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TWO NECESSARY AND SUFFICIENT CONDITIONS FOR MOBIUS
SUBGROUPS TO BE g-DISCONTINUOUS

ZHENG-Wu LONG AND XIAN-TAO WANG

In this paper, two necessary and sufficient conditions for Mobius subgroups to be
(/-discontinuous are obtained. These are generalisations of Lehner's and Larcher's
corresponding results.

1. INTRODUCTION

Let M be the Mobius group consisting of all sense-preserving Mobius transformations

acting on the extended complex plane C, that is, M = { g : g(z) — (az + b)/(cz + d),Vz

e C; a, b,c,d€ C, ad-bc= l } / { ± / } , where / denotes the 2 x 2 identity matrix.

A subgroup G of M is called discrete if and only if no infinite sequence consisting of
distinct elements of G converges to the identity id. G is said to be normal in a domain
D provided that every infinite sequence of G contains a subsequence of distinct elements
converging uniformly on compact subsets of D to a limit function (the function can
be oo) which is univalent or a constant since every element of M is univalent, see [5]
for example.

It is well known that every element g of M. acting on C has a natural extension acting
on H , which is called the Poincare extension of g and denoted by g~. For a subgroup G

of M, we let G = {g : g € G}. We call G elementary if G has a finite G-orbit in i f
(that is, there exists some x 6 H such that the set G{x) = {g(x) : g € G} is finite);
otherwise we say G non-elementary.

A nontrivial element g € Ai is called loxodromic if g has two fixed points in C and ~g
has no fixed point in H3; parabolic if g has only one fixed point in C; elliptic if 5 has some
(in fact, infinitely many) fixed points in El3. Obviously, in the case of g being parabolic,
~g has no fixed point in H3. By [1], we know
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LEMMA 1. If G is non-elementary, then G contains infinitely many loxodiomic
elements, no two of which have a common fixed point.

Let G C M be a nontrivial elementary subgroup. We say that G is of elliptic type
if each nontrivial element of G is elliptic; parabolic (or loxodromic) type if G contains
a parabolic (or loxodromic) element and all its non-elliptic nontrivial elements have a
common fixed point set.

LEMMA 2 . Let G be elementary. Then G is of mixed type if and only ifG contains a
parabolic element and a loxodromic element with a fixed point in common; or equivalently
if and only ifG contains two loxodromic elements with only one fixed point in common.

A point z0 in the extended complex plane C is called a limit point with respect to
a subgroup G of M. if ]}n(z) —> z0 for some sequence {<?„} of distinct elements of G and
some fixed point x € H3. The set of all limit points of G is denoted by A(G), that is,

A(G) = Cncl(G(z)),

where "cl" means "closure" and x € H3. Since elements of G preserve the hyperbolic

metric of H3, this definition is independent of the choice of x. Obviously if G contains a

loxodromic element, then its fixed point set is contained in A(G). By Lemmas 1 and 2

and [6], we know

LEMMA 3 .

(1) A(G) is G-invariant and closed;

(2) A(G) is a perfect set ifG is a non-elementary group or an elementary group

of mixed type.

Let Q'(G) = C - A(G).

COROLLARY 1. fi'(G) is G-invariant and open.

We say that G is ^-discontinuous if fi'(G) # 0 and G acts y-discontinuously in a

domain D provided D C Q'(G).

PROPOSITION 1 . IfG is elementary and not of mixed type, then G must be

g-discontinuous.

It follows from [1] that

LEMMA 4 . If G is a discrete elementary subgroup of M, then G is one of the

following three types.

(1) G is finite (that is, elliptic type);

(2) G conjugates to a group whose elements are the form

uikz + nX + m/i,

where u> — exp(2ni/q), X (^ 0), \i are complex numbers and Im(n/X) ^ 0
when [i ^ 0, and all k,m,n,q are integers, 0 ^ k ^ q and q < 6,q ^ 5
(that is, parabolic type);
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(3) G conjugates to a group whose elements are of the form

z i—¥ wkanz

or
z i—> tjkan/z,

where w = exp(2m/q),a is a complex number, and k,n are integers, q is a
positive integer (that is, loxodromic type).

See [1] for more details about subgroups of M.

Let G C M. We say that G is discontinuous at z0 £ C if there exists a neighbourhood
N of z0 such that

g{N) n N ± 0

for at most finitely many g £ G. ZQ also is called a discontinuous point of G. The set
of all discontinuous points of G is denoted by fl(G). If fi(G) ^ 0 then we say that G is
discontinuous. Obviously, if G is discontinuous then G is ^-discontinuous.

COROLLARY 2 . Let G be g-discontinuous. Then G is discontinuous if and only if

it is discrete.

It is well-known that the discontinuity of subgroups of M plays a very important
role in the theory of Kleinian groups, see [1, 3, 4] et cetera. Hence the problem of under
what conditions a subgroup G of Ai is discontinuous becomes important and interesting.
Many authors have discussed this problem. Among them, Lehner ([3]) proved

THEOREM A. A necessary and sufficient condition for G to be discontinuous at a

point ZQ is that

(1) G is discrete,

(2) G is a normai family in some disk D containing ZQ.

In ([2]) Larcher proved the following theorem.

THEOREM B. Let G be a discrete subgroup ofM.. Then G is discontinuous if and

only if there exists an open set D on the extended complex plane and a complex point

z0 (finite or infinite) such that no element ofG assumes z0 on D.

In this paper, we consider this problem further. We shall prove the following theo-

rems.

THEOREM 1 . Let G be a non-elementary subgroup of M, and let D be a domain

ofC. Then G acts g-discontinuously in D if and only ifG is normal in D.

THEOREM 2 . Let G be a non-elementary subgroup ofM. ThenG is g-discontinuous

if and only if there exist a domain DofC and an complex number z0 (finite or infinite,)
such that no element ofG assumes z0 in D.

REMARK 1. Corollary 2 shows that Theorems 1 and 2 are generalisations of Theorems

A and B in the case of G being non-elementary.
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REMARK 2. If G is an elementary subgroup of M, then we can easily know that G is
discontinuous if and only if G is discrete.

REMARK 3. Let G be elementary. If G is discrete(or discontinuous), then by Lemma 4,
we know that it is normal in any domain D C f2(G), and also we can find D and z0 such
that no element of G takes z0 in D. The following examples imply that the converse of
the above statements are not true. This shows that the hypothesis "G being discrete" in
Theorems A and B cannot be removed when G is elementary.

EXAMPLE 1. Let G = (g), D = C and z0 = oo, where g(z) = z exp(2niV2). G is normal
in D since every infinite sequence in G contains a convergent subsequence. No element
takes oo in D since for h € G, h(z) — oo if and only if z = oo. But G is not discontinuous
since G is not discrete.

EXAMPLE 2. Let G - {g : g(z) = az + b; 0 ^ a,b e C}, D = C and z0 = oo.

2. PROOFS OF THE MAIN THEOREMS

At first, we introduce a lemma (see [6]) which will be useful in the following proofs.

LEMMA 5 . Let G be a non-elementary subgroup of M, and let Di and D2 be two
disjoint open sets both meeting A(G). Then there exists a loxodromic element g in G
with one fixed point in Di and the other in D2.

Now we come to prove our main results.

PROOF OF THEOREM 1: First we prove the sufficiency. If G does not act g-

discontinuously in D, that is D fl A(G) ^ 0, then by Lemmas 3 and 5, there exists some
loxodromic element g € G with fixed points a, 0 6 D since G is non-elementary. Without
loss of generality, we may assume that a is the attractive fixed point of g.

There exists / such that gnk —> f as k —¥ oo local uniformly in D since {gn} is
normal in D, where / is univalent or a constant. Let 21,22 G D\{a,0} and Z\ ^ z2, we
know g"k(zi) -> f(zl),g

nk{z2) -> f(z2). Hence /(zi) = f(z2) = a. It follows that / is a
constant and f — a. But g"k(/3) -+ 0 ^ a. This is the desired contradiction.

For the necessity, we consider the set E = C\G(D).

We claim that E contains at least two points. Suppose not, we divide our discussions
into two separate cases: E is empty or E contains only one point.

If E is empty, that is, G{D) = C, then A(G) — 0. This is a contradiction since G is
non-elementary.

If E contains exactly one point, we may assume that E = {a}. Then we can conclude

that every element of G must fix the point a and so G is elementary. Otherwise, if g € G

and zi = g(a) / a, then there must exist / € G and z2 € D such that f(z2) = Z\. We

have g'lf(z2) = a.

The normality of G in D follows from our claim and the following easy fact:
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If C\G(D) contains at least two points, then G is normal in D. D

P R O O F O F T H E O R E M 2: First we prove the sufficiency. For the contrary, we suppose

that G does not act ^-discontinuously in D. Then, by similar reasoning as in the proof

of Theorem 1, we can find a loxodromic element g € G with fixed points a, ft € D.

Without loss of generality, we may assume that a is its attractive fixed point. That

means fn(z) -> a V z € C\{/3}. Obviously, a ^ zQ and /? ^ z0. Hence ff"(z0) -> a € D.

Then gn°(zo) € D for large enough n0. This implies that g~n°(gno(z0)) = z0 6 D. This

is a contradiction.

For the proof of the necessity we assume that the group G has the property tha t for

every open set O C C the set G{0) = C. Since G is ^-discontinuous, let z0 G Q'(G). By

Corollary 1, we know there exists an open neighbourhood N of z0 such that TV c fi'(G).

Then G{N) = C. By Corollary 1, we know fi'(G) = C. This is the desired contradiction

since G is non-elementary. D
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