time.
In this paper, we weigh the advantages and disadvantages

of the MC and Gradient methods. After describing the
general principles involved we illustrate these concepts using
a particular dataset from Taylor Mouth, a flank site off
Taylor Dome, Antarctica (Fig. 1). For consistency, the same
forward algorithm and the same observed data parameters
have been used in both methods. This study will determine
whether the solution recovered using the Gradient method
is representative of the most likely solution, or whether it
represents only a secondary solution caused by the search
algorithm getting trapped in a secondary well. We present
results from different formulations of the inverse problem,
showing how different constraints and preconception values
affect the solution of the inverse problem. This thorough
analysis of different formulations will help when addressing
future inverse problems, as it shows the advantages and
weaknesses of the different formulations. It is not always
possible to use several formulations when solving an
inverse problem because the problem considered may be
too computationally expensive. Our analysis can provide
guidance on which formulation to use when solving an
inverse problem relating internal layers to accumulation-rate
patterns, as well as other inverse problems.

2. THE TAYLOR MOUTH PROBLEM
The Taylor Mouth problem described by Waddington and
others (2007) belongs to a group of problems in glaciology
in which information about the accumulation rate and age
of the internal layers is sought, based on internal layers in
glaciers or ice sheets. As more radar profiles are obtained
every year from Greenland and Antarctica, as well as
smaller ice caps around the Arctic, it is desirable to define
strategies for obtaining information from these data. In order
to present possible different strategies for solving the inverse
problem to determine the age of an internal layer and the
accumulation-rate profile, we solve the problem using data
from Taylor Mouth, and compare our solution to that of
Waddington and others (2007). We use the surface, bed and
flowband-width geometry of Taylor Mouth and an estimate

of the age of the tracked internal layer (shown in Fig. 2
as a dashed curve), the influx into the upstream end of
the flowband, and the accumulation-rate profile along the
flowband. Based on these parameters, the forward algorithm
returns the depth of the layer and the surface velocity along
the flowband. Using the shallow-ice approximation (e.g.
Paterson, 1994, p. 262) and ice deformation, defined by a
temperature-dependent Glen-type flow law (e.g. Paterson,
1994, p. 85), the forward algorithm tracks particles by
integrating the velocity field. This is based on the expectation
that surface-parallel shear strain rate dominates the ice flow
and that temperature controls its magnitude. Waddington
and others (2007) give a detailed description of the forward
algorithm. The particles are tracked through both space
and time along a steady-state flowband with non-uniform
width. The forward algorithm calculates the ice velocity,
ice-temperature field, ice-surface topography and shapes of
internal layers. Points of equal age on all the paths form an
internal layer.

Fig. 2. Ice-penetrating radar profile along our flowband at Taylor
Mouth (2MHz center frequency) (Gades, 1998). The Taylor Mouth
100m core at 11.4 km is indicated by a vertical bar. The internal
layer used in this inverse problem is marked by a dashed curve.
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Table 1. The different probability distributions introduced in the text

ρD(d ) Probability distribution of observable quantities A distribution in the data space centered around the
measured values of the data parameters. Section 3.

ρM(m) Probability distribution of the model parameters A distribution in the model space centered around the
preconception values of the model parameters. Section 3.

Θ(m, d ) Theoretical probability distribution of calculated observable quantities The distribution of calculated observable quantities
produced by mapping a model into the data space.
Section 3.

σ(m , d ) A posteriori probability distribution of the model parameters The joint probability distribution of a priori information
about the data, ρD(d ), and model parameters, ρM(m),
together with the distribution, Θ(m, d ), created by
mapping a model into the data space. Section 3.

μ(m , d ) Homogeneous probability density for the joint data and model space The distribution that corrects the joint probability
distribution if the metric of data and model space is
non-Euclidean. Section 3.

σmar(m) A posteriori probability distribution of models in the model space The distribution of models from which the
solution is inferred. Section 3.

L(m) Likelihood function The function indicating how well the model, m, explains
the data. Section 3.

χmar(mj ) Marginal distribution of model parameter mj The projection of the sampled marginal probability
distribution in the model space onto a single model
parameter, mj . Section 5.2.

3. MODEL AND DATA DISTRIBUTIONS AND
THEIR RESPECTIVE SPACES
The model space, M, is spanned by the set of model
parameters, each of which constitutes a dimension in the
model space. A set of values for the model parameters
represents a specific point in the model space. Such a point
constitutes a model in the model space and is denoted by
a vector, m. The data space is defined in a similar way,
with each data parameter representing a dimension and an
observed dataset representing a point denoted by a vector,
d , in the data space, D. When solving an inverse problem
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Fig. 3. (a) An example of a probability distribution for parameters
m and d . Darker areas indicate sets of m and d that are more
likely. (b) A non-exact mapping of parameter m into parameter d .
If the mapping had been exact, this would be a solid curve rather
than a gray shaded area. (c) Joint probability distribution between
the probability distribution shown in (a) and the information
relating parameters m and d shown in (b). (d) Marginal probability
distribution of the joint probability distribution for parameter m.

the goal is to estimate those values of the model parameters
which, when mapping them using a forward algorithm from
the model space to the data space, recreate the observed
data with regard to their uncertainties.
Here we define some important terms regarding prob-

ability distributions that we use to describe the data and
model parameters. Table 1 summarizes these probability
distributions. One of the main problems when visualizing the
probability distributions for the data and model parameters
is the high dimensionality of the spaces. To introduce the
concepts, we visualize two parameters spanning a two-
dimensional space, m and d , where m is mapped over
into d ; adding additional parameters is equivalent to adding
extra dimensions. An example of a probability distribution,
ρ(m,d ), for sets of values of the two parameters, m and d , is
shown in Figure 3a. Sets of parameters from darker areas are
more likely than sets of parameters from lighter areas.
Another probability distribution is shown in Figure 3b.

This distribution, represented by Θ(m,d ), is a mapping of
the parameter space of m into the parameter space of d .
However, this mapping might not be exact; a given m may
be mapped into a range of possible values of d . An example
of such a mapping could be a forward algorithm with some
built-in noise or uncertainty.
We can combine the two probability distributions shown

in Figure 3a and b to obtain more information about how
parameters m and d relate to each other. The result is called
the joint probability distribution, σ(m,d ); it is defined as
the product of the two original probability distributions.
An example of a joint probability distribution between the
distributions shown in Figure 3a and b is shown in Figure 3c.
Once the joint probability distribution is defined for a

set of parameters, we can find the probability distribution
for a single parameter, or a subset of parameters. This
distribution is called the marginal probability distribution,
denoted by σmar(m). An example of the marginal probability
distribution for parameter m is shown in Figure 3d. The
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marginal probability distribution is calculated by integrating
the joint probability distribution over all the parameters other
than the one parameter (or set of parameters) for which the
marginal probability distribution is sought.
We use the terms ‘a priori’ and ‘a posteriori’ probability

distributions. These refer, respectively, to the probability
distribution before introducing information about any avail-
able data and to the probability distribution after we have
incorporated information about data, a priori knowledge and
relations that map model parameters into the data space.
Hereafter, parameters m and d are vectors, spanning the
model and data space where each parameter constitutes a
dimension.
The measured data for this problem constitute only a

single point, d obs, in the data space, but since there is an
uncertainty associated with every measurement, the real
values of the observable quantities may differ from the data,
dobs. The observable quantities are therefore represented
by a distribution in the data space centered around their
measured values, rather than by a single point in the data
space. This distribution we call the probability distribution of
observable quantities, ρD(d ). The probability distribution is a
normal distribution when it is assumed that the measurement
errors are normally distributed. In the same way, for our a
priori knowledge about the values of the model parameters,
we expect the model parameter values to be given by
a probability distribution centered around our best guess,
their preconception values. The characteristic widths of their
probability distributions are given by our confidence in their
preconception values. This distribution, which we call the
probability distribution of the model parameters, ρM(m), is
situated in the model space. All available information about
the data, the model parameters, the forward algorithm, the
data space and the model space is used to create the a
posteriori probability distribution of the model parameters,
σ(d ,m). The solution to the inverse problem can then be
inferred from this distribution.
The probability distribution, σ(d ,m), representing the

a posteriori information, is the joint probability between
the probability distribution for the model parameters,
ρM(m), and the probability distribution for the data, ρD(d ),
along with the distribution, Θ(d ,m), of the calculated
observable quantities produced by mapping a model into
the data space (Tarantola, 2005); Θ(d ,m) is also called the
theoretical probability distribution of calculated observable
quantities. Therefore, the a posteriori probability distribution
is expressed as

σ(d ,m) = k−1
ρD(d ) ρM(m) Θ(d ,m)

μ(d ,m)
. (1)

The distribution σ(d ,m) is normalized by a constant, k ,
such that it integrates to unity. To correct for any nonlinear
features of the joint data and model space, a distribution
μ(d ,m) is introduced into the equation for the a posteriori
probability. This could, for example, be necessary if a
spherical coordinate system, which is not a linear space,
was used for the model or data space. This distribution,
μ(d ,m), is called the homogeneous probability density for
the joint data and model space (Mosegaard and Tarantola,
2002). For the combined data and model space in the Taylor
Mouth example, μ(d ,m) is unity. Formally, the a posteriori
probability distribution for the model and data parameters is
not the joint probability between the different distributions.

This is because the probability distribution for the model
parameters is not independent of the probability distribution
for the data when the probability distribution for the model
parameters is affected by the data. We will assume here that
the error introduced by assuming independence is negligible.
The a posteriori probability distribution of models in the
model space is the marginal probability distribution over the
data space, defined as the integral over the data space of the
a posteriori probability distribution. This is written as

σmar(m) =
∫
D

σ(d ,m) dd . (2)

This allows the a posteriori probability distribution of the
models to be written as the product between the probability
distribution of the model parameters and a likelihood
function, L(m), that indicates how well the model, m,
explains the data (Tarantola, 2005):

σmar(m) = k−1ρM(m)L(m), (3)

with the likelihood function given by

L(m) =
∫
D

ρD(d )Θ(d ,m)
μ(d ,m)

dd . (4)

Assuming that the theory for calculating the observable
quantities based on a model is exact, i.e. the uncertainties in
the calculated observable quantities are negligible compared
to the uncertainties in the data, the calculated observable
quantities from the mapping of a model m into the data
space can then be represented by a Dirac delta function. The
theoretical probability distribution of calculated observable

quantities is then Θ(d ,m) = δ
(
d − d cal

)
μM(m), where

d cal = f (m) are the calculated observable quantities based
on a model, m, using a forward algorithm, and μM(m) is
the homogeneous probability density for the model space.
According to the definition of Mosegaard and Tarantola
(2002), this forward problem is only weakly nonlinear and,
since the data space is seen to be a linear space, the
likelihood function is reduced to the probability distribution
for the calculated observable quantities, ρD(d

cal).
The probability distribution of the model parameters can

be formulated in different ways depending on the goal of
the investigation. Three different formulations are compared
here which we call ‘smallest’, ‘flattest’ and ‘smoothest’.
In a ‘smallest’ formulation, the value of the probability
distribution is defined by the distance between the model
parameters and their respective preconception values. If
the model parameters are assumed to have a geometrical
relationship, other formulations are also possible. In a
‘flattest’ formulation, the value of the probability distribution
is defined by the deviation of the slope of the model-
parameter profile from a slope of zero. In a ‘smoothest’
formulation, the probability distribution is defined by the
deviation of the curvature of the model-parameter profile
from zero curvature. Using a ‘flattest’ or ‘smoothest’
formulation is possible only if the model parameters have
a spatial or temporal relationship to one another. The
problem described by Waddington and others (2007) can be
formulated using either a mixed ‘smallest’ and ‘smoothest’
probability distribution or a pure ‘smallest’ probability
distribution.
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4. INVERSE-PROBLEM FORMULATION
The solution to the inverse problem is highly dependent on
its formulation, because this is how any a priori information
and constraints on the solution are included. Three different
formulations of the inverse problem are presented here
in order to explore their similarities and differences. The
different formulations are characterized by the way in which
the likelihood function and the probability distribution for
the model parameters are defined. The three formulations
are Tikhonov regularization and Occam’s inversion, both of
which use a mixed ‘smallest’ and ‘smoothest’ formulation of
the probability distribution, and Bayesian inference which
uses a pure ‘smallest’ formulation.

4.1. Tikhonov regularization
One of the goals of this investigation is to determine howwell
a MC method performs compared to a Gradient method. To
obtain a stable and physically reasonable solution with the
Gradient method, the inverse problem can be regularized
using Tikhonov regularization. Since the solution obtained
from the MC simulation should be comparable to the
solution obtained from the Gradient method, the Tikhonov
regularization is defined similarly to the definition given
by Waddington and others (2007). The idea behind the
Tikhonov regularization is that the solution should neither
overfit nor underfit the data. This constraint is important
because the observed data contain measurement errors, and
because the theory (i.e. the forward algorithm) coupling the
model parameters and the observed data may be imperfect.
This means that the solution to the inverse problem will
contain only structure that is required by the observations,
within their measurement uncertainties. (For a more detailed
description of Tikhonov regularization see, e.g., Parker, 1994;
Aster and others, 2005, ch. 5.) To regularize our inverse
problem, the misfit criterion, which will be met by adjusting
the weight on the observed data, is defined as

‖d‖2 − T 2 = 0, (5)

where ‖d‖ is referred to as the data norm given by

‖d‖2 =
Nd∑
i=1

[
d cali − dobsi

σobsi

]2
, (6)

where d cali is the ith calculated observable, dobsi is the ith
observed data parameter and σobsi is the standard deviation
of the ith observed data parameter. Nd is the number of data
parameters. An estimate of the tolerance, T , is given by Parker
(1994, p. 124) as

T = N1/2d

[
1− 1

4Nd
+

1
32N2d

+ O
(
N−3
d

)]
. (7)

The age of the layer, and the flux into one end of the
flowband are denoted, respectively, by ‘age’ and ‘Qin’. The
probability distribution for these two model parameters is
defined as

ρ1
(
mage ,mQin

)

= k−1 exp

⎡
⎢⎣−

(
mage −m(0)

age

)2
2σ2age

−

(
mQin −m(0)

Qin

)2
2σ2Qin

⎤
⎥⎦ , (8)

where superscript ‘(0)’ on the model parameters indicates the
preconception value. This representation of the probability

for the model parameters, age andQin, assumes that they are
normally distributed around the preconception value, with a
standard deviation of σage and σQin .
We expect the accumulation rate to vary smoothly along

the flowband. Therefore the probability distribution for the
accumulation-rate profile will be defined by its smoothness.
The smoothness will be defined in scalar form by the integral
along the flowband of the squared second derivative of the
accumulation rate, m ḃ , with respect to distance, ∂

2m ḃ/∂x
2.

Using a finite-difference representation of a uniform second-
order derivative of the accumulation rate in the vicinity of xj ,
the curvature can be expressed as (Waddington and others,
2007)

cj =
∂2mḃj
∂x2

=

(
mḃj+1

−mḃj
xj+1−xj

)
−
(
mḃj

−mḃj−1

xj−xj−1

)
1
2

(
xj+1 − xj−1

) . (9)

The probability distribution for the model parameter m ḃ is
defined as

ρ2(m ḃ ) = k
−1 exp

⎡
⎢⎣−

Nḃ∑
j=1

(
cj − c (0)j

)2
2σ2

ḃ

⎤
⎥⎦exp(m t

ḃC
−1
m ḃ
m ḃ

)
,

(10)
where c (0)j is the a priori smoothness (equal to zero) and
σḃ is the characteristic curvature of the accumulation-rate

profile, given by ḃ (c)/l (c)
2
, where ḃ (c) is a characteristic

accumulation rate and l (c) is a characteristic length scale
for variability in the accumulation rate. The second term is
a normal distribution, which is included to ensure that the
probability distribution can be normalized. If this term is not
included, an infinite number of sets of model parameters
exist for which the first term will be of unity and the
probability distribution can therefore not be normalized.
The superscript ‘t’ represents the transpose of the model
parameter vector. C−1

m ḃ
is the covariance matrix for the m ḃ

model parameters with only the diagonal being nonzero.
Since the only purpose of this term is to ensure that the
probability distribution can be normalized, the width of

the normal distribution, exp
(
m t
ḃ
C−1
m ḃ
m ḃ

)
, must be large

enough that the solution is not affected. The total probability
distribution for all the model parameters is the product of
ρ1(m) and ρ2(m).
Since the likelihood function in Equation (4) is reduced

to the probability distribution for the calculated observable
quantities, ρD(d

cal) and the noise on the data is assumed to
be Gaussian distributed, the likelihood is defined as

L(m) = k−1 exp
[
−
(
f (m)− d obs

)T
ν2C−1

D

(
f (m)− dobs

)]
,

(11)
measuring how well the observable quantities based on a
given model resemble the data. Here f (m) represents the
forward algorithm coupling the model parameters with the
observable quantities; dobs consist of the observed data given
by the targeted internal layer, surface velocities at given
points along the flowband and the estimated accumulation
rate at the Taylor Mouth core site. These parameters are
described in section 4.5. CD is the data covariance matrix.
When the data parameters are statistically independent of
each other, all the off-diagonal elements in the covariance
matrix are zero. Along the diagonal is the variance for each
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of the data parameters. The scalar ν is a positive Lagrange
multiplier, which is also called the ‘trade-off parameter’,
because this value is adjusted until the misfit criterion
defined in Equation (5) is satisfied. Adjusting the value of the
Lagrange multiplier will adjust the balance between fitting
the data and finding a smooth model for the accumulation
pattern, with the values for age and Qin being within errors
close to their preconception values.

4.2. Occam’s inversion
Occam’s inversion is conceptually similar to Tikhonov
regularization, but instead of adjusting the influence of the
data misfit on the result, the smoothness is adjusted. The
strategy is to find the solution that fulfills the following
constraints (Gouveia and Scales, 1997):

min ‖Rm‖, (12)(
f (m)− dobs

)T
C−1
D

(
f (m)− dobs

)
≤ T 2, (13)

where R is a roughening operator, which calculates the
second derivative of the model profile, and T is the tolerance
on the observed data parameters, given by Equation (7).
In our problem, the roughening operator applies only to
the accumulation-rate profile, and not to our other model
parameters. With these constraints we seek a set of model
parameters where the accumulation profile is as smooth as
possible, while keeping the data misfit below or at a given
tolerance. The above constraints can easily be seen to be
equivalent to the misfit criterion described in Equation (5).
This means that only the features in the model that are
required to fit the data will persist. The difference between
Occam’s inversion and the Tikhonov regularization is in the
influence of the Lagrange multiplier.
In Occam’s inversion, the Lagrange multiplier is included

in the probability distribution for the accumulation-rate
profile; in the Tikhonov regularization it is included in the
likelihood function. This means that in Occam’s inversion
the effect of the Lagrange multiplier is on the smoothness
of the accumulation-rate profile, whereas in Tikhonov
regularization its effect is on the data. Changing the value
of the Lagrange multiplier enforces a greater or lesser degree
of smoothing. This does not change the a priori confidence
in the preconception values for the model parameters age
and Qin or uncertainty in the data. Not changing confidence
limits or standard deviations is appealing since it guarantees
that the model parameters and data have the desired weights.
The probability distribution for the model parameters

age and Qin remains unchanged and is given by ρ1 from
Equation (8). The probability distribution for the model
parameters m ḃ is given by

ρ2(m ḃ ) = k
−1 exp

⎡
⎢⎣−η2

Nḃ∑
j=1

(
cj − c (0)j

)2
2σ2

ḃ

⎤
⎥⎦exp(m t

ḃC
−1
m ḃ
m ḃ

)
,

(14)
where η is the Lagrange multiplier. The probability distribu-
tion for all the model parameters is given by the product of
ρ1 and ρ2. The likelihood function is given by

L(m) = k−1 exp
[
−
(
f (m)− dobs

)T
C−1
D

(
f (m)− dobs

)]
.

(15)
The Lagrange multiplier has been moved from the likelihood
function in Equation (11) into Equation (14).

4.3. Bayesian inference
In contrast to Tikhonov regularization and Occam’s in-
version, Bayesian inference does not assume that the
accumulation-rate profile should be smooth. Instead, each
model parameter has a probability distribution independent
of the other model parameters, the same way the probability
distribution for age and Qin is defined in the previous two
methods (see Equation (8)). This means that all information
regarding the data and model parameters is given as a
probability distribution (Gouveia and Scales, 1997). For ex-
ample, Gudmundsson and Raymond (2008) used a Bayesian
inference method. Bayesian inference could be considered
more objective because less personal opinion about the final
solution to the problem is used to constrain the result of the
MC simulation. This is obtained by omitting the Lagrange
multiplier, letting the preconception values and associated
confidence in those values dictate the solution(s) to the
problem without forcing the solution to neither overfit nor
underfit the data. A uniform value of the accumulation rate
obtained from a local-layer approximation (LLA;Waddington
and others, 2007), averaged along the flowline, is our
preconception value for the accumulation-rate profile. The
LLA is calculated using a layer-thinning correction, assuming
there are no horizontal gradients in geometry and strain rate.
The accumulation-rate values are expected to be normally
distributed about their preconception values. The probability
distribution for the whole model parameter space is given by

ρ(m) = k−1 exp

⎡
⎢⎣− Nm∑

j=1

(
mj −m(0)

j

)2
2σ2j

⎤
⎥⎦ , (16)

where Nm is the number of model parameters and m(0)
j is

the preconception value for the jth model parameter. The
likelihood function is defined by Equation (15).

4.4. Model parameters and their confidence limits
The distributions of the model parameters age and Qin
are assumed to be Gaussian in all three MC formulations.
Their preconception values are respectively age (0) =
2000years and Q (0)

in = 110m3 a−1 per meter flowband
width (Waddington and others, 2007). It is only in the
Bayesian-inference formulation that the model parameters
for the accumulation-rate profile are assumed to be normally
distributed. In the cases where a model parameter is assumed
to be normally distributed, the confidence limits on the
model parameters have been estimated, a priori, and these
limits are equivalent to the standard deviations of their
distributions. The confidence limits can also be seen as an
indication of the degree to which the preconception values
may be trusted: the less trust in the preconception values,
the larger the confidence limits. In all three formulations,
the confidence limits (the standard deviations) on the model
parameters age and Qin are 400 years and 25m

3 a−1 per
meter flowband width, respectively, as used by Waddington
and others (2007). For the accumulation-rate profile, the
a priori curvature in the Tikhonov regularization and
Occam’s inversion is assumed to be zero. The confidence
limit is given by the ratio between the characteristic
length scale for changes in the accumulation rate and the
characteristic accumulation rate, given by L(c) = 700m and
ḃ (c) = 0.025ma−1, respectively. In the Bayesian inference
formulation the a priori value for the model parameters mḃ
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is 0.074ma−1 ice equivalent. This value has been estimated
by averaging the LLA profile. The standard deviation for
this value is 0.025ma−1, as estimated from the standard
deviation of the LLA profile.

4.5. Data and their uncertainties
The data that are used when calculating the likelihood in
Equations (11) and (15) comprise three types: the continuous
internal layer at a discrete number of points with a spacing
of 200m; the ice velocity at the Taylor Mouth core site
and three other locations along the flowband; and the
estimated accumulation rate at the core site (see Waddington
and others, 2007, for a detailed description of the data
parameters). The internal layer is highlighted in Figure 2.
Based on gross-β measurement of bomb fallout products,
the yearly accumulation rate at the Taylor Mouth core site
is estimated to be ḃTM = 0.023ma−1. The uncertainties in
the observed data are assumed to be normally distributed
(Waddington and others, 2007); they will therefore be
equivalent to the estimated standard deviation. All the
uncertainties have been estimated byWaddington and others
(2007):±5m for the internal layer depth,±0.05ma−1 for the
velocity data and ±0.01ma−1 for the accumulation rate at
the Taylor Mouth core site.

5. MONTE CARLO SIMULATION
While Waddington and others (2007) used the Gradient
method to infer values of the model parameters based on
the data, here we use the MC method. The difference
between the two methods lies in the search algorithm.
The search algorithm finds the set of values for the
model parameters that form the solution to the formulated
inverse problem. The Gradient method performs a local
search, while the MC method performs a global search
(Mosegaard and Tarantola, 1995). Performing a global search
by systematically exploring the whole model space might
be practical for low-dimensional spaces, but for spaces with
higher dimensions this method can require unreasonable
computation time (Mosegaard and Tarantola, 1995). To deal
with this issue, we use the Metropolis algorithm (Metropolis
and Ulam, 1949). The Metropolis algorithm samples models
according to any a priori information we have about
the model parameters, and according to the resemblance
between their calculated observable quantities and the data.
From the set of sampled models, the solution to the inverse
problem can be inferred (e.g. Geman and Geman, 1984;
Tarantola, 2005). A key advantage of this MC method is
that only one distribution of sampled models exists and,
regardless of the starting point in the model space, the
method always converges towards this stable distribution
(Kaipio and others, 2000). The MC method is well suited
to nonlinear problems because it has the ability to find all
likely solutions, whereas the Gradient method finds only the
solution most accessible to its starting guess.

5.1. The Metropolis algorithm
The sampled density of models from the model space
using the Metropolis algorithm is proportional to the a
posteriori probability distribution (Equation (3)) for the model
parameters (Mosegaard and Tarantola, 2002). An algorithm
with this property is called an ‘importance-sampling’
algorithm. This algorithm has two major advantages: first,
it avoids extensive sampling from low-probability areas,

thereby saving computation time; second, it is not necessary
to evaluate the whole a posteriori probability distribution,
only the a posteriori probability for the sampled models
(Mosegaard and Tarantola, 2002).
The Metropolis algorithm performs a pseudo-random walk

that consists of an exploration step and an exploitation step
(Mosegaard and Sambridge, 2002). The exploration step
jumps from the current model in the model space, denoted
bym j , to the next model,m j+1. In practice this is done by first
choosing a random model parameter from the whole set of
model parameters and then perturbing the model parameter
by a step whose size is given by a bounded symmetric
uniform distribution centered around zero. The maximum
size of this step is tuned such that an acceptance rate of 30–
50% is obtained (Tarantola, 2005). The goal is to choose
as large a step size as possible while maintaining a high
acceptance rate (Mosegaard, 1998). During the exploration
step, the algorithm decides whether to accept the perturbed
model or to reject the perturbation and return to the previous
model. The acceptance probability is given by (Mosegaard
and Sambridge, 2002)

Paccept =

{
σmar(m j+1)
σmar(m j )

if σmar(m j+1) < σmar(m j )
1 otherwise.

(17)

This means that if the a posteriori probability, σmar(m), is
increased by the exploration step, the random walk will
definitely take the suggested step and the perturbed model,
mk , will become the new current model. If the a posteriori
probability has decreased, the perturbed model can still
be accepted. The probability that the perturbed model is
accepted is given by the ratio between the perturbed a
posteriori probability, σmar(mk ), and the present a posteriori
probability, σmar(m j ). If the perturbed model is not accepted,
the random walk steps back to the current model, m j , and
information about this model will be saved again and a new
perturbation follows.
Since the initial model is often far away in the model

space from the volume of interest, sampling begins after the
burn-in time, as suggested by Kaipio and others (2000). The
volume of interest is the volume where models generate high
a posteriori probability and therefore this volume is sampled
more often than areas of low a posteriori probability. The
burn-in time can be determined by noting when the sampled
a posteriori probability, as a function of the number of runs
through the Metropolis algorithm since the start, reaches
a relatively stable level. Another way of determining the
burn-in time is by projecting the model space, including all
sampled models, into a two-dimensional plane. By plotting
two different model parameters versus each other, the burn-in
time can be estimated by noting when the sampled models
reach the area of interest, illustrated by a high density of
sampled models. It can be seen that the sampled models
move from the initial model in the model space in a direct
path before reaching the area of interest, thereby illustrating
the burn-in time.
In order for the sampled models to be statistically

independent of each other, a waiting period between saving
solutions has to be included. This is obtained by letting the
sampling algorithm sample a number of models without
actually saving them before saving the next model (e.g.
Dahl-Jensen and others, 1998). The necessary number of
runs between each pair of saved models for statistical
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independence is determined by the number of model
parameters and by the nonlinearity of the forward algorithm.

5.2. Multiple solutions
If only one solution to the problem is present, working with
the marginal distribution of each of the model parameters
is possible. The marginal distribution of a model parameter
is the frequency distribution of that model parameter. It
is defined as the integral over the probability density
distribution of the sampled models in the model space with
respect to all model parameters except the specific model
parameter for which the marginal distribution is calculated.
Letting the probability density distribution of the sampled
models in the model space be denoted by χ(m) and the
model parameter for which the marginal distribution is
calculated bemj , then themarginal distribution ofmj is given
by

χmar(mj ) =
∫
{m1,...,mNm\{mj}}

χ(m) dmi , (18)

where the integration is carried out over all the other model
parameters except mj .
When several solutions in the form of several maxima

in the a posteriori probability distribution are present,
finding the mean and standard deviation from the marginal
distribution for each of the model parameters is not a
desirable method. This is because the solutions can ‘shade’
each other when calculating the marginal distribution so it
can become difficult to determine the mean and standard
deviation of the different solutions. Doing so may introduce
errors and may not reveal any correct information about
the solutions. Having more than three model parameters
introduces a problem when trying to separate the solutions
from each other, because simultaneous illustration of all
the model parameters is not possible. An estimate of the
number of solutions and the mean value of these solutions
can be obtained by producing two-dimensional marginal
distributions of pairs of model parameters. However, when
there are more than a few model parameters, this procedure
becomes computationally intensive since the number of
different pairs of model parameters is given by Nm!/[2(Nm−
2)!]. It is possible to circumvent this problem by finding the
mean and standard deviation of the multiple solutions in the
high-dimensional model parameter space itself. Assuming
that the distributions of the model parameters are normally
distributed, we can use expectation maximization clustering.
This clustering finds the mean and standard deviation
for a pre-specified number of solutions. The mean and
standard deviations are calculated such that the sum of the
differentNm-dimensional normal distributions for the various
solutions approximates the sampled density distribution of
the model parameters in the Nm-dimensional model space
(Moon, 1996).

5.3. Estimating the solutions
Using the forward algorithm of Waddington and others
(2007) and the available data for Taylor Mouth, we used
the MC simulation to determine whether the a posteriori
probability distribution is unimodal or multimodal. In the
case of a multimodal a posteriori probability distribution,
several possible solutions to the data can be inferred.
A posteriori probability distributions are sampled for

different values of the Lagrange multiplier in the Tikhonov
regularization and Occam’s inversion. The a posteriori

probability distributions, σmar(m), for the different values of
the Lagrange multiplier can have one or several maxima.
These maxima are inferred as possible solutions to the
formulated inverse problem. The goal is to identify sets of
model parameters that fulfill the misfit criterion (Equation (5))
from the possible solutions (i.e. maxima in the a posteriori
probability distribution). In this way we regularize the inverse
problem by demanding that the solutions neither overfit nor
underfit the data. The sets of model parameters that fulfill
the misfit criterion will then represent the solutions to the
formulated inverse problem.
The a posteriori probability distribution is sampled for

discrete values of the Lagrange multiplier. However, we
seek solutions for which the misfit criterion (Equation (5))
is fulfilled, which is difficult to obtain with the use of
sparsely spaced values of the Lagrange multiplier. Since it
is computationally expensive to run the simulations with
more values of the Lagrange multiplier, it is necessary
to interpolate the a posteriori probability distributions to
find solutions that satisfy the misfit criterion. Interpolating
between Nm-dimensional distributions is difficult because
of problems visualizing high-dimensional spaces. Instead,
we interpolate between the values of the misfit for the
corresponding maxima in the a posteriori probability
distributions corresponding to the different values of the
Lagrange multiplier. This allows us to determine the values
of the Lagrange multipliers for which the different solutions
fulfill the misfit criterion. Once the values of the Lagrange
multipliers are determined for the different solutions, the
values of the model parameters corresponding to the different
solutions can be found by interpolation. Before interpolating
between the misfit for the corresponding maxima, the
maxima of the different a posteriori probability distributions
are divided into groups according to which solution they
belong to. We do this by looking at the model parameters,
age and Qin, and the evolution of their distributions for
different values of the Lagrange multiplier.

6. RESULTS
The misfit error, ‖d‖2 − T 2, as a function of the Lagrange
multipliers, ν and η, for the different maxima in the a
posteriori probability distribution, is shown in Figure 4a
for Tikhonov regularization and Figure 4b for Occam’s
inversion. Different shades of gray and markers are used in
the figure to separate the maxima corresponding to different
solutions. The misfit of the corresponding maxima in the
a posteriori probability distribution is scattered because of
uncertainties in the sampling of the a posteriori probability
distribution. This uncertainty arises because the Metropolis
algorithm has not been running for enough time to obtain a
stable a posteriori probability distribution.
Based on the fitted polynomial, the misfit error equal to

zero in the Tikhonov regularization occurs for a Lagrange
multiplier, ν, of 0.402 and 0.440 for the two solutions. For
Occam’s inversion, the misfit error equal to zero occurs
for a Lagrange multiplier, η, of 2.154, 2.332, 2.365 and
2.607 for the four solutions (see Table 2). Hereafter, the
different solutions are identified by the value of the Lagrange
multiplier for which the mismatch criterion (Equation (5))
is satisfied. Figure 4c and d show the age parameter for
Tikhonov regularization andOccam’s inversion, respectively.
Based on the fitted polynomial, the value of the age
parameter is estimated for the values of the Lagrange
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Fig. 4. Markers in (a) and (b) show misfit errors, ‖d‖2 − T 2, associated with different maxima (identified by different shades of gray) in the
a posteriori probability distribution, σmar(m), as functions of the Lagrange multipliers, ν and η, for Tikhonov regularization and Occam’s
inversion, respectively. Each solution to the inverse problem is found by tracking one maximum in σmar(m) while varying the Lagrange
multiplier, ν or η. Interpolation between the maxima for the different Lagrange multipliers is used to find the exact value of the Lagrange
multiplier that fulfills the misfit criterion (Equation (5)). For example, the parameters age (c, d) and Qin (e, f) corresponding to each maximum
in σmar(m) are given by their values at the Lagrange multiplier for which the corresponding misfit error is zero in (a) or (b). The values are
indicated by stars. Different shades of gray are used for the different solutions to the inverse problem.

multiplier where the misfit becomes zero. The determined
values of the age parameter are marked by stars. The model
parameter input flux,Qin, for different values of the Lagrange
multiplier is shown in Figure 4e for Tikhonov regularization
and Figure 4f for Occam’s inversion. The Qin parameter is
analyzed in the same way as the age parameter, and values
corresponding to a misfit equal to zero are indicated by stars.

Table 2. Values for age and Qin, and likelihood for the two
solutions from Tikhonov regularization and for the four solutions
from Occam’s inversion. For Bayesian inversion the solutions from
the two simulations are close to being identical, except at the
Taylor Mouth core site, so only one set of the values of the model
parameters, age and Qin, is shown

Method ν/η age Qin Likelihood

years m2 a−1 %

Tikhonov 0.402 1629± 40 106± 22 46
0.440 1714± 44 125± 23 56

Occam’s 2.154 1817± 22 194± 15 12
2.332 1715± 16 143± 15 28
2.365 1763± 17 167± 15 25
2.607 1727± 15 148± 15 38

Bayesian 1585± 70 119± 26 100

The accumulation-rate parameters are not shown, but their
preferred values are inferred in the same way. The resulting
accumulation-rate parameters are shown in Figure 5a and b.

6.1. Tikhonov regularization
For Tikhonov regularization, the Lagrange multiplier, ν,
is included in the likelihood function (Equation (11)). By
changing the value of ν, the degree to which the model
parameters recreate the observed data is adjusted. This
is done by adjusting the weight that the data exert on
the solution. The mean value of the accumulation-rate
parameters along the flowband is shown in Figure 5a. The
shape of the accumulation-rate profile is approximately the
same for the two solutions, given by ν equal to 0.402 and
0.440, although the value of the accumulation rate is not. The
values of the two solutions can vary by as much as 0.01ma−1

along the flowline. This difference is counteracted by a
difference in the corresponding age and Qin values, such
that higher accumulation rates correspond to faster flow
rates, and therefore a younger age for the targeted layer. The
corresponding age and Qin values are listed in Table 2. The
recreated layers based on the two solutions are shown in
Figure 6. The figure illustrates that the large-scale structures
of the layer are well resolved, but the structures smaller than
∼1 km are not. This is a result of the probability distribution
given by the curvature of the accumulation-rate profile and

https://doi.org/10.3189/002214310791968476 Published online by Cambridge University Press

https://doi.org/10.3189/002214310791968476


Steen-Larsen and others: Inferring the accumulation-rate pattern using a MC method 327

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Tikhonov regularization

 

 

ν = 0.440

ν = 0.402

0.02

0.04

0.06

0.08

0.1

0.12

0.14
A

c
c
u

m
u

la
ti
o

n
 r

a
te

 (
m

 a
–
1
 i
c
e
 e

q
u

iv
a
le

n
t)

Occam’s inversion

 

 η = 2.365

η = 2.332

η = 2.607

η = 2.154

0 2 4 6 8 10 12 14
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance along flowband (km)

Bayesian inversion

 

 

With bcore

Without bcore

.

.

a

b

c

Fig. 5. Mean values of the accumulation-rate parameters, spaced 200m apart along the flowband, corresponding to the multiple maxima
in the a posteriori probability distributions, σmar(m), for (a) Tikhonov regularization and (b) Occam’s inversion, identified by the same gray
shades as used in Figure 4. As in Figure 4, each solution is evaluated using the Lagrange multiplier that produces zero misfit error for the
corresponding maximum in σmar(m). (c) Two solutions were obtained with Bayesian inversion, with and without a preconception value for
the accumulation rate at the Taylor Mouth core site. The position of the Taylor Mouth core site is shown with a vertical bar. The accumulation
rate found here, based on gross-β measurement, was estimated to be 0.023ma−1.

the misfit criterion preventing the solution from overfitting
the observed data.
Particles that move past the end of the flowband before

reaching their prescribed age reveal no information about
the accumulation rate in the part of the flowband they

pass. This means that particles started within the last ∼2 km
of the flowband will reveal no information about the
accumulation-rate pattern. Furthermore, since the effect of
the accumulation-rate pattern is greater on particles near
the surface than deeper down in the ice, the uncertainty
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Fig. 6. Shades of gray indicate layers calculated by the forward algorithm using corresponding accumulation-rate profiles in Figure 5. Thick
gray band represents the targeted internal layer (data). In (a) and (b), values of Lagrange multipliers where the misfit criterion (Equation (5)) was
satisfied distinguish the multiple solutions. In (c) the two layers shown correspond to Bayesian solutions with and without a preconception
value for accumulation rate at the core site.
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Fig. 7. Standard-deviation profiles of the accumulation rate for Tikhonov regularization (solid curves), Occam’s inversion (dashed curves)
and Bayesian inversion (dotted curves).

on the estimated model parameters will increase along the
flowband for this part, as seen in Figure 7, where the
uncertainty seems to increase exponentially towards the end
of the flowband, as information from shallow particles is
missing.
Since the speed of the flow increases along the flowband,

the further down the flowband a particle is started the
greater distance it will travel before reaching a given age.
Since the final depth depends on the accumulation-rate
history experienced, this implies that the uncertainty on the
estimated accumulation-rate pattern will increase along the
flowband, as seen in Figure 7. Furthermore, since the flow
speed depends on the accumulation rate upstream of a given
particle, uncertainties in the accumulation rate upstream will
propagate into the flow speed and add uncertainty to the
path of the particle. Right at the beginning of the flowband,
few particles move through the ice, which results in the
increased uncertainty, as seen in Figure 7. The uncertainty
in the accumulation-rate solution is 5–10%, except at the
beginning and end of the flowband, where it is higher
because we are less able to resolve these values.

6.2. Occam’s inversion
Analysis of the sampled a posteriori probability distributions
for the different Lagrange multipliers with Occam’s inversion
shows that four solutions to the formulated inverse problem
exist. The solutions are determined using the maxima in the
sampled a posteriori probability distributions. The shape of
the mean value of the accumulation-rate parameters along
the flowband is very close to being the same as that for
Tikhonov regularization, but the values are slightly lower.
As with Tikhonov regularization, the uncertainties increase
gradually in the downstream direction, then increase rapidly
over the last 2 km of the flowband. The recreated layer is
shown in Figure 6b. No significant differences can be seen
between the recreated layers from Tikhonov regularization
and Occam’s inversion. With this inverse method, all the
large-scale features of the internal layer are recreated but
small-scale structures are not produced by the chosen

accumulation-rate profiles. As seen in Table 2, the age
and Qin values are significantly higher in the solutions
in Occam’s inversion than those derived with Tikhonov
regularization. These higher values occur together with
a lower accumulation-rate profile. The uncertainties for
the solutions obtained using Occam’s inversion show the
same features as seen for the solutions from Tikhonov
regularization. However, here the values are ∼50% lower
than for Tikhonov regularization.

6.3. Bayesian inference
In Tikhonov regularization and Occam’s inversion, a priori
information and a smoothing constraint was applied to
the model solution. In Bayesian inference, prior knowledge
about the distribution of the model parameters is taken
into account, but a smoothness constraint is not applied;
the misfit criterion in Equation (5) is not applied either.
Instead, the solutions are inferred solely from the a posteriori
probability distribution, σmar(m). Two simulations were
performed, with and without the measured accumulation
rate at the Taylor Mouth core site as a data parameter.
In both simulations, a unimodal a posteriori probability
distribution, σmar(m), was found and therefore a single
solution to the formulated inverse problem can be inferred
for each simulation. Comparison of these two simulations
shows the effect of the Taylor Mouth ice-core accumulation-
rate data on the solution. The accumulation-rate profiles
shown in Figure 5c are close to being identical for both
simulations, only deviating significantly at the position
of the core site. The general trend of the accumulation
rate for Bayesian inversion is similar to the trend of the
accumulation-rate profiles from Tikhonov regularization and
Occam’s inversion. However, small-scale as well as large-
scale structures in the accumulation-rate profile are present
in the solution from Bayesian inversion. Both accumulation-
rate profiles obtained using Bayesian inversion show a large
decline at ∼2.5 km. This decline is present in order to
reproduce the shoulder seen in the targeted internal layer
in Figure 6. In the accumulation-rate profile corresponding
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to the simulation using the accumulation rate at the core
site, a large decline is seen at the core site’s position. Since
this decline is not seen in the accumulation-rate profile
corresponding to the simulation without the use of the
accumulation rate at the core site, the decline must be
present because the confidence in the preconception value
for the accumulation rate at the core site was too high.
The uncertainties, represented by the standard deviation

of the accumulation-rate profile, are shown in Figure 7.
They increase rapidly at the beginning of the flowband, after
which they continue to increase slightly downstream. The
recreated layers for both simulations are shown in Figure 6.
Contrary to Tikhonov regularization and Occam’s inversion,
Bayesian inference overfits the data because the data norm,
‖d‖, is less than the expected tolerance, T , calculated from
the uncertainty in the data. The Bayesian formulation takes
only the prior expectation and the data parameters and their
uncertainty into consideration when finding solutions to the
inverse problem. In this framework, whether the solution
overfits or underfits the data is not an issue.

7. DISCUSSION
Because of the computational requirements of the MC simu-
lation, estimating the exact value of the Lagrange multiplier
in Equation (11) or (14) that satisfies Equation (5) is expensive.
A small uncertainty in the correct values for ν and η for each
solution must be tolerated. Existence of several maxima in
the a posteriori probability distribution, σmar(m), increases
the complexity because the misfit criterion (Equation (5)) is
fulfilled at different values of the Lagrange multipliers for the
different solutions. An uncertainty in the sampled a posteriori
probability distribution, σmar(m), arises because a stable
probability distribution is not always obtained. Removing
this uncertainty requires the MC simulation to sample more
models, thereby increasing the computational time. This
uncertainty in the a posteriori probability distribution for
the different values of the Lagrange multipliers results in an
uncertainty in the determined Lagrange multipliers for which
the solutions fulfill the misfit criterion.
When the sampled a posteriori probability distribution,

σmar(m), is multimodal, the likelihood that a given solution
to a problem is the correct one can be estimated by
the ratio of the number of sampled models attached to
the cluster around that solution, to the total number of
sampled models. Because of uncertainties in the sampling
of models by the MC simulations, the ratio of sampled
models in each cluster compared to the total of sampled
models can vary when the Lagrange multiplier is changed.
Since the solutions using Tikhonov regularization require
different Lagrange multipliers, determining the likelihood of
the individual solutions is difficult. The same problem applies
toOccam’s inversion. Using Bayesian inference, no Lagrange
multiplier exists. If the a posteriori probability distribution
is multimodal, all solutions to the inverse problem can
be inferred from the same probability distribution. The
likelihoods of the different solutions are therefore better
defined.
The likelihood that the solutions from Tikhonov regular-

ization corresponding to ν = 0.402 and 0.440 are correct is
approximately 46% and 56%, respectively. The likelihoods
do not add up to 100% because of uncertainties in
sampling the a posteriori probability distributions, σmar(m).
For Occam’s inversion, the likelihood is 12%, 28%, 25%

and 38%, respectively, for the solutions associated with η =
2.154, 2.332, 2.365 and 2.607. For Occam’s inversion there
is, again, an uncertainty in sampling a posteriori probability
distributions. From this it can be inferred that the solution
corresponding to η = 2.607 is the most likely solution, while
for Tikhonov regularization both solutions are close to being
equally likely.
Using a Gradient method, Waddington and others (2007)

found age = 1703 years and Qin = 112m3 a−1 per
meter flowband width. Their solution is within one standard
deviation of one of our solutions (ν = 0.440, age =
1714years) found with the MC method using Tikhonov
regularization. The accumulation-rate profile inferred by
Waddington and others (2007) corresponds to values partly
from both the solutions found in the MC simulations. The
solution of Waddington and others (2007) is probably not
at a maximum in the a posteriori probability distribution,
but rather some model parameters were at a secondary
maximum, while others reached the point in the model
space corresponding to the absolute maximum a posteriori
probability.
To eliminate multiple solutions from the MC simulation,

more data are needed to constrain the solutions. For
example, it would be possible to eliminate uncertainty in
the model parameter Qin by starting the flowband at the
ice divide, where the influx of ice is zero. Another way
to constrain the influx, Qin, is to have a surface-velocity
measurement near the upstream end of the flowband which
could constrain uncertainty inQin to within the measurement
uncertainty of the surface-velocity measurement. In general,
more surface-velocity measurements would constrain the
solution of this inverse problem. If the age of the tracked
internal layer was known (e.g. by absolute dating) and
the accumulation-rate profile and the influx, Qin, were
unknown, probably only one maximum would be present in
the a posteriori probability distribution. The solution to the
problem would therefore be well defined, and the problem
would be well suited for the Gradient method.
The fundamental difference between formulations using

Tikhonov regularization and Occam’s inversion is the way
in which the Lagrange multiplier controls the solution. In
Tikhonov regularization, the Lagrange multiplier influences
the importance of recreating the data, thereby permitting the
solution to be more or less smooth, as well as changing
the degree of trust in the preconception values of age
and Qin. In contrast, Occam’s inversion uses the Lagrange
multiplier to directly control the degree of smoothness of
the accumulation-rate profile and does not change the
confidence in the preconception values of the parameters,
age and Qin, while adjusting the Lagrange multiplier in
order to fulfill the misfit criterion. This makes Occam’s
inversion preferable. In a case where determining the age
and Qin parameters is not part of the inverse problem,
our formulations of Tikhonov regularization and Occam’s
inversion are equivalent. The absence of a smoothing
constraint in Bayesian inversion is clearly seen in the result:
the accumulation-rate profile is much more variable. Using
Bayesian inference, only observed data and probability
distributions of the model parameters influence the solution.
This means that Bayesian inference is less affected by a priori
knowledge, since the smoothing constraint is not imposed.
This, however, does not imply that the solution is more
correct than the solutions from Tikhonov regularization and
Occam’s inversion. Although short-wavelength features have
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Fig. 8. Correlation matrix for solutions from (a) Tikhonov regu-
larization, (b) Occam’s inversion and (c) Bayesian inversion. The
first two model parameters are age and Qin, respectively. Model
parameters 3–62 are the accumulation-rate parameters at 200m
intervals along the flowband. Only one correlation matrix is shown
for each formulation because the matrices for different solutions
from each formulation are nearly identical. For Bayesian inversion,
the correlation matrix corresponds to the simulation which includes
a preconception value for the accumulation rate at the Taylor Mouth
core site.

been seen in shallow radar data, we think they are unlikely to
persist for∼1500 years, and we attribute the variations in the
solution to the Bayesian inference to errors in the layer data.
Formulating the inverse problem using Bayesian inversion
reveals information about the solution at different spatial
scales to the formulations based on Tikhonov regularization
and Occam’s inversion.
When solving an inverse problem, not only the method

used (e.g. Gradient or MC) but also the formulation of the
problem is important, since it is in this step that any a priori
constraints on the solution to the problem are introduced.
One therefore has to decide whether or not the smoothness
of a set of model parameters should be introduced in
the probability distribution for the model parameters. If no
smoothness constraint is introduced, the formulation of the
problem could be carried out using Bayesian inference.
Bayesian inference returns a solution that is dictated entirely
by the observed data, and by the preconception values of
the model parameters and their tolerances. This formulation
is beneficial either if one fully trusts the theory relating model
parameters to data parameters and trusts the observed data,
or if one wishes to infer the information ignored or smoothed
out by other methods. An example of extra information re-
vealed by Bayesian inference can be seen in Figure 5, where
we test the effect of introducing a preconception value for the
accumulation rate at the Taylor Mouth core site. The decline
in the accumulation rate at the core site, for the solution that
includes the preconception value for the accumulation rate,
shows that the average accumulation rate over the last 1500–
1600 years is higher than the average accumulation rate from
1955 to 1995. This was noticed by Waddington and others
(2007) and could also have been inferred from the solutions
generated by our Tikhonov regularization andOccam’s inver-
sion, but it is only once the smoothing constraint is removed
that the difference between the average accumulation from
1955 to 1995 and that over the last ∼1500years can be
trusted. Furthermore, it can be seen that the accumulation
rate on both sides of the core site has to increase to counter-
act the lower accumulation rate at the core site, which was
forced to be there because of the preconception value.
Bayesian inference also suggests that the along-flow

decrease in the accumulation rate at ∼8 km is steeper than
suggested by the other formulations, where smoothing con-
straints are introduced. The Bayesian-inference solution also
shows that locally low accumulation rate is required to recre-
ate the shoulder seen in the tracked internal layer at∼2.5 km.
This could imply that the shoulder is caused by an error in
the depth of the internal layer if, for example, the tracking al-
gorithm jumped to a different layer at that point; to solve this
would require full three-dimensional topography of the bed.
Each solution has a Nm by Nm correlation matrix, whose

element in row i and column j describes how parameter
i correlates with parameter j. This matrix then reveals
information about the resolution of the model parameters.
Correlation matrices for multiple solutions from the same
formulation of the inverse problem are nearly identical,
therefore only one correlation matrix from each method
is shown in Figure 8. The first two model parameters in
the correlation matrix are age and Qin. Model parameters
3–62 are the accumulation rates at 200m intervals along the
flowband. There are no major differences between the cor-
relation matrices for Tikhonov regularization and Occam’s
inversion. The correlation between an accumulation rate at
a specific point and its adjacent points is similar in both
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formulations. It can be seen in Figure 8a and b that a band
with high correlation values exists along the diagonal of the
correlation matrix. This means that the accumulation rate
at a specific point is not independent of the accumulation
rate at the adjacent points. The size of the correlated
neighborhood is determined by the characteristic width of
this band, which gives a measure for the spatial resolution
of the solution. This high correlation between adjacent
points is probably a result of the smoothing constraint.
Because of the high correlation between adjacent model
parameters for the accumulation rate, it might be practical
to decrease the number of accumulation-rate parameters
along the flowband. This would not decrease the amount
of information revealed by solving the inverse problem, but
it would decrease the computation time.
The correlation matrices also show that each

accumulation-rate model parameter in the downstream
half of the flowband is anticorrelated with the accumulation
rate ∼1–2 km on each side. At larger offsets, there is
very little or no correlation in the solution with Tikhonov
regularization. Not surprisingly, a strong anticorrelation
exists between the first model parameter (age) and the
magnitude of the accumulation-rate profile. This is expected
because higher accumulation rate along the flowband must
result in a lower age of a layer at the same depth. This
anticorrelation generally decreases along the flowband. This
effect is illustrated by a resolving function, which becomes
broader downstream of the flowband (Waddington and
others, 2007). The resolving function characterizes the
ability to recreate perturbations in the accumulation-rate
pattern. There is a positive correlation between the age
and Qin model parameters. This correlation is weaker
in Bayesian inversion than in Tikhonov regularization
and Occam’s inversion. Furthermore, since no smoothing
constraint is applied to the accumulation-rate profile in the
Bayesian inversion, the accumulation-rate parameters are
not positively correlated with their adjacent points. On the
contrary, they are negatively correlated with their adjacent
points. This anticorrelation decreases along the flowband,
except at the Taylor Mouth core site. As pointed out above,
the accumulation rate at the core site is anticorrelated
with the adjacent points. This anticorrelation indicates that
the accumulation rate over the period 1955–94 measured
by gross-β detection of bomb layers at the core site is
much smaller than the average accumulation rate for
the last 1500–1600 years, as inferred from the depth of
the layer. As for Tikhonov regularization and Occam’s
inversion, the age model parameter is anticorrelated with
the accumulation-rate profile for the Bayesian inversion.

8. CONCLUSIONS
Although several solutions to the inverse problem may exist,
depending on the formulation, the main features of the
accumulation-rate profile are the same, independent of the
formulation. The long-wavelength features are in agreement
with the results of Waddington and others (2007), except
at the downstream end of the flowband, where nearly all
the solutions found by the MC simulation show increasing
accumulation rate in the downstream direction. Only the
solution corresponding to η = 2.607 in Occam’s inversion
follows the trend found by Waddington and others (2007)
in this part of the flowband. The solution corresponding
to η = 2.607 is the most likely of the solutions (38% in

Occam’s inversion). This indicates that the accumulation-rate
parameters found in this region by Waddington and others
(2007) are near the absolute maximum in the a posteriori
probability distribution, σmar(m).
We have shown that solutions to the inverse problem de-

scribed by Waddington and others (2007) can differ in subtle
ways, depending on the formulation, and within a particular
formulation the solutions may again not be unique. This im-
plies that introducing more data parameters could modify the
solution from the Gradient method that is used by Wadding-
ton and others (2007), and the MC method used here.
In addition, we find it is preferable to use the Gradient

method since the computation time for the MC simulation is
greater by a factor of 100. The Gradient method, however,
carries the risk of finding only one out of several maxima
in the a posteriori probability distribution and thereby not
finding all likely solutions to the inverse problem. The MC
method should, whenever possible, be used as an independ-
ent check on the results generated by the Gradient method.
The MC method also reveals information about the solu-

tion to the inverse problem that the Gradient method cannot,
such as a well-defined uncertainty in the solution(s) and cor-
relation coefficients between the various model parameters.
This underlines the importance of using as many formulations
as possible to solve an inverse problem. The solutions
found with Tikhonov regularization, Occam’s inversion and
Bayesian inference agree on the shape of the accumulation-
rate profile, but they are inconsistent regarding the value
of the age and Qin parameters, and thus the magnitude of
the accumulation-rate profile. The value of the accumulation
rate is more likely to be tightly constrained if the age of the
layer is more constrained, or if more surface velocity data
are available. The inverse problem presented here, and by
Waddington and others (2007), is a mixed ‘smallest’ and
‘smoothest’ problem, and we have argued that Occam’s
inversion is a more appropriate formulation than Tikhonov
regularization when a smoothing constraint is applied. Since
we use a smoothing constraint, each accumulation-rate
parameter is correlated with its neighbors. With this problem
formulation, the correlation is found to be high, suggesting
that the same information could be obtained while using
fewer accumulation-rate model parameters, thereby reduc-
ing the computation time required by the MC simulation.
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