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Iron-induced luminescence as a method for assessing lipid
peroxidation of frozen–thawed goat spermatozoa
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Freezing/thawing procedures induce enhanced reactive oxygen species (ROS) formation in mammalian sperm and these ROS
may be a cause for the decrease in sperm function following cryopreservation. In the present study, we used a
chemiluminescence method to detect ROS-induced damage in goat spermatozoa. Iron-induced luminescence of fresh and
frozen/thawed sperm cells was assessed using a luminometer. It was shown that the freezing/thawing procedure had a
significant effect on some luminescence parameters. Semen freezing significantly increased the values of integral, peak max,
T.half (rise) and T.max (peak) parameters. A significant correlation was observed between the percentage of motile spermatozoa
and integral, peak max and T.half (rise) parameters. In conclusion, the results of the present study indicate that measurement
of induced luminescence can be an alternative, sensitive and relatively simple method for assessing the effect of
cryopreservation on oxidative damage to spermatozoa.
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Introduction

Freezing and thawing, two major steps in cryopreservation
of spermatozoa, have a major effect on cell structure and
function (Hammerstedt et al., 1990). The freezing–thawing
cycle causes damage to the plasma membrane (Hammer-
stedt et al., 1990), reduces motility and the fertilising ability
of spermatozoa (Hammerstedt, 1993) and induces pre-
mature capacitation and nuclear decondensation (Cormier
et al., 1997). Even in the presence of cryoprotectants such
as glycerol, egg yolk and milk, significant structural
alterations take place. In recent years, antioxidants have
been tested in combination with basic common cryopro-
tectants to minimise the damage caused by freezing and
thawing. The beneficial effects of antioxidants provide
indirect evidence that an oxidative stress occurs during
cryopreservation (Alvarez and Storey, 1992; Chen et al.,
1993; Sanchez-Partida et al., 1997). This has been con-
firmed by studies which showed that reactive oxygen
species (ROS) are produced during freezing and thawing
of bovine (Chatterjee and Gagnon, 2001) and equine
spermatozoa (Ball et al., 2001).

One of the major biological processes associated with
ROS is lipid peroxidation. Lipid peroxidation proceeds with

the extraction of hydrogen and the formation of a number
of reactive intermediates that can result in a chain reaction
or propagation of peroxidation within the membrane
(Aitken et al., 1993a; Storey, 1997). Mammalian sperm cells
are particularly sensitive to oxidative damage due to the
high level of easily peroxidisable polyunsaturated fatty
acids (Jones et al., 1979) and fairly low activity of the
enzymatic anti-oxidative system. The attack of free radicals
on unsaturated fatty acid-rich lipids of sperm cell mem-
branes leads to an irreversible decrease in membrane
fluidity (Borst et al., 2000), alteration in membrane per-
meability and metabolism (Jones et al., 1979; Ohyashiki
et al., 1988; Ohta et al., 1989) and reduced sperm ability to
penetrate the egg (Aitken et al., 1993b; Kodama et al., 1996).

In view of the importance of lipid peroxidation in
defective sperm function, quantification of this process is of
some diagnostic significance. At present, the most widely
used assay for lipid peroxidation involves the measurement
of malondialdehyde (MA), a small molecular mass degra-
dation product of peroxidative process that can be mea-
sured by virtue of its capacity to form adducts with
thiobarbituric acid (Aitken et al., 1993a). Although the
method is sensitive and can detect the end-point reaction
product of lipid peroxidation, it is relatively elaborate and
provides only an indirect measure of lipid peroxidation (Pap
et al., 2000). Moreover, MA only accounts for around 5% of- E-mail: pgogol@izoo.krakow.pl
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the products generated during lipid peroxidation (Marshall
et al., 1985). Other extremely toxic lipid peroxidation pro-
ducts such as 4-hydroxynonenal, which are known to be
present in semen and to have a powerful inhibitory effect
on sperm function, are not accounted for in the MA assay
(Selley et al., 1991).

Recently, the application of a fluorescent fatty acid probe,
C11-BODIPY581/591, has been described in a number of
studies as a means to monitor lipid peroxidation in living
cells (Borst et al., 2000; Pap et al., 2000; Ball and Vo, 2002).
The probe shifts from red to green upon oxidation, and the
ratio of red and green fluorescence has been used as a
measurement of lipid peroxidation. The dye is relatively
non-fluorescent in solution and has been evaluated by a
fluorescence microplate reader, by epifluorescence micro-
scopy, by confocal microscopy and by flow cytometry (Pap
et al., 2000). The fluorescence changes in C11-BODIPY581/591

reflect indirectly the oxidation of unsaturated fatty acids
(Borst et al., 2000).

Chemiluminescence is considered to be an alternative
and potentially sensitive method to assess the oxidation or
auto-oxidation of lipids (Miyazawa et al., 1994; Albertini
and Abuja, 1998). In several studies, the luminescence
signal has been correlated with other indicators of lipid
peroxidation, such as the MA concentration (Doi et al.,
2002), the concentration of exogenously added lipid
hydroperoxides (Guajardo et al., 2002) and the content of
conjugated dienes (Albertini and Abuja, 1998), confirming
that low-level chemiluminescence can serve as an indicator
of lipid peroxidative damage. In the case of spermatozoa,
however, the intensity of spontaneous luminescence is
extremely weak and thus difficult to measure. Earlier stu-
dies (Laszczka et al., 1995; S"awiński et al., 1998; Gogol,
2005; Gogol and Szczęśniak-Fabiańczyk, 2006) have shown
that recording the iron ion-induced luminescence can be an
alternative and relatively simple method of measuring
sperm lipid peroxidation.

The aim of the present study was to evaluate the effect of
the freezing/thawing process on iron ion-induced lumines-
cence of buck sperm as an indicator of cell oxidative
damage.

Material and methods

Semen
Five healthy, adult goat bucks were used in this study.
Semen was collected from February to May using an arti-
ficial vagina. Semen was processed using a modified
Corteel cryopreservation procedure (Kareta and Ceg"a, 1999)
in a milk–glycerol extender, frozen in 0.25 ml plastic straws
using liquid nitrogen vapour and stored in liquid nitrogen.

Frozen straws were thawed in a 378C water bath for 30 s
immediately before use. Freshly ejaculated semen as well as
thawed semen samples from the same bucks were also
evaluated for luminescence parameters and sperm pro-
gressive motility.

Luminescence measurements
Luminescence was measured at 208C using a Berthold
AutoLumat LB953 luminometer equipped with a cooled
photomultiplier with a spectral response range from 370 to
620 nm. Prior to measurement of luminescence, spermato-
zoa were separated from the seminal plasma and diluents
by two-fold centrifugation (700 3 g for 15 min) and resus-
pended in 0.9% NaCl to a final concentration of 200 3 106

cells per ml.
To 500 ml of the washed sperm suspension at a con-

centration of 200 3 106 cells per ml, 10 ml of 5 mmol/l
luminol was added. Emission was induced by adding (using
automated injector system) 100 ml 0.3 mmol/l FeSO4 solu-
tion (final concentration 0.05 mmol/l).

Immediately after injection of FeSO4 solution, light
emission kinetics was measured for 300 s (Figure 1). After
complete measurements, the following luminescence
parameters were calculated: integral – total integral of the
measurement signals (counts 3 105 per integration time);
peak max (c.p.s. 3 103) – height of highest peak; slope max
(c.p.s. 3 102) – maximum slope value of curve; T.slope max
– time at maximum slope; T.half (rise) – time at half ‘peak
max’ height in ascending direction; T.max (peak) – time at
peak maximum; T.half (fall) – time at half ‘peak max’ height
in descending direction.

Assessment of sperm motility
The percentage of progressive motile spermatozoa was
evaluated under a contrast phase microscope equipped
with a heated plate at 378C.

Statistical analysis
Results are expressed as means 6 s.e. Data were subjected
to variance analysis according to the GLM procedure of the
Statistical Analysis Systems Institute (2001).

The significance of differences between means was
tested by the least squares method using the LS means
procedure. The correlations between luminescence para-
meters and motility were calculated using Spearman’s rank
method.
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Figure 1 Kinetics of induced luminescence of goat spermatozoa.
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Results

The effect of freezing/thawing on luminescence parameters
and sperm motility is shown in Table 1. Semen freezing
significantly increased the values of integral (P , 0.01),
peak max (P , 0.01), T.half (rise) (P , 0.05) and T.max
(peak) (P , 0.05) parameters. No significant differences
between fresh and frozen sperm in the values of slope max,
T.slope max and T.half (fall) parameters were observed.

The proportion of motile spermatozoa decreased after
semen freezing by 30.6% (P , 0.01).

A significant correlation was observed between the per-
centage of motile spermatozoa and integral, peak max and
T.half (rise) parameters (Table 2). Integral (r 5 20.80) and
peak max (r 5 20.74) were luminescence parameters that
were the most strongly correlated with sperm motility. No
significant correlation was found between T.max (peak)
and T.half (fall) parameters and the percentage of motile
spermatozoa.

Differences between males in the luminescence para-
meters were observed (Tables 3 and 4). In both fresh and
frozen semen, the sperm of buck C was characterised by the
lowest, and the sperm of buck B by the highest, values of
integral and peak max parameters.

Discussion

In the present study, induced luminescence (photon emis-
sion) measurements were used to determine oxidative
damage to goat spermatozoa. Earlier studies covering
measurements of the spectral distribution of sperm emis-
sion and analysis of the relationships between the con-
centration of Fe ions and intensity of induced luminescence
show that this biophysical phenomenon is strictly related to
lipid peroxidation (S"awiński et al., 1998; Gogol, 2005).
Ferrous ions have been used extensively to induce rapid
lipid peroxidation in a variety of cell types including sper-
matozoa (Jones et al., 1979; Aitken et al., 1993a; Storey,
1997; Gomez et al., 1998). The ferrous ion promotes the
catalysis of lipid peroxides to alkoxyl and peroxyl radicals,
which appear to be important in the propagation of the
chain reaction of lipid peroxidation in the sperm membrane
(Aitken et al., 1993a). In these radical chain reactions,
electron-excited molecules are generated and then radia-
tively deactivated, which manifests itself as an emission of
light (chemiluminescence, ultraweak photon emission). Our
study is evidence that the kinetics and intensity of induced
lipid peroxidation of sperm can be observed based on
changes in the intensity of luminescence recorded. Our

Table 1 The effect of freezing–thawing on luminescence parameters
and motility of goat spermatozoa (mean 6 s.e.)

Semen

Parameter Fresh Frozen

Integral 1.90A 6 0.16 6.43B 6 0.96
Peak max 2.03A 6 0.30 8.86B 6 1.76
Slope max 1.46 6 0.33 8.27 6 4.14
T.slope max 5.96 6 0.43 10.32 6 2.20
T.half (rise) 35.71a 6 3.51 54.29b 6 6.61
T.max (peak) 69.14a 6 4.67 92.00b 6 7.80
T.half (fall) 131.40 6 13.03 141.71 6 7.74
Motility (%) 82.3A 6 3.08 51.7B 6 4.57

a,b Means within a row with different superscripts are significantly different
at P , 0.05.
A,B Means within a row with different superscripts are significantly different
at P , 0.01.

Table 2 Correlations between luminescence parameters and sperm
motility

Parameter Motility-

Integral 20.79849 (P , 0.0001)
Peak max 20.74061 (P , 0.0001)
Slope max 20.25192 (P 5 0.1792)
T.slope max 20.14537 (P 5 0.4434)
T.half (rise) 20.44171 (P 5 0.0145)
T.max (peak) 20.31138 (P 5 0.0939)
T.half (fall) 20.04666 (P 5 0.8101)

- P , 0.05 was considered significant.

Table 3 Results of luminescence measurement and sperm motility for fresh semen (mean 6 s.e.)

Buck (no. of ejaculates)

Parameter A (6) B (2) C (5) D (6) E (2)

Integral 2.4A 6 0.3 2.7aAC 6 0.8 1.3bB 6 0.2 1.5bcBC 6 0.1 2.4ac 6 0.1
Peak max 3.1aA 6 0.5 3.2ab 6 2.2 0.8cB 6 0.1 1.6bc 6 0.3 2.2 6 0.3
Slope max 1.0a 6 0.3 0.8 6 0.1 0.9a 6 0.5 2.9b 6 0.8 0.9 6 0.1
T.slope max 6.1 6 1.0 4.1 6 0.4 6.0 6 0.9 5.9 6 0.6 7.4 6 2.4
T.half (rise) 45.5A 6 7.1 48.0a 6 6.0 40.2a 6 3.1 19.5bB 6 5.2 31.5 6 1.5
T.max (peak) 72.5a 6 7.9 87.0A 6 15.0 86.4A 6 5.3 47.0bB 6 6.1 64.5 6 1.5
T.half (fall) 115.5ac 6 11.0 186.0ab 6 81.0 189.0bA 6 37.2 92.5cB 6 6.0 126.0 6 12.0
Motility (%) 85.0aA 6 2.9 57.5B 6 2.5 91.7AC 6 1.7 88.0AC 6 2.0 75.0bAD 6 5.0

a,b,c Means within a row with different superscripts are significantly different at P , 0.05.
A,B,C,D Means within a row with different superscripts are significantly different at P , 0.01.
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method enables the total level of ROS (generated during
the lipid peroxidation process) to be determined (integral
parameter) as well as the observation of the reaction
kinetics probably related to the antioxidant capacity of
sperm. It is supposed that higher sperm antioxidant activity
gives flatter kinetic curve. This means the lower peak max
and slope max values and the bigger difference between
T.half (rise) and T.half (fall). Dissection of the luminescence
signal into more parameters then only the integral one
makes possible to obtain more detailed information about
the processes that take place in the sperm cells.

The rapid increase in luminescence intensity after freez-
ing/thawing of semen, which was accompanied by a
decrease in sperm motility, demonstrates that the phos-
pholipids present in goat spermatozoa readily undergo
peroxidation.

The decreased motility of spermatozoa may occur due to
the action of free radicals under oxidative stress. There are
several possible mechanisms behind the decreased motility
of spermatozoa connected with oxidative stress. The most
often cited is peroxidation of membrane lipids (Aitken et al.,
1989, 1993a and 1993b). The attack of free radicals on the
unsaturated fatty acid-rich lipids of sperm cell membranes
leads to irreversible reduction of membrane fluidity and to
the damage of cell membrane-related ATPases, which are
responsible for regulation of the intracellular level of ions
necessary to maintain normal sperm motility (Ohta et al.,
1989).

The lipid peroxidation process in spermatozoa leads to
the creation of substances having cytotoxic properties, such
as MA and 4-hydroxynonenol (Aitken et al., 1995). Low
concentrations of these substances have been shown to
inhibit a large number of cellular enzymes and functions,
including anaerobic glycolysis limiting ATP generation by
the sperm cell (Comporti, 1989).

De Lamiranda and Gagnon (1992) suggest that ROS are
responsible for the loss of spermatozoal motility through
decreased phosphorylation of axonemal proteins required
for sperm movement.

The above free radical processes that occur under
oxidative stress conditions can explain the relationships
between photon emission parameters and sperm motility.

A similar relationship between the potential for iron-
induced MA generation as an indicator of lipid peroxidation
and human sperm movement was reported by Kobayashi
et al. (1991) and Aitken et al. (1993a).

Analysis of the effect of freezing on the values of parti-
cular luminescence parameters and the correlation between
sperm motility and luminescence parameters indicate that
integral and peak max are the luminescence parameters
particularly useful for determining the ROS-induced damage
at the level of the sperm plasma membrane.

The large individual differences shown between lumi-
nescence parameters (which determine the sperm sensi-
tivity to lipid peroxidation) show the possibility of using
luminescence measurements when selecting males whose
semen is highly suitable for freezing.

In conclusion, our findings confirm that an oxidative
stress occurs during semen cryopreservation and demon-
strate that measurement of induced luminescence can be a
sensitive and relatively simple method for assessing the
effect of freezing and thawing on oxidative damage to
spermatozoa.
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