Bull. Aust. Math. Soc. **81** (2010), 186–194 doi:10.1017/S0004972709001014

ON COHERENCE OF ENDOMORPHISM RINGS

HAI-YAN ZHU[™] and NAN-QING DING

(Received 17 March 2009)

Abstract

Let *R* be a ring and *U* a left *R*-module with $S = \text{End}(_RU)$. The aim of this paper is to characterize when *S* is coherent. We first show that a left *R*-module *F* is T_U -flat if and only if $\text{Hom}_R(U, F)$ is a flat left *S*-module. This removes the unnecessary hypothesis that *U* is Σ -quasiprojective from Proposition 2.7 of Gomez Pardo and Hernandez ['Coherence of endomorphism rings', *Arch. Math. (Basel)* **48**(1) (1987), 40–52]. Then it is shown that *S* is a right coherent ring if and only if all direct products of T_U -flat left *R*-modules are T_U -flat if and only if all direct products of copies of $_RU$ are T_U -flat. Finally, we prove that every left *R*-module is T_U -flat if and only if *S* is right coherent with wD(*S*) < 2 and U_S is *FP*-injective.

2000 *Mathematics subject classification*: primary 16D40; secondary 16P70. *Keywords and phrases*: T_U -flat module, coherent ring, endomorphism ring.

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary modules. For a ring R, $_RM(M_R)$ denotes a left (right) R-module. In what follows, U is a left R-module and $S = \text{End}(_RU)$. We denote by add $_RU$ the category consisting of all left R-modules isomorphic to direct summands of finite direct sums of copies of $_RU$ and by pres(U) the category of all finitely U-presented left R-modules, that is, of all left R-modules M admitting an exact sequence $U^n \to U^m \to M \to 0$ with m, n positive integers. Here H denotes $\text{Hom}_R(U, -)$ and T means $U \otimes_S -$. Given a left R-module M and a left S-module A, define $v_M : TH(M) \to M$ and η_A : $A \to HT(A)$ via $v_M(u \otimes f) = f(u)$ and $\eta_A(a)(u) = u \otimes a$ for any $u \in U$, $f \in H(M)$ and $a \in A$. For a module M, $M^I(M^{(I)})$ is the direct product (sum) of copies of Mindexed by a set I, pd(M) denotes the projective dimension of M, and the character module $\text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is denoted by M^+ . As usual, we use wD(S) to denote the weak global dimension of a ring S. General background material can be found in [1, 7, 13, 16].

This work was partially supported by the National Science Foundation of China (Grant No. 10771096) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008365). © 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

Gomez Pardo and Hernandez [11] have given conditions under which S is a coherent ring assuming that $_{R}U$ is $(\Sigma$ -)quasiprojective. Our aim is to characterize when S is coherent for a general left R-module $_{R}U$. We start by proving that a left R-module F is T_{U} -flat if and only if H(F) is a flat left S-module. This removes the unnecessary hypothesis that U is Σ -quasiprojective from [11, Proposition 2.7]. Then it is shown that S is a right coherent ring if and only if all direct products of T_{U} -flat left R-modules are T_{U} -flat if and only if all direct products of copies of $_{R}U$ are T_{U} -flat. Moreover, if both $_{R}U$ and U_{S} are finitely presented, then we obtain that S is a right coherent ring if and only if $_{L}$ -flat left R-module F. Finally, we prove that every left R-module is T_{U} -flat if and only if S is right coherent with wD(S) ≤ 2 and U_{S} is FP-injective.

Next we recall some known notions and facts required in the paper.

A left *R*-module *M* is *quasiprojective* [1] if, for every quotient module *L* of *M*, the canonical homomorphism $\text{Hom}_R(M, M) \to \text{Hom}_R(M, L)$ is epic. On the other hand, *M* is called Σ -*quasiprojective* when every direct sum $M^{(I)}$ is quasiprojective. A left *R*-module *F* is called T_U -*flat* (see [11]) if for every homomorphism $f : K \to F$ with $K \in \text{pres}(U)$, there exist homomorphisms $g : K \to U^n$ and $h : U^n \to F$ for some integer *n* such that f = hg. Note that if *U* is a finitely generated projective generator of the category of all left *R*-modules, the *M* is T_U -flat if and only if *M* is flat.

Let C be a class of left *R*-modules and *M* a left *R*-module. A homomorphism $\phi: M \to F$ with $F \in C$ is called a *C*-preenvelope of *M* [8] if for any homomorphism $f: M \to F'$ with $F' \in C$, there is a homomorphism $g: F \to F'$ such that $g\phi = f$.

A left *R*-module *M* is *small* [7, p. 6] if the covariant functor Hom(M, -) commutes with arbitrary direct sums. It is well known that finitely generated modules are always small.

A right S-module N is called FP-injective [14] if $\text{Ext}_{S}^{1}(F, N) = 0$ for every finitely presented right S-module F. When S_{S} is FP-injective, S is said to be right FP-injective.

A ring R is *right coherent* [4] when every finitely generated left ideal of R is finitely presented and *left IF* [6] when every injective left R-module is flat.

2. Coherence of endomorphism rings

Let U be a Σ -quasiprojective left R-module and F a left R-module, then H(F) is a flat left S-module if and only if F is a T_U -flat module (see [11, Propsition 2.7]). In fact, this result is true for any left R-module U as shown by the following proposition.

PROPOSITION 2.1. Let $_{R}U$ be a module with $S = \text{End}(_{R}U)$ and F be a left R-module. Then H(F) is a flat left S-module if and only if F is a T_{U} -flat module.

PROOF. Assume that H(F) is a flat left S-module. Let $M \in \text{pres}(U)$ and $\alpha : M \to F$ be an *R*-homomorphism. Then there is an exact sequence $0 \to K \to U^k \to U^l \to M \to 0$ with k, l some positive integers. Let $Y = \text{Coker}(H(U^k) \to H(U^l))$, then

Y is a finitely presented left *S*-module. The exactness of $0 \rightarrow H(K) \rightarrow H(U^k) \rightarrow H(U^l) \rightarrow Y \rightarrow 0$ induces the following commutative diagram with exact rows.

Note that v_{U^k} and v_{U^l} are isomorphisms, and so the induced homomorphism σ is an isomorphism. Since H(F) is a flat left *S*-module, there exist homomorphisms $f: Y \to S^n$ and $g: S^n \to H(F)$ for some integer *n* such that $H(\alpha)H(\sigma)\eta_Y = gf$. Note that $v_{T(Y)}T(\eta_Y) = 1_{T(Y)}$ by [7, Equality 2.1, p. 13] and the diagram

$$THT(Y) \xrightarrow{TH(\sigma)} TH(M) \xrightarrow{TH(\alpha)} TH(F)$$

$$\downarrow^{\nu_{T(Y)}} \qquad \qquad \downarrow^{\nu_{M}} \qquad \qquad \downarrow^{\nu_{F}}$$

$$T(Y) \xrightarrow{\sigma} M \xrightarrow{\alpha} F$$

is commutative. Thus,

$$v_F T(g)T(f)\sigma^{-1} = v_F T(gf)\sigma^{-1}$$

= $v_F T(H(\alpha)H(\sigma)\eta_Y)\sigma^{-1}$
= $v_F TH(\alpha)TH(\sigma)T(\eta_Y)\sigma^{-1}$
= $\alpha v_M TH(\sigma)T(\eta_Y)\sigma^{-1}$
= $\alpha \sigma v_{T(Y)}T(\eta_Y)\sigma^{-1}$
= $\alpha \sigma \sigma^{-1} = \alpha$.

Clearly, $T(f)\sigma^{-1}: M \to T(S^n)$ and $\nu_F T(g): T(S^n) \to F$ are homomorphisms, and $T(S^n) \cong U^n$. So *F* is T_U -flat.

Conversely, suppose that *F* is T_U -flat and $f: X \to H(F)$ is an *S*-homomorphism with *X* a finitely presented left *S*-module. Note that $T(X) \in \text{pres}(U)$, then there are *R*-homomorphisms $g: T(X) \to U^n$ and $h: U^n \to F$ satisfying $v_F T(f) = hg$. Since $H(v_F)\eta_{H(F)} = 1_{H(F)}$ by [7, Equality 2.1, p. 13], it follows that

$$H(h)(H(g)\eta_X) = H(hg)\eta_X = H(\nu_F)HT(f)\eta_X = H(\nu_F)\eta_{H(F)}f = f,$$

and hence f factors through $H(U^n) \cong S^n$. So H(F) is a flat left S-module.

The following corollary is an immediate consequence of Proposition 2.1.

COROLLARY 2.2. Let U be a left R-module.

- (1) $\bigoplus_{i=1}^{n} F_i$ is T_U -flat if and only if each F_i is T_U -flat for any positive integer n.
- (2) If $_{R}U$ is small, then $\bigoplus_{i \in I} F_i$ is T_U -flat if and only if each F_i is T_U -flat for any index set I.

PROPOSITION 2.3. Let _RU be a module with $S = \text{End}(_RU)$. The following are equivalent.

- (1) Every injective left R-module is T_U -flat.
- (2) For any $M \in \text{pres}(U)$, the injective envelope of M is T_U -flat.
- (3) Any $M \in \text{pres}(U)$ is finitely cogenerated by U.

Moreover, if S is right coherent, then the above conditions are equivalent to:

(4) U_S is FP-injective.

PROOF. That condition (1) implies (2) is clear.

(2) \Rightarrow (3). Let $M \in \text{pres}(U)$ and $i : M \hookrightarrow E(M)$ be an injective envelope of M. By condition (2), there exist homomorphisms $\alpha : M \to U^n$ and $\beta : U^n \to E(M)$ for some positive integer n such that $\beta \alpha = i$. Note that α is monic, and so condition (3) holds.

 $(3) \Rightarrow (1)$. For any homomorphism $\varphi : M \to E$ with $M \in \text{pres}(U)$ and E injective, by condition (3) there is a monomorphism $M \to U^n$ for some integer n, and hence φ factors through U^n . So condition (1) follows.

Moreover, if S is right coherent, then by [13, Theorem 9.51] and the remark following it, we have U_S is *FP*-injective if and only if H(E) is flat for any injective left *R*-module *E*. So the equivalence of (1) and (4) follows from Proposition 2.1. \Box

Specializing Proposition 2.3 to the case $_{R}U = _{R}R$ gives the following corollaries.

COROLLARY 2.4 (Part of [6, Theorem 1]). The following are equivalent for a ring R.

- (1) R is left IF.
- (2) The injective envelope of every finitely presented left *R*-module is flat.
- (3) Every finitely presented left *R*-module is a submodule of a free module.

COROLLARY 2.5 [12, Theorem 3.10]. If R is a right coherent ring, then R is left IF if and only if R is right FP-injective.

Let M and N be left R-modules. There is a natural homomorphism

$$\sigma = \sigma_{M,N} : \operatorname{Hom}_{R}(M, U) \bigotimes_{S} \operatorname{Hom}_{R}(U, N) \to \operatorname{Hom}_{R}(M, N)$$

defined via $\sigma(f \otimes g)(m) = g(f(m))$ for all $f \in \text{Hom}_R(M, U)$ and $g \in \text{Hom}_R(U, N)$, $m \in M$.

It is easy to check that $\sigma_{M,N}$ is an isomorphism if $M \in \operatorname{add}_R U$ or $N \in \operatorname{add}_R U$.

LEMMA 2.6. The following are equivalent.

- (1) A left R-module F is T_U -flat.
- (2) For any left *R*-module $M \in \text{pres}(U)$, $\sigma_{M,F}$ is an epimorphism (isomorphism).

PROOF. (1) \Rightarrow (2). Let $M \in \text{pres}(U)$ and F be T_U -flat. Then there is an exact sequence $U^n \to U^m \to M \to 0$ with m, n some positive integers, and

so $0 \to \operatorname{Hom}_R(M, U) \to S^m \to S^n$ and $0 \to \operatorname{Hom}_R(M, F) \to \operatorname{Hom}_R(U^m, F) \to \operatorname{Hom}_R(U^n, F)$ are exact. Note that $\operatorname{Hom}_R(U, F) = H(F)$ is a flat left *S*-module by Proposition 2.1, and hence we obtain the following commutative diagram with exact rows.

Thus condition (2) follows.

(2) \Rightarrow (1). Let $M \in \operatorname{pres}(U)$ and $\alpha \in \operatorname{Hom}_R(M, F)$. By condition (2), there are $f_i \in \operatorname{Hom}_R(M, U)$ and $g_i \in \operatorname{Hom}_R(U, F)$ for all i = 1, 2, ..., n, such that $\alpha = \sigma_{M,F}(\sum_{i=1}^n f_i \otimes g_i)$. Define $f : M \to U^n$ via $f(m) = (f_i(m))$ for any $m \in M$ and $g : U^n \to F$ via $g((a_i)) = \sum_{i=1}^n g_i(a_i)$ for all $a_i \in U$. It is easy to check that $\alpha = gf$, as required.

LEMMA 2.7. Let U be a finitely presented left R-module. Then the class of T_U -flat left R-modules is closed under pure submodules and direct limits.

PROOF. Let *F* be a T_U -flat left *R*-module and *K* a pure module of *F*, then there is an exact sequence $0 \to K \xrightarrow{i} F \xrightarrow{\pi} F/K \to 0$, where *i* is the canonical injection and π is the canonical projection. For any left *R*-module $M \in \text{pres}(U)$ and any homomorphism $f: M \to K$, there are homomorphisms $g: M \to U^n$ and $h: U^n \to F$ for some integer *n* such that if = hg. Consider the following commutative diagram with exact rows:

where α is the induced homomorphism. Note that $\operatorname{Coker}(g)$ is a finitely presented left *R*-module, then there exists a homomorphism β : $\operatorname{Coker}(g) \to F$ satisfying $\pi\beta = \alpha$. It follows that there is a homomorphism $\gamma : U^n \to K$ such that $\gamma g = f$, and so *K* is T_U -flat.

Suppose that $\{F_i\}_{i \in I}$ is a direct system of T_U -flat left *R*-modules over a directed index set *I*. Let $M \in \text{pres}(U)$ and $f: M \to \lim_{i \to I} F_i$ be a homomorphism. Since *U* is finitely presented, so is *M*. By [10, Corollary 1.2.7], the epimorphism $\pi: \bigoplus_{i \in I} F_i \to \lim_{i \to I} F_i$ is pure. Thus, there is $g: M \to \bigoplus_{i \in I} F_i$ with $f = \pi g$. It follows that $\lim_{i \to I} F_i$ is T_U -flat since $\bigoplus_{i \in I} F_i$ is T_U -flat by Corollary 2.2(2).

THEOREM 2.8. Let _RU be a module with $S = \text{End}(_RU)$. The following are equivalent.

(1) *S* is a right coherent ring.

- (2) All direct products of T_U -flat left R-modules are T_U -flat.
- (3) All direct products of copies of $_RU$ are T_U -flat.

Moreover, if $_{R}U$ and U_{S} are finitely presented, then the above conditions are also equivalent to the following.

- (4) Every left R-module has a T_U -flat preenvelope.
- (5) F^{++} is T_U -flat for every T_U -flat left *R*-module *F*.

PROOF. (1) \Rightarrow (2). Let $\{F_i\}_{i \in I}$ be a family of T_U -flat left *R*-modules. Then

$$H\left(\prod_{i\in I}F_i\right) = \operatorname{Hom}_R\left(U,\prod_{i\in I}F_i\right) \cong \prod_{i\in I}\operatorname{Hom}_R(U,F_i) = \prod_{i\in I}H(F_i)$$

is a flat left S-module by Proposition 2.1 and condition (1). Thus, $\prod_{i \in I} F_i$ is T_U -flat by Proposition 2.1 again.

The implication (2) implies (3) is clear.

 $(3) \Rightarrow (1)$. Note that, for any index set $I, S^I \cong \text{Hom}_R(U, U^I)$ is a flat left *S*-module by Proposition 2.1 and condition (3). So condition (1) follows.

(2) \Rightarrow (4). Let *N* be any left *R*-module. By [9, Lemma 5.3.12], for any homomorphism $f: N \rightarrow M$ where *M* is T_U -flat, there is a cardinal number \aleph_{α} and a pure submodule *L* of *M* such that $Card(L) \leq \aleph_{\alpha}$ and $f(N) \subseteq L$. Note that *L* is T_U -flat by Lemma 2.7, and so *N* has a T_U -flat preenvelope by condition (2) and [9, Proposition 6.2.1].

(4) \Rightarrow (1). Let $M \in \text{pres}(_R U)$. Then M has a T_U -flat preenvelope $f : M \to F$ by condition (4). It follows that there are homomorphisms $\alpha : M \to \overline{U}$ and $\beta : \overline{U} \to F$ such that $f = \beta \alpha$ with $\overline{U} \in \text{add}_R U$. It is easy to check that $\alpha : M \to \overline{U}$ is just an add_R U-preenvelope of M. Thus condition (1) holds by [2, Proposition 5].

 $(1) \Rightarrow (5)$. Let F be a T_U -flat left R-module. Then $\operatorname{Hom}_R(U, F) = H(F)$ is a flat left S-module by Proposition 2.1. Since S is right coherent by condition (1), $\operatorname{Hom}_R(U, F)^{++}$ is also a flat left S-module by [5, Theorem 1]. Note that $\operatorname{Hom}_R(U, F^{++}) \cong (F^+ \otimes_R U)^+ \cong \operatorname{Hom}_R(U, F)^{++}$, and hence F^{++} is T_U -flat by Proposition 2.1 again.

 $(5) \Rightarrow (3)$. Note that $U^{(I)}$ is T_U -flat by Corollary 2.2, then $(U^{(I)})^{++}$ is T_U -flat by condition (5). Since $(U^+)^{(I)}$ is a pure submodule of $(U^+)^I$, $((U^+)^{(I)})^+$ is a direct summand of $((U^+)^I)^+ \cong (U^{(I)})^{++}$. It follows that $(U^{++})^I \cong ((U^+)^{(I)})^+$ is T_U -flat by Corollary 2.2 again. Note that U^I is a pure submodule of $(U^{++})^I$ by [5, Lemma 1(2)], so U^I is T_U -flat by Lemma 2.7.

REMARK 2.9. Recall that a module $_RU$ is called a *generalized tilting module* [15] (now it is also called a *Wakamatsu tilting module* [3]) if it has the following properties: (T1) there exists an exact sequence

 $\cdots \rightarrow P_i \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow U \rightarrow 0$

with each P_i finitely generated and projective for $i \ge 0$;

(T2) $_{R}U$ is self-orthogonal, that is, $\operatorname{Ext}_{R}^{i}(U, U) = 0$ for $i \ge 1$;

(T3) there exists a $\operatorname{Hom}_{R}(-, U)$ exact sequence

$$0 \rightarrow {}_{R}R \rightarrow U_{0} \rightarrow U_{1} \rightarrow \cdots \rightarrow U_{i} \rightarrow \cdots$$

where each $U_i \in \text{add }_R U$ for $i \ge 0$.

Wakamatsu [15] proved that $_{R}U$ is a Wakamatsu tilting module with $S = \text{End}(_{R}U)$ if and only if U_{S} is a Wakamatsu tilting module with $R = \text{End}(U_{S})$. So, for a Wakamatsu tilting module $_{R}U$, both $_{R}U$ and U_{S} are finitely presented.

REMARK 2.10. Let $_{R}U = _{R}R$ in Theorem 2.8, one obtains some known equivalent conditions for a ring to be right coherent.

We conclude this paper with the following theorem.

THEOREM 2.11. Let _RU be a module with $S = \text{End}(_RU)$. The following are equivalent.

- (1) Every left R-module is T_U -flat.
- (2) Every finitely U-presented left R-module belongs to add $_{R}U$.
- (3) If $_{S}A$ is finitely presented, then HT(A) is a finitely generated projective left *S*-module.
- (4) *S* is right coherent with $wD(S) \le 2$ and U_S is FP-injective.

PROOF. The equivalence of (1) and (2) holds by definition.

 $(2) \Rightarrow (3)$. Let ${}_{S}A$ be finitely presented. Then T(A) is finitely *U*-presented, and so $T(A) \in \operatorname{add}_{R} U$ by condition (2). Thus, HT(A) is a finitely generated projective left *S*-module.

 $(3) \Rightarrow (2)$. Let *M* be a finitely *U*-presented left *R*-module, then there is an exact sequence $0 \to K \to U^n \to U^m \to M \to 0$ with *n*, *m* positive integers. Note that $H(U^n) \cong S^n$ and $H(U^m) \cong S^m$, then we obtain an exact sequence $0 \to H(K) \to S^n \to S^m$ of left *S*-modules. Thus, $D = \operatorname{Coker}(S^n \to S^m)$ is a finitely presented left *S*-module, and so HT(D) is a finitely generated projective left *S*-module by condition (3). It follows that $THT(D) \in \operatorname{add}_R U$. Since there is the commutative diagram with exact rows:

we have $M \cong T(D)$. Note that T(D) is a direct summand of THT(D) by [7, Equality 2.1, p. 13], so $M \in \text{add}_R U$.

 $(2) \Rightarrow (4)$. Since condition (2) is equivalent to condition (1) by the foregoing proof, every left *R*-module is T_U -flat. So *S* is right coherent by Theorem 2.8. Thus, U_S is *FP*-injective by Proposition 2.3. Let A_S be finitely presented, then there is an exact sequence $S^k \rightarrow S^l \rightarrow A \rightarrow 0$ of right *S*-modules with *k*, *l* positive integers. Now we

192

obtain an exact sequence $0 \to \text{Hom}_S(A, U) \to U^l \to U^k$ of left *R*-modules which induces a commutative diagram with exact rows:

where $K = \text{Ker}(S^k \to S^l)$, $D = \text{Coker}(U^l \to U^k)$ and *h* is the induced homomorphism. Thus, $K \cong \text{Hom}_R(D, U)$. Note that *D* is a finitely *U*-presented left *R*-module, then $D \in \text{add}_R U$ by condition (2). It follows that *K* is a finitely generated projective right *S*-module, and hence $pd(A_S) \le 2$. Therefore, wD(S) = $\sup\{pd(A_S) \mid A_S \text{ is finitely presented}\} \le 2$ by [14, Theorem 3.3].

(4) \Rightarrow (1). Let *M* be any left *R*-module and *E* the injective envelope of *M*, then there is an exact sequence $0 \rightarrow M \rightarrow E \rightarrow C \rightarrow 0$ which induces the following exact commutative diagram.

$$0 \longrightarrow H(M) \longrightarrow H(E) \longrightarrow H(C) \longrightarrow D \longrightarrow 0$$

Since $wD(S) \le 2$, there are exact sequences

$$0 \to \operatorname{Tor}_{2}^{S}(A, H(M)) \to \operatorname{Tor}_{2}^{S}(A, H(E)) \to \operatorname{Tor}_{2}^{S}(A, K) \to \operatorname{Tor}_{1}^{S}(A, H(M)) \to \operatorname{Tor}_{1}^{S}(A, H(E))^{(*)}$$

$$0 \to \operatorname{Tor}_{2}^{S}(A, K) \to \operatorname{Tor}_{2}^{S}(A, H(C))$$
(**)

for any right *S*-module *A*. Since *S* is right coherent and U_S is *FP*-injective, *E* is T_U -flat by Proposition 2.3. Hence, H(E) is flat by Proposition 2.1. Thus, $\operatorname{Tor}_2^S(A, H(M)) = 0$ and $\operatorname{Tor}_2^S(A, K) \cong \operatorname{Tor}_1^S(A, H(M))$ by the exactness of the sequence (*). Similarly, we have $\operatorname{Tor}_2^S(A, H(C)) = 0$. Thus, $\operatorname{Tor}_2^S(A, K) = 0$ by the exactness of the sequence (**), and hence $\operatorname{Tor}_1^S(A, H(M)) = 0$. It follows that H(M) is flat, and so *M* is T_U -flat by Proposition 2.1.

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules* (Springer, New York, 1974).
- [2] L. Angeleri-Hügel, 'Endocoherent modules', Pacific J. Math. 212(1) (2003), 1–11.
- [3] A. Beligiannis and I. Reiten, *Homological and Homotopical Aspects of Torsion Theories*, Memoirs of the American Mathematical Society, 188 (American Mathematical Society, Providence, RI, 2007).
- [4] S. U. Chase, 'Direct products of modules', Trans. Amer. Math. Soc. 97 (1960), 457–473.
- [5] T. J. Cheatham and D. R. Stone, 'Flat and projective character modules', *Proc. Amer. Math. Soc.* 81(2) (1981), 175–177.

- [6] R. R. Colby, 'Rings which have flat injective modules', J. Algebra 35 (1975), 239–252.
- [7] R. R. Colby and K. R. Fuller, *Equivalence and Duality for Module Categories (with Tilting and Cotilting for Rings)*, Cambridge Tracts in Mathematics, 161 (Cambridge University Press, Cambridge, 2004).
- [8] E. E. Enochs, 'Injective and flat covers, envelopes and resolvents', *Israel J. Math.* **39** (1981), 189–209.
- [9] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra* (Walter de Gruyter, Berlin, 2000).
- [10] R. Göbel and J. Trlifaj, *Approximations and Endomorphism Algebras of Modules* (Walter de Gruyter, Berlin, 2006).
- J. L. Gomez Pardo and J. M. Hernandez, 'Coherence of endomorphism rings', Arch. Math. (Basel) 48(1) (1987), 40–52.
- [12] S. Jain, 'Flat and FP-injectivity', Proc. Amer. Math. Soc. 41 (1973), 437–442.
- [13] J. J. Rotman, An Introduction to Homological Algebra (Academic Press, New York, 1979).
- [14] B. Stenström, 'Coherent rings and FP-injective modules', J. London Math. Soc. 2 (1970), 323–329.
- [15] T. Wakamatsu, 'Tilting modules and Auslander's Gorenstein property', J. Algebra 275 (2004), 3–39.
- [16] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, Philadelphia, PA, 1991).

HAI-YAN ZHU, Department of Mathematics, Zhejiang University of Technology, Zhejiang 310023, PR China e-mail: haiyzhu@gmail.com

NAN-QING DING, Department of Mathematics, Nanjing University, Nanjing 210093, PR China e-mail: nqding@nju.edu.cn