
THE DISTRIBUTION OF CERTAIN SPECIAL VALUES
OF THE CUBIC LEGENDRE SYMBOL

by S. J. PATTERSON

Dedicated to Professor Robert Rankin on the occasion of his 70m birthday

1. Introduction. Let <w be a primitive cube root of unity. We define the cubic
residue symbol (Legendre symbol) on Z[&>] as follows. Let 77eZ[w] be a prime,

(3, 77) = 1. For a e Z [w] such that (a, 77) = 1 we let I — I be that third root of unity so that
\77/3

— = a ( N ( " ' 1) /3 (mod 77).
77/3

One then extends ( —)3 to a function defined on all pairs a, (5 with (3a, |3) = 1 by requiring
that

Since Z[w] is a principal ideal domain this defines ( —)3 completely. Each a e Z [&>] such
that (a, 3) = 1 can be written in the form £,<x1 where f6= 1 and a1= 1 (mod 3). Note that
3 = -(V-3)2. This decomposition is unique; if a = 1 (mod 3) we shall say that a is primary.

The law of cubic reciprocity states that

\a/3

if a, /3 are primary.
Denote complex conjugation (the non-trivial element of the Galois group of Q(&>)/Q)

bya^d.
If 77 is a primary prime of Z [&>] one sees that

'3 V77/3

(by transport of structure) and

'3 \77/3

(by cubic reciprocity). It follows that

^77/3

Actually this argument does not make use of the fact that 77 is a prime; one has for all
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166 S. J. PATTERSON

primary a that

1U3~
if (a, d ) = l . It is an easy exercise to recover the law of cubic reciprocity from this
statement. , -^

One can rephrase this by saying that the value of I —I for (a, 3)=1, (a, a ) = l
\a/3

depends only on the residue class of a (mod 3), i.e. that it is a "congruence function".
If now i = V-T one can likewise define the biquadratic residue symbol ( - ) 4 on Z [i].

In this case the argument is rather more involved but it can be shown that for a = 1
(mod (1 + 03) one has

\a/4 \<x

where a = \(a + a) and (—) is the usual Legendre symbol. This is proved in [7, Proposition
2.2].

With these examples one is prompted to ask if this represents a general phenomenon.
Indeed one can show that if K/k is any quadratic extension with K totally imaginary, if
a >-*d represents the non-trivial element of the Galois group of K/k, if £ e K is a
primitive nth root of unity and if K(~)n denotes the nth order Legendre symbol on the
integers of K (for which see, for example, [1, pp. 81-93]) then the function

defined on a suitable domain is a congruence function if and only if ££=1. We shall not
give the rather involved precise formulation nor the proof here since this would distract us
from the main purpose of the introduction. However the reader can refer to Proposition
4.1 below which gives in a special case a formula from which the assertion follows.
Alternatively one can use the method of proof of [7, Proposition 2.2] and [1, A.23], [13]
to analyze this question.

Before we describe the nature of the results which can be obtained we do note that
although one can formulate many analogous questions when K/k is no longer quadratic
no progress has been made on any of these.

The objective of this paper is to use the theory of automorphic forms, in particular
the ideas of T. Kubota, to investigate this phenomenon more closely when n = 3, k = Q(<o)
and so K is of the form fc(VD). This is the simplest case in which

d

is not a congruence function. We have chosen it for simplicity of exposition in that much
of the necessary background material is already available in [10]. We do emphasize that
the method is by no means restricted to this case.
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To describe what can be proved consider the case when K = k(\fD), D primary (i.e.
D = l(3)) and D = 0 (mod 2). We form the order R^K of elements a + b-JD where a,
bel[w], a, b = 0, 1, 2 (mod 3). Let U<=R be the subgroup of R* of elements
a + b-JDeRx, fc = 0 (mod 3). Embed k in C by taking w = e2iTi/3.

Let q : R —* C be a function satisfying
(i) q(0) = 0, q(-a) = q(a),

(ii) q(a + by/D) depends only on a, b (mod 3), and
(Hi) I I q(a + bJ5) = 0.

a(3) b(3) •

We form the Dirichlet series

where

\ a /

The sum is taken over all a e R such that (a, a) = 1 (this can be understood either in R or
in the ring of integers of K), and taken modulo U multiplicatively. Likewise we define

where the sum is over the same set.

Let Ck be the Dedekind zeta-function of fc. Then form with * = 1 or q

y j s ) = (2T7)-6T(S - l/3)r(s - l/6)r(s)2r(s + l/6)r(s + l /3)^(s)^(6s -2) .

Then characteristic for what one can prove is the following:
THEOREM 1.1. The series giving i^1; ifo, are well-defined and converge in the half-plane

Re(s)> 1. They have analytic continuations as meromorphic functions of finite order to the
entire complex plane with at most a simple pole at s = 2/3 in the half-plane Re(s)a 1/2.

The functions ^ ( s ) satisfy the following functional equations

¥q(s)(l - 32~6s) = (26312 I D I ) 1 - 2 5 ^ - s)(l - 36s~4)
and

*i(s) = (2639 |J?l)1-2si*-1(l - s).

At this point it is useful to note that

1 lAai /3 K\0L2/3 KAO^'S K\OCI/3

This behaviour is very analogous to that of Gauss sums (cf. [10]). Then the t/>](s), ^q(s) are
analogues of the t|>p(s, /x, 1) of [10]; like the latter they have no Euler product.

We shall not prove Theorem 1.1 here; it is another application of the technique used
here to prove Theorem 4.3 and we merely hint at the proof. For our purposes we need a
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168 S. J. PATTERSON

rather more general family of Dirichlet series, namely those of Theorem 5.1, and it is then
very tedious to find the explicit functional equation.

Since it will be necessary to have reasonable bounds on the Dirichlet series generaliz-
ing (/>!, i/fq we have to replace the usual Phragmen-Lindelof-functional equation argument
by another. This is described in Section 3 and is the main technical question which we
have to answer here. It involves point-wise estimates for Eisenstein series and these have
to be as uniform as possible.

In Section 4 we show how the Dirichlet series can be extracted from Eisenstein series
following a method of Hecke. From this type of result and standard Tauberian arguments

one can estimate asymptotically sums of the form £ (—J x(a) (N= absolute norm,
the sum is taken modulo U). N ( ° ) £ X K 3 ,^

One of the objectives of this paper was to show that IT >-» I — I for TT prime is not
KW/3

given by a congruence function. Although we do not quite achieve this goal the final
result, Theorem 5.2, is essentially sufficient for it. The idea is that in order to prove the
assertion it suffices to show that

for some e > 0, where A is the von Mangoldt function and 6 a Dirichlet character. This
type of estimate can be derived from those for

N(«)sXK \a/3
-0(8)

by sieve methods such as that of Vaughan used in [4], [11]. Unfortunately to apply this we
would need that R had class-number 1, which does not happen.

In order to circumvent this difficulty one has to "invert" a finite number of primes so
that the computations are carried out in S -integers for a suitable set S which will form a
principal ideal domain. This involves no difficulty of principle but since it necessitates a
more thorough analysis of the non-archimedean local case it would increase the length of
this paper considerably. For this reason we are forced not to broach this question here but
this deficiency shall be rectified in a future publication.

2. Preliminaries. In this section we shall establish the basic concept and notations
needed later. Let Q(w), Z[w] be as in the introduction and let

Let a be an ideal of Z[«] and

F = {7 e r : 7 = /(mod 3)},

*)(moda)j.
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Let ( - ) be the cubic Legendre symbol in Z[w]. On F' we define K by

1 (if c = 0).

Kubota has shown that this is a homomorphism whose kernel is a non-congruence
subgroup. In particular the restriction of K to Fo(a) is non-trivial.

Let x be a Dirichlet character of Z[co] to the modulus a; then the attribution

defines a character on Fo(a) which we also denote by x-
The group SL2(C) acts on the upper half-space H3. The method by which we shall

represent this action is to regard H3 as the following subset of the Hamiltonian quatern-
ions HQ (with standard generators 1, i, j , k)

H3 = {x + yi+ uke HQ | v > 0}.

We embed C in HQ by V—1 H-» i. Then the action of SL2(C) on H3 is given by

\c d

Thus F also acts on H3. The boundary of H3 we take to be C U {<»}; on this SL2(C) acts by
the standard Mobius action.

Let Foo (resp. Fi) be the stabilizer of °° in F (resp. F').
The cusps of T'0(a) are the Fo(a) classes of {y(») | y e T} = Q(w) U {oo}. These are finite

in number and are in one-to-one correspondence with Fo(a)\r/roo. If p is a cusp we will
say that yeT represents p if p is the class of y in ro(a)\r/F00.

Let

and
S(A) = {w G H 3 I v(w)> A}.

This is preserved by F^.
We shall need:

PROPOSITION 2.1. (i) If yeT and

-yS(l)nS(l)=0
then y e F^.

(ii) For any A > 0 the number of right F^ classes in

{yeT\yS(A)nS(A)=0}
is finite.
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(iii) One has

vinr
(iv) Let for each cusp p of Fo(a) the element <rp e F represent p. Then

u
Proof. This is standard. In (iii) one has to observe that S(V3/2) contains the

fundamental domain of F described in [10].

Note that a Siegel domain for F is a fundamental domain for F^ on S(A).
Another standard fact which we shall need is

PROPOSITION 2.2. For any e > 0 one has

Proof. This follows from the formulae for the index (cf. [9, p'. IV-5]) and a standard
argument (cf. [3, Theorem 315]).

We shall from time to time regard H3 as C x R+ via

(x + yi+ uk) i-» (x + yi, v).

On H3 we can define an invariant measure. Let m be the standard Lebesgue measure on
C. Then on CxR* the invariant measure is

dm(z)dv
da{z,v) = 3 .

3. Eisenstein series. The Eisenstein series which we shall use here are

E(w,s,x,a)= X i<(y)x(y)v(y(w))s

-yer.\U(a)

where Re(s)>2, w eH 3 and x is a Dirichlet character to the modulus a. We shall assume
that (a, V-3) = 1 for simplicity.

As usual

z,s,x,a)dm(z),

has the form

if the integration is taken over a fundamental domain for the action of TL on C and m is
the usual Lebesgue measure. By a computation similar to that of [10, §5] one can verify
the following proposition.

https://doi.org/10.1017/S0017089500006169 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006169


THE CUBIC LEGENDRE SYMBOL 171

PROPOSITION 3.1. One has that <p(s, x, a) = 0 if x3 is not principal. If x3 is principal then

where £k is the Dedekind zeta function of Q(w) and c* is an integer in Z[w] with minimal
norm satisfying
a) c^ = 0 (mod 3a)

b) d >-» \~r)x(.d) is principal.

Next we need the basic analytic properties of the Eisenstein series. These we can
excerpt from [5, II.l, 1.2] and we shall merely quote what we need.

PROPOSITION 3.2. Let Lk(s,x) denote the Dedekind function over k associated with a
primitive Dirichlet character x- Then the function

s _* Lk(3s - 2, (X\)E(w, s, x, a),

where (x3)i is the primitive character extending x3> has an analytic continuation to a
meromorphic function in the entire plane. If x3 is principal it has a pole at s = 4/3; apart
from this there are no poles in Re(s)>2/3. As a function of w this function is real-analytic
at any s which is not a pole.

An immediate consequence of this is the possibility to expand E(w, s, x, a) in a
Fourier series about any cusp.

Let
uV(w)=u(w)s if u(w)<T,

= 0 if v(w)>T.
We define for T> 1

ET(w,s,x,a)= I a(y)x(y)vsj(yw)

and
El(w, s, x, a) = E(w, s, x, a) - £T(w, s, x, a)-

One has
El(w,s,x,a) = v(w)s for weS(T),

= 0 for weH3- U yS(T).

Now one has the following special case of the first Maass-Selberg relation:

PROPOSITION 3.3. If Re(s)> 1 then ET(-, s, x, a) is square-integrable on To(a)\U3. If x3

is not principal then

s + s-
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If x3 is principal then

\ET(w, s, x, a)\2 da(w) = V = <p(s, x, o) + r ^ - r cp(s, x, a)
s + s-1 s — ss — 1 s - s s - 1

if Im(s)^0 whereas if Im(s) = O, s^4/3 it is

J'

r(',(a)\H3

?c — 9 Vc — 1 ° („ _ 1\2 l-r v-' /v> - / 1 T v , A., *v-

This follows by standard arguments from Proposition 3.1; see [10, (3.10)]. From it
we derive the following estimate.

COROLLARY 3.4. For any e > 0 one has in Re(s)>l + e
a) if X3 is not principal then

b) if X3 is principal then

f |(s -4 /3)E T (w, s, X, a)

The implied constants depend only on e.

Proof. This is clear from Proposition 3.4 if x3 is not principal. If x3 is principal one
remarks that from Proposition 3.1 <p(s, x,a)(s—4/3) is bounded by

2 |4 (3s -3) ( S -4 /3 ) | .4 (3Re(s ) -2 )4(6Re( S ) -4 r 1 .

The usual Phragmen-Lindelof bound for £k(3s — 3) shows that it is O(Im(s)2~3e) in the
region in question if |Im(s)|> 1. From Cauchy's inequality one derives the same bound for
the derivative. If |Im(s)|<l both the function and its derivative are bounded. From these
remarks the quoted estimate follows.

It is worth remarking that these estimates can be sharpened but this is inessential for
us. Our objective is to convert this L2 estimate into a point-wise one. For this we need a
formula essentially going back to A. Selberg but first published by H. Neuenhoffer [8]. We
need the notion of the resolvent kernel.

Let
L(w, w') = (|z - zf+ (v + v'f)lvv'

where w = (z,v), w' = (z', v') are two points of H3. This is the standard point-pair
invariant in the sense of Selberg. Let rt be the function denned on [4, o°[ by

v I 2TT v — v 1

Then rt(L{w, w')) is the resolvent kernel for the Laplace operator on H3, [2, Ch I, §5]. Let
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us form
R(w,w';t)= I K(y)x(y)rt(L(yw,W'))

for Re(t) > 2.
One has now:

PROPOSITION 3.5. If Re(s)>l, Re(t)>2 we have

f R(w, w';t)ET(w',s,x,a)da(w')

1 1 Ts~'
ET(w, s, x, o) + - , ... ET(w, t, x, a)s(2-s)-t(2-t) — ' * ' - 2(t-l)(s-t)

1 T»+t-2

Proof. (Cf. [8, §5].) This is obtained by summing from the identity

| ^ rt(L(w, w'))«UW) dcr(w')

which is easily proved by carrying out the integrations. This argument is valid if Re(s)> 2;
the general case follows by analytic continuation.

Another approach is by way of Stokes' theorem.
We now need an estimate for R(w,w';t).

PROPOSITION 3.6. Suppose that K c ]2, oo[ is a compact set. Let p be a cusp of Fo(a) and
let o-peT represent it. Let A > 0 be given. Then one has for t with Ke(t)eK, weS(A)

| \R(apw,w';t)\2da(w')«v(w)2

for w e S(A). The implied constant depends on K, A but not on a or p.

Proof. One has that

R(wu w', t)R(w2, w', 0 dcr{w') = 2, K(y)x(y)r'i2\L(yw1, w2))

where
r|2)(L(w1, w2)) = j rt(L(Wl, w'))rT(L(w', w2)) da(w').

This can be given easily with the aid of the Hilbert resolvent equation. If t^ t then

r?\L) = (t- ty\2-t- ty\rt(L)- rT(L)).
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This we estimate by the mean value theorem and we see that with T = Re(f)

2 T - 2 2TTV-V1

Define pT by
2 v1- 1 logu

7 ^ - -
It follows that we can majorize the integral to be estimated by

£ pT{L(w,yw)) (weS(A)).
-,er

We split this into two parts, the sum over Fa, and that over F-Foo. The latter is

o{ I f f pT(w + z,y(w + z'))dm(z)-dm(z'))
since pr(wx, w2) varies by at most a constant multiple if Wj or vv2 runs over a hyperbolic
sphere of given centre and radius. Then this expression is easily simplified and estimated.
One obtains o(u(w)~2).

The sum over F^ is with t; = u(w)

|2+4u2

As v —» 0° the inner sum approximates the integral

a continuous function of T. Since we can assume that A » 1 the conclusion follows from
this.

We now come to theorem which is the objective of this section.

THEOREM 3.7. Suppose that e > 0 is given. Then if p is a cusp of Fo(a) and if crp

represents it one has for weS(V3/2), and s with 1 + e < R e ( s ) ^ 2 - e

E\w, s, x,a)«v(w)- \s\,

E{ap(w), s, x,a)«v{w)-\s\ (p^oo)

if x3 is not principal. If x3 is principal the same estimates hold if the left-hand sides are
s-4/3

multiplied by . The implied constants depend only on e.
s

Before proving this we remark that this is neither the most precise nor the most
complete result which can be obtained by these methods. The virtue of the formulation
given here is its simplicity; it suffices for our purposes.
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Proof. We use the formula of Proposition 3.5 in the form

ET(w,s,x,ci) = (s(2-s)-t(2-t))^R(W,W';t)ET(w',s,x,a)do-(w')

lTs-'(2-s-t) _, N i r ' - 2 ( s - l ) T/

~2 (t^T) ( w ' f ' ^ ' a ) ~ 2 — Q T A — E * O , 2 - f , *,a).

We take t = 2 + e + i. Im(s). To investigate the case when w e S(V3/2) we take T= 1. By
the Cauchy-Schwarz inequality the first term on the right-hand side is

O(\s\ • v(w))

with the natural modification if x3 is principal. Here we have used Corollary 3.4 and
Proposition 3.6. The second term is O(u2~Re(I)) and the third term is O(\s\ • v2~ReM). From
these results the first estimate follows. The estimate used here for ET(w, f, x, a) is

and the left-hand side is a standard, well-understood Eisenstein series.
Now we consider the case p^°°. The same method, with the same choice for t and T

yields
E(crp(w), s, X,a)« \s\. v{w) + v{w)2-ReM

where we have noted that El is zero on ap(S(\f3/2)) and have used the same type of
estimate as above for E1(apw, t, x»a),

^ I v?«'\y*p(w)).
•yer.\{r-aD-'r^i-p)

This is again a standard Eisenstein series and we obtain the quoted estimate as before.

4. A Hecke integral. We shall now use the results just proved to gain information
on the Dirichlet series in which we are interested.

Let D be square-free and a non-square and let A be an integer of Z[a>]. We form the
following order in Q(a))(VD)

a,b eZ[w], fr = 0(3A), a = 0,1,2(3)}.

Write KD for Q(w)(VD). Let a = (3A).
We begin with the following result.

PROPOSITION 4.1. Let I JeF^a) and let D be as above. Let D(-) be the cubic
\c a I

Legendre symbol in KD. Let a = c\f3+d. Let * denote the non-trivial automorphism of
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KDlk. Then one has aeR(AsfD) and

We d) I o\a J \NKD/k(a)/\d

if (a, 2)=1. Moreover suppose a'eR(Ay/D) is given, a' = c'\/D+d'. Then there exists

(
I lyf\

)eT0(a) if and only if there is no element yeZ[a>] so that a' is divisible by y in
c d I

If this last condition is satisfied we shall say that a ' has no factor in Z[a>].

Proof. The only part that needs proof is the formula for «(I II. The formula is
trivial if c = 0 so we may assume that c^O. Then c

\NKD/k(a)J \d

by the reciprocity law. By the "transfer property" this is

r\a/ \d J D\ a J \d I

- ( - ) " •

n \ a /

I—t—1 (
D\a / \iy^,kya)/ \d

as required.
Note that the requirement (2, a) = 1 was only required to justify the final step.

COROLLARY 4.2. If (d Cf W » then
\c d I

Proof. Here a = c^D+d is a unit. As aa* is a unit of Z[w] and as aa* = l(mod 3) we
have aa * = 1. Thus
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But d2- c2D = 1; so d2 = 1 (mod 9D) and hence

This proves the corollary.

Let x be a Dirichlet character of 2[w] to the modulus A; then x extends to
by

X(a + bJb) = x(a).

We form now the Dirichlet character <p of JR(A\/D) by

defined for a + bVDe R(AJD), ( a ,A)= l .
Let l/(A>/D) = .R(A>/D)x. We let uzU{A-JD) be u = cVD+d and let y =

(c T ) G r ° ( 0 ) - Let 8 = (c' d')S r°( a ) ' " = °'

8 7 \c" d"
where

From K(gy) = K(g)K(y) and (Corollary 4.2) K(Y) = 1 we have

We assume now that x is chosen so that (p \ U{AsFb) = 1. If s eC, Re(s)> 1 we define

(—) - <p(a). N(a)-S

where we suppose that 2 | A and a has no factor from Z[w]; the sum is modulo U{A\f5)
multiplicatively. This clearly converges and is well-defined. The objective of this section is
to prove the following theorem.

THEOREM 4.3. The function IPA^/D(S, <P) has an analytic continuation as a meromorphic
function of finite order to the entire complex plane. In the region R e ( s ) ^ it is entire if <p3 is
not principal and has at most a simple pole at s = 2/3 if cp3 is principal. Let e > 0 be given.
Then if Re(s) = or, 5 + e < c r < l + e one has if <p3 is not principal

and if cp3 is principal

«AAVD(S, cp)(s-2/3)« \

The implied constants depend only on e.
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REMARK. One can show that Lk(6s-2, X3)</'AVD(S, p) satisfies a functional equation
of the usual kind with gamma factor

(2TT)-6T(S - l/3)r(s - l/6)F(s)2r(s + l/6)r(s +1/3).

The form is rather complicated; the example which we have given, Theorem 1.1, may
be proved by using the technique described here supplemented by [10, (3.13), (5.19),
(5.20), (5.21), (5.24), Proposition 5.1].

Proof. This is based on an idea of Hecke's. Let

then
{HD(tk)\tsRx

+}

is the geodesic joining VD and —VD in H3. If u = c\/D+de U(A\fD) then

(U °H

e

Thus U(A\fD) acts on the geodesic by

(c C

Hence the function

is invariant under t >-> \u\2 t (u e [/(AN/]})). Let us regard U(A-JD) as acting on R+. Then

| E(HD{t.k),s,X,a)r1dt

is defined. We shall show that it is equal to

r(s) •'
when Re(s)>2.

To prove this we note that if I I e FA(a) then
\c dl

\c d)D (2^)m\a a*)

where, as before, a = cVD+d. Thus

https://doi.org/10.1017/S0017089500006169 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006169


THE CUBIC LEGENDRE SYMBOL 179

and as 2 I A

Hence using these expressions in the series definition of E(HD(tk), s,x, a ) and grouping
together the terms with au(ue C/(AVD)) we see that the original integral becomes

I f" (—).cp(a).(2|Drr/(|a|2t2+|a*|2))sr1dt
a Jo D\ a I

where the sum is over all a eR(A-/D) with no factors from 1 [a>] modulo U{Ay/D). Now

f (t/(|a|2 t2+\a*\2)Yr1 dt = k|aa*|"T(s/2)2/r(s)
Jo

and
\aa*\ = N(a)U2

so that the formula claimed above follows.
From this formula all the assertions concerning the analytic continuation and the

position of the poles of I/'AVDCS, <p) made in the theorem follow. We have therefore only to
prove the estimates.

We shall do this by estimating the integral

f E(HD(tk),s,x,a)r1dt

as
meas(l/(AVD)\R2). sup \E(HD(tk), s, x, a )|.

We note that

by Proposition 2.2. Also one has that up to a constant meas(t/(VD)\R+) is the regulator
of Ko. We can estimate this by

meas(t/(VD)\R?)« N(D)1/2+e

by the simple part of the Brauer-Siegel theorem [6, XVI, §1].
We turn now to the estimation of E(HD(tk), s, x,a). Let leR+ and find g so that

HD(tk)e g^Si-fSH). Then g(HD(tk)) lies on the geodesic joining g(VD) and g(->/D). Let
la b\ .

g = I I; then
\c a)

11/2
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Thus

and so, by Proposition 3.7,

\\E(HD(t. k), s, x, o)|« |D|1/2 | s | + \D\R^

with the natural interpretation if x3 is principal.
Thus we see that

f E(HD(t.k),s,X,a)r1dt

is bounded by

O(N(DjRe(s)/2. N(A2D)l+*)

on Re(s) = 1 + e. It follows that on the line Re(s) =

One has however on Re(s) = 1 + e/2

This one can estimate by noting that £KD(S) can be written in the form £k(s) • I-k(s, XD) for
a certain character XD from which one has

We can now apply Rademacher's form of the Phragmen-Lindelof theorem [12, §33] to

deduce that if - + ̂ <Re(s)< 1 + ̂ , o- = Re(s),

with the appropriate interpretation if cp3 is principal. This easily yields the assertion of the
theorem.

5. Final results. We have to sharpen the results of the last section, so that these
could be used in conjunction with sieve methods. We retain the notations of the last
section. Let 5 GR(A>/D)(S, A V D ) = 1 be without factors from X[o>]. Form

' .<P.S)= L \ — h(a).N(ar
a=0(modS) D \ Of /

where the conditions of the summation are the same as before. We need the following
generalization of Theorem 4.3.
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THEOREM 5.1. The function Î AVDCSJ <P) has an analytic continuation as a mewmorphic
function of finite order to the entire complex plane. In the region Re(s)>§ it is entire if <p3 is
not principal and has at most a simple pole at s = 2/3 if <p3 is principal. Let e >0 be given.
Then if Re(s) = <r, § + £ < c r < l + e one has if <p3 is not principal

and if <p3 is principal

Again the implied constants depend only on e.

Proof. This we prove by a modification of the previous argument, and we need only
explain the necessary changes.

Let S = rVD + s and choose ( JeFo(a). Instead of integrating over the geodesic

{HD(t.k) | teR*} (modulo units) we shall integrate over the geodesic

C
\r s/

again modulo units.
The group which we shall use is Fo(aA) where A = NKD/(C(S). The subgroup fixing the

geodesic is

since the 21-entry of the matrix here is crA. Thus p + o-JD&

Let now \ JeT^aA). Then
\c dl

(a b\/p q\ / * * \
\c d/\r sJ \cp + dr cq + ds)

and
(cp + dr)yfD+{cq + ds) = d{r4D+s) (mod A)

= dd (mod A).
Write now

la' b'\(a b\/p q\
\c' d'l \c d)\r si'

It follows that
c'VD+d' = 0 (modS).

Conversely if c'^D+d' <=R(AVD) without factors from Z[w], and S | c'VD+d' then

(c'VD+d').(-rVD+s) = O (mod A).
This becomes

c's = d'r (mod A).
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We can find a', b' so that P , _,,) ero(a) and it follows that (U, V P q) ero(aA).
\c d I \c d I \r s I

(a b\ (a' b'\ (p qN"1

*\c dMc' d'Mr s)

Moreover

D\a)\NKn/k(a))\d'J-
If x is to the modulus a then

€ J))-
Thus proceeding as before we see that

is equal to

Hence we can argue as before. In particular we again obtain the estimate

^AVD(S, <p, S)« |S|3/2 . N(A2D)1/2+e

on Re(s) = ̂ +e. On the other hand on Re(s)= 1 + e we have now

Hence we obtain for Re(s) = cr, | + e < a < l + e the estimates quoted.
From this we shall now deduce:

THEOREM 5.2. With the notations above and e,k>0 given, then, subject to X>
kN(82A2D) one has

8/9+eN(8)-7/9+eN(A2D)1/9+e— Ma)« X8/9+eN(S)"7/9+eN(A2D)
a "0(8)

where the summation is taken over a€R(AVD) without factors from Z[w] and modulo
U(A-/D). The implied constant depends only on e and k.

Proof. Let

()
a-0(8)

Then an = 0 unless n = 0 (mod N(8)) and an N ( s )«ne (with e as given). Moreover

I • n~s« CKD(S)
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as s j l . We can now apply [14, 3.12] to our situation. Without loss of generality we may
suppose that X e | + N, X>N(8). We obtain

1 fc+iT ds
= IT—. ^AV5(S, <P, 8)XS —

Z1™ Jc- iT S

+ O(((c - 1)-\XIN(8))C

for c > l , T>0 . The left-hand side is the expression we seek. We shall take c = 1 + e so
that the error term becomes

In particular, to obtain non-trivial results we have to have that T » l . This we shall
assume henceforth.

We replace the integral by one over the three segments c - iT to 5/6 - iT, 5/6 - iT to
5/6 + iT and 5/6 + iT to c + iT.

The first and last of these can be bounded by

o / T - i fc

\ J5/6

Since the integrand, as a function of a; is either increasing or decreasing it is bounded by
the sum of the values at the endpoints. Hence these are bounded by

The integral over the vertical line is bounded by

o(\ (1 + t)-1/2+3°dt. N(A2D)ll6+2eN(8)-2/3+2°X516)

= o(T1/2+3eN(A2D)1/6+2eN(8)-2l3+2eX5A.

Combining these we obtain

I a,N(81« T"1+

nsX/NCS)

+ T1 / 2 + 3 eN(A2D)1 / 6 + 2 eN(8)"2 / 3 + 2 EXs / 6.
We can now take

T = N(A2D)-1I9N(8)-2I9X119.

By assumption we have that T » l . This yields for the right-hand side

O(X8/9+eN(S)-7/9+2eN(A2D)1/9+2e).

The quoted result follows.
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