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Abstract. We study the dynamical properties of ergodic toral autmorphisms that
have some eigenvalues of modulus one. For such automorphisms, all sufficiently
fine smooth partitions generate measurably, but never topologically, and are never
weak Bernoulli. The points of period k become uniformly distributed exponentially
fast, and Lipschitz functions mix exponentially fast. Every reasonably smooth
compact null set has the property that there is a dense set of periodic points whose
entire orbit misses the set, but this is false for general compact null sets. Katznelson's
property of almost weak Bernoulli can be strengthened to a certain exponential
rate of independence, but breaks down at a critical number. Finally, open sets have
return times that decay exponentially fast.

1. Introduction
Hyperbolic toral automorphisms have inspired many developments in topological
dynamics and ergodic theory. The important technique of Markov partitions origi-
nated in an analysis of automorphisms of the two-dimensional torus [1]. They also
supplied the original motivation for introducing Anosov (and later Axiom A)
difTeomorphisms, and gave the first example of a structurally stable dififeomorphism
with a dense set of periodic points [17].

Less work has been done on those ergodic toral automorphisms that have
eigenvalues of modulus one. Call such automorphisms quasihyperbolic. In 1971
Katznelson showed that ergodic toral automorphisms are measure isomorphic to
Bernoulli shifts [8]. Hyperbolic automorphisms have Markov partitions, which help
greatly in studying their dynamical properties. However, quasihyperbolic
automorphisms lack Bowen's specification property [9], so never have Markov
partitions. Enough hyperbolicity remains for Marcus [11] to prove that measures
on periodic orbits arc weakly dense in the space of invariant probability measures,
answering a question in [9].

It is then natural to inquire about which properties of hyperbolic systems are
shared by quasihyperbolic automorphisms, and also whether there are new
Phenomena. Some things go through (like Bernoullicity), while others do not (like
Markov partitions and specification). This paper is devoted to studying this question.
The basic tools arc harmonic analysis, a lemma of Katznelson on Diophantine
approximation, the crgodic theorem, and in certain places a deep result of Gelfond
°n the approximation of logarithms of algebraic integers by rationals.
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50 D.A. Lind

After a review of the geometry of quasihyperbolic automorphisms in § 2, we
show in §3 that all sufficiently fine partitions measure theoretically generate.
However, even smooth fine partitions cannot topologically generate (§ 4). This is
proved by showing that for a fixed smooth partition there is a dense set of periodic
points whose orbit misses the boundary of the partition. A possible strengthening
is shown to be false by constructing a compact null set containing at least one point
from each periodic orbit. The proof of the above fact about periodic points shows
that they become uniformly distributed exponentially fast, and shows that Bowen's
result on the periodic point measures converging to the measure of maximal entropy
[2] remains true here. The same technique also shows (§ 7) that Lipschitz functions
mix exponentially fast.

Bowen [4] proved that smooth partitions for hyperbolic systems always obey an
asymptotic independence property called weak Bernoulli. Surprisingly, fine
measurable partitions for quasihyperbolic automorphisms are never weak Bernoulli
(§ 5), although they must obey a weaker condition called very weak Bernoulli. A
corollary of this, using a result of del Junco and Rahe [5], is that conditional entropy
for fine partitions must converge quite slowly. In his proof that toral automorphisms
are Bernoulli, Katznelson introduced the notion of almost weak Bernoulli between
weak and very weak Bernoulli. We give in § 6 a quantitative reason why he was
forced to do this, and show that almost weak Bernoulli breaks down at a critical
number that may yield an interesting invariant of toral automorphisms.

Many of the standard examples of systems known to be measure isomorphic to
Bernoulli shifts are also 'almost topologically* or 'finitarily' Bernoulli as well. For
example, Keane and Smorodinsky have shown there is measurable isomorphism
between a hyperbolic toral automorphism and a Bernoulli shift that is a homeo-
morphism of! an invariant null set. A natural question is whether quasihyperbolic
automorphisms are finitarily Bernoulli. In this connection, Smorodinsky has
observed that a finitarily Bernoulli transformation necessarily has exponentially
decaying return probabilities on each open set. In § 8 we check that quasihyperbolic
automorphisms have this necessary condition, lending support to the conjecture
that they are finitarily Bernoulli.

Finally, some questions and conjectures are gathered in § 9.
The author thanks the Mathematics Department at Stanford University for their

generous hospitality during a visit in which part of this work was done.

2. Geometry of quasihyperbolic automorphisms
We begin with a description of the essential geometric features of toral
automorphisms.

Let 5 be an crgodic automorphism of T" = Un/Zn. Thus S e GL («, 2) is given by
an n x/z matrix with integer entries and determinant ±1. Considering 5 as a linear
transformation of Rn, there is an 5-invariant decomposition

where £ ' corresponds to those eigenvalues less than 1 in modulus, Ee to those of
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modulus 1, and Eu to the rest. Ergodicity of S is equivalent to no eigenvalue being
a root of unity.

It will be convenient to equip U" with a norm adapted to 5. Let A generically
denote an eigenvalue of S. Choose numbers p and £ such that

We construct norms s, || ||M on E\ Eu such that

, (*eEJ),

« (xeEu).
begin with an arbitrary norm || ||' on Eu. First adapt

(2.1)

(2.2)

f for STo obtain || ||M,
as follows. Put

/-o

It is easily checked that since |A|<£, this series converges, defines a norm on E",
and has

Now adapt || \\'u to S~l by putting

x\\u = I pk||5-fcJc||'M.
Jc-0

Since p <min {|A|: |A|> 1}, the series again converges, defines a norm, and has

\\S'lx\\u^p-l\\x\\u.
The property M ^ I M I , ' , persists to || ||H. This gives (2.2). Replace 5 by 5"1 to
obtain (2.1).

Call A's with |A| = 1 unitary eigenvalues. Since they are complex, the real Jordan
form for S on Ec is a block matrix

diag [J(RU "i), • • •,

where the Jordan block
* , /

(2.3)

n, copies of a 2x2 rotation matrix /?,, and 2 x 2 identity matrices / as the only
other non-zero entries.

Thus Ec decomposes into a direct sum Ex © • • • ©£„ of 5-invariant subspaces, with

Ef = En@"*@Hi.n anc* dim Ei/= 2.

Norm Eu with || ||f/ so the rotation R( is an isometry. If TT,/ is projection to Ef/ along
th complementary subspacc, then Rt - TT.̂ TTI/, and so

for.v€E//.
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Let tra:U
n-*E\ iru:U

n-*Eu be projections along complementary subspaces.
Define || || on Un by

|M| = max {HTT^IU \\irux\\u, \Wtjx\\,,}.

With respect to this norm, \\J(Rh rt,)||^2, so ||S||<smax (£ 2)s
Letp:Un->T" be the quotient map. For x .yeT" put

d (x, y) = min {||f -y| | : px = x, py = y}.

Then d is a translation invariant metric on T". If

= {xeRn:\\x\\<80}, and B(80) = {xeTn: d(0tx)<80},
then p:B(8o)-*B(8o) is an isometry. Also note that if ||w||<S0 and pw = w, then

Since the intersection of each subspace E\ Eih E
u with Z" is {0}, it is not dangerous

to identify each with its image under p in Tn. In particular, we think of B(80) as
lying in T". Generally, || || will be applied to points thought of as being in Rn,
while d is applied to elements of T".

To localize the action of S, we formulate a notion of fineness for partitions. Put
<f) = <50/10£, where So and $ are as above. Let

oc = \/\ i, • . • , Arj

be a partition of Trt into measurable sets. Call a fine (or S-fine) if

max {diam Af} < <f>.

3. Generators
A partition a generates under S if the completed <r-algebra generated by the
5ya (/ € Z) coincides with the whole o--algebra of! a null set.

THEOREM 1. Let S be an ergodic automorphism of Jn. Then every S-fine measurable
partition generates under S.

Proof. We use the fact that a generates iff it separates points, i.e. there is a null
set JV<=T" such that for distinct points x, y eT"W there is an integer k with Skx
and Sky in different atoms of a (see [14]).

If S is hyperbolic this is easy. Suppose

y = x + ws + wu with ws e E \ wu e Eu, \\ws\\ <4>, \\wu\\ <<f>.

Replacing S by S~l if necessary, we can assume wu ^ 0. Choose k maximal so that

Since |iS/wM||2:p/||H'J where p > 1, k is finite. Now

||5fe"SvMN||5||||5kwM||^2^<i50 and
so

by definition of k. Thus Sk*lx and Sk+ly are in different atoms of a.
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For hyperbolic S there is no need to remove a null set to separate points. In
fact, a fine partition a generates topologically in the sense that for every choice
of ih

—00

contains at most one point. On the other hand, for quasihyperbolic S it is at least
necessary to remove a dense set of lower dimensional disks to separate points
(see § 4).

Suppose now that Ec ^ 0. Call S central spin if each Jordan block in (2.3) is
two-dimensional. For such automorphisms there are no off-diagonal / ' s , and they
are isometries on Ec. If S has off-diagonal / ' s in some Jordan block for Ec, call it
central skew. There is a different argument for each type.

If y = x + tv, + wc + wu with either w, ^ 0 or wu ^ 0, the argument above for the
hyperbolic case applies unchanged. Thus we may suppose y =x + w where w eEc

First suppose S is central spin. Since

it suffices to assume w eEi for some i. We then remove a null set for each Eit and
will have point separation on the rest of Tn.

Simplify notation by letting Et-Et and let F be its invariant complement. The
matrix of S on E is

cos 0 sin 0_ / cos 0 sin 0\
\-sin 0 cos 6/

with respect to an orthonormal basis {eu ^2}- Let H = F © Re2, L = Ueu and irL be
projection to L (identified with R) along H.

Fix A e a. Choose A <= Un with diam A < <f>, so that p: A -> A is an isometry. Let
/x denote Haar measure on Rn or T", the distinction being clear from context,
normalized so that n(A) = /x(pA). If

then n(A(t)) is 0 for large negative t and is yx(A) for large positive t. Thus

is finite. Since /iCA\A(fo)) = 0> a harmless modification of A by a null set allows
us to assume A = A(t0).

Let Am=A\A{t0-l/m), and put Am=pAm. Then /i(Am)>0. If xzAm and
weE with |M|<<£ and TTLW > 1/m, then

TTL(x + w)>(t0-l/m) + l/m =r0,

so x + w & A. Applying p shows that if x e Am and w is as above, then x + w & A. This
is the property we will use to separate points.

Define U0: T-* T by C/e(«A) = «A + 0. Since 0 is irrational by ergodicity of 5, Ue is
crgodic with respect to Haar measure v on T. The product of a mixing and an
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ergodic transformation is ergodic, so S x Ug on (T" x T, /x x v) is ergodic. Let

/ = (-&, A) <=T, K = (-H).
Since (/x x i>)(Aw x / ) > 0 , the ergodic theorem applied to S x U0 shows that

(ti Xj/){(x, ^JeT" xT: (£**, tA + fc0)eAm x / for some k} = 1.

By Fubini's theorem, there is a null set Nm <=• T" such that for x e Jn\Nm we have.
i>{tt/eT: (Skx,il/ + k6)eAmxI for some k}= 1.

A set of full measure in T is dense, so for every x<£Nm and every if/eJ there is
a k such that

Let JV = U * - i Nm, so n(N) = 0. We show that if y =x + w with x^N, 0 ^ »v e £ ,
and ||»v||<(^, then JC and y are separated by a under S. It helps to think of Skx as
a sun moving about T" and Sky =Skx +Skw as a planet revolving around JC.

Choose m so that ||iv||s6 >2/m. Write w=bR^e\. Since x£N, there is a k so
that SkxeAm and iJ/+keeK. Now

a vector in E of norm b <$. Also, since vL on E is orthogonal projection to L,

irL.(Skw) — TTi.(bR^+ke e\) ~ b cos 27r(i{/ + kO)

>b cos2n/6>[—)(-)=—.
\mJ\2j m

Thus SkxeAm<=A, while by the above Sky£A. This completes the central spin
argument.

Now suppose 5 is central skew. The proof is not as delicate because of a
polynomial drift in the non-diagonal Jordon blocks.

Recall the ^-invariant decomposition of Ec into

where each Et = En©•••©£<„, on which S has matrix (2.3). The central spin
argument does not apply directly here since the En are not 5"-invariant.

Let y = x + w with 0 ̂  w e Ec and \\w\\ <<f>. Put

on which S acts isometrically. If weEOt the previous argument does apply to
separate x and y not in N.

Next we claim that if weEc\E0, then ||5kiv||-»oo as k-*oo. For such a w, there
are / and / > 2 such that u-yw ̂  0. Fix such an /, and choose / maximal so that

¥ 0 Th¥=• 0. Then

so

as fc-»oo. If y = A : + |V with weEe\E0, since ||5kw||-*oo the argument from the
hyperboliccaseappliestoshowthatxandyareseparatcd,completingtheproof. D
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4. Periodic points
Call a partition of T" smooth if its atoms all have a piecewise smooth boundary.
Suppose a is a smooth fine partition for a quasihyperbolic S. Although a is a
measure theoretic generator (§ 3), we show here that a never topologically gener-
ates. In fact, there will always exist a dense collection of lower dimensional disks
such that each pair of points in each disk is not separated by a under 5. This is
proved by showing that if da denotes the union of the boundaries of the atoms of
a, then a dense set of periodic points have orbits that miss da. Indeed, in a precise
sense, exponentially most periodic points have this property. The proof uses a
Diophantine approximation lemma of Katznelson employed in the original proof
of the Bernoullicity of toral automorphisms. A strong form of this property requires
a deep result of Gelfond on the approximation of logarithms of algebraic numbers.
As a byproduct, we obtain that the periodic point measures converge to Haar
measure exponentially fast on Lipschitz functions.

Let Pk ={f eT": Skt = t}, and fxk be the probability measure equidistributed on
Pjc. The cardinality \Pk\ of Pk grows exponentially fast. For it is easily shown that

If It — h (S) = £ {log |A |: |A I > 1} denotes the topological entropy of 5, then for those
k for which Ak is not too close to 1, |Pfc| grows like ehk. The existence of the limit

lim

is equivalent to the validity of Gelfond's theorem that for unitary A, |Ak — l|>e~efc

only finitely often for each e > 0 [6]. This has been noticed independently by Peter
Walters about three years ago in answer to a question by Brian Marcus. We discuss
this in more detail later.

Even for relatively small periods, Pk is exceedingly numerous. For

-Gi)
the points of period 20 number 228 826 125, and those with strict period 20 only
about 0.006% fewer (use Mobius inversion as in (4.2) of [17]).

Since Pk is a finite subgroup of T", namely the kernel of Sk-I, duality shows
that the Fourier transform /2k is the indicator function of (Sk -I)Zn. The key result
is that, except for 0, the support {Sk -I)Zn of /2k misses a ball whose radius grows
exponentially in k. This will show that ixk mixes uniformly for trigonometric
polynomials whose degree is exponential in k.

We continue to use the norm on Un introduced in § 2, and use B{r) for the ball
of radius r.

For several of the following results, there is a weak form involving a subset or
subsequences of fc's. These weak forms are proved using only Katznelson's lemma,
and are sufficient to obtain corollaries 4.2 and 4.3, our main objectives. However,
by invoking Gelfond's result, we show that the results are actually true for all large
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enough k. We feel it is important to keep clear what can be proved by relatively
elementary means.

LEMMA 4.1. Tfiere is an r>\ such that

(Sk-I)ZnnB(rk) = {0)

for all sufficiently large k (weak form: infinitely many k).

Proof. Suppose z eZ" and \\(Sk -I)z\\<rk. Then

z=zs+zc+zueEs®Ec®Eu,

and

(Hi) ||(Sfc-J)zM||<A
The basic idea is that if r is close enough to 1, these conditions will force z to

be very close to E'®EC, which is ruled out by Katznelson's lemma.
First note that (i) implies

so for large k

\\z,\\<rk(l-p-krl<2rk.

Also, (iii) shows that

rk>\\Skzu-zu\\*(pk-l)\\zu\\,
so for large k

\\zu\\<rk(pk-irl<2(r/p)k.
Finally, (ii) implies

l|zc||=\\(sk -ry\sk -/)zc||<||(sfc - / r
so it becomes necessary to estimate the norm of (Sk-I)~l on Ec. By §2, this is
bounded by the maximum over i of

\\(J(Rhn()
k-ir%

To estimate these, assume R is an isometry and J(R, m) acts on Ei©
Then J(R, m)k has (/,/)th entry 0 if / </, and

\i-jJ
for / 2=/.

Thus the norm of each entry of/(/?, m)k is bounded by km. The cofactor expansion
of (/(/?, m)k -7 )" 1 shows that its norm is bounded by

\\(Rk-I)-T(m\km2).

Since m </i, we conclude there is a constant C such that

m
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Since A ¥=• 1, there is an infinite subset of fc's such that | A k - l | > ] ^ holds for each
unitary A. Thus, given e >0, for all large enough k in this subset (the weak form)

| | r e | | £ C i * " V < C 2 / V \ (4.1)
To obtain (4.1) for all large k, we appeal to a result of Gelfond [6]. The reason

for this added difficulty is that, although A =e2iti6 is algebraic,

0= —logA

is transcendental, and so elementary methods to estimate the fractional part of kd
fail. Gelfond's work deals in part with rational approximations to logarithms of
algebraic numbers. One consequence is that for unitary A, given e >0 there is a
constant C(A, e) such that for all k

|Ak- l |>C(A,£)e- e k . (4.2)

Recent work of Feldman (see [19: Ch. 9]) shows that there are effectively
computable numbers N = N(A) and C = C(A) such that

\kk-l\>Ck~N

for all k. Since this refined estimate gives no better information in our case than
(4.2), we will not use it further.

Clearly, assuming (4.2) and given e >0, we obtain (4.1) for all sufficiently large
k (the strong form).

Let E = E* ®EC. Katznelson's lemma [8] shows there is a constant C$ such that

for 0*z eZ". Since dist (z,E) = \\zu\\, we obtain from ||z|i<C2rVfc that

2(r/p)k>\\zu\\>C3\\z\r>CA(reTnk.

Thus

This is incompatible for large k if pe~' > 1 and r is close enough to 1. Thus choose
e > 0 so that e' <p to complete the proof. In fact, every r with \<r<pl/{n+1) will
work. D

COROLLARY 4.1. Tlie periodic point measures /i* converge weakly to /x {weak form:
along a subsequence).

Proof, /it converges pointwise to /x. •

Remark. This shows the result of Bowen [2] extends to quasihyperbolic
automorphisms.

We now turn to a smooth partition a. Its boundary da is a compact set such
that if B(da, e) denotes da +B{e), then

Call a measurable set K c Tn Lipschitz ii(jL(B(K> e)) = O(e). Such sets are null and
are contained in compact null Lipschitz sets.
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THEOREM 2. Let Kbe a Lipschitz set in Tn. Define Qk to be those points in Pk whose
orbit hits K. Tlien |Qfc|/|Pk|-*0 exponentially fast {weak form: on a subsequence of
fc's).

Before proving this, we deduce some consequences. Since Pk becomes uniformly
distributed (corollary 4.1), the following is immediate.

COROLLARY 4.2. / / S is an ergodic automorphism and K is Lipschitz, then there is
a dense set of periodic points whose orbits miss K.

Since the weak form of corollary 4.1 and of theorem 2 both depend on that of
lemma 4.1, they are both valid for the same subset of fc's, and so even the weak
forms prove corollary 4.2. Even in the hyperbolic case it would be nice to have a
more geometric proof of this corollary.
COROLLARY 4.3. If S is a quasihyperbolic automorphism and a is a smooth fine
partition, then there is a dense set {D(} of two-dimensional disks in Tn such that each
pair of distinct points in each disk is not separated by a under S.

Proof. Since 3a is Lipschitz, by corollary 4.2 there is a dense set {fj of periodic
points whose orbits miss 3a. For each tt there is an d > 0 such that if D{ is the e( disk
around tt in the En isometric eigenspace, then SfDt is completely contained in one
atom of a for each /. •

Proof of theorem 2. We may suppose that K is compact Lipschitz. The idea is to
dominate the indicator function of an exponentially small neighbourhood of K by
trigonometric polynomials whose degree does not grow too fast in k, integrate
against fik, and apply lemma 4.1 to show

\PknK\/\Pk\-*b

exponentially fast. Then trivially \Qk\^k\Pk nK\, yielding the result.
Let i«:m(/) = (2m+l)"12-me27r i / f be the Fejer kernel. A simple estimate (see

[7:1 (3.10)]) shows there is a constant d > 0 such that

Km{t)dt>l-Cl/m8.r1-8

Define the «-dimensional kernel Fm on Tn by

Fm(tu • • •, tn) = Km{ti)''' Km(tn).

Then Fm has support supp Fm = { - / » , . . . , m}n-Hmt say, and there is a constant
C2>0 such that

Fmdfi>l-C2/mS. (4.3)

Choose s with \<s<Jr, where r is as in lemma 4.1, and let m =[s2k]. For k
large enough (weak form: for infinitely many k), Hm c f l ( / ) , Let gk be the indicator
function of B{K, s~k). For / eK,

https://doi.org/10.1017/S0143385700009573 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009573


Dynamical properties of quasihyperbolic toral automorphisms 59

so from (4.3) we obtain for large k that

Fm * gfc >(1 -C2/ms-k)X K > (1 -C2s~k)xK >IXK-

Hence

^ ^ \ ^ (4.4)

Now supp (Fm * gS^Hm <^B(rk), while supp /xfc r\B(rk) - {0}. Thus the integral on
the right side of (4.4) has value

Fm(0)gk(0)M0) =

so

Since Qk =\J^i {SjKr\Pk) = \J^o Sl{KnPk), |nk|<Jt|Pkn/<:|. Thus

^<2kti(B(K,s'k))t (4.5)

which converges to 0 exponentially fast for Lipschitz K. D

We remark that the theorem is true for compact null K for which

However, some restriction on K more stringent than compact null is necessary, as
the following observation shows.

PROPOSITION. Let S be a homeomorphism of a compact metric space (AT, d) preserving
a non-atomic Borel probability measure it whose support is K. Assume S is ergodic
on (AT, /a). Tlien there is a compact null set that contains at least one point from each
periodic orbit of S.

Proof. Pick jco 6 X and let V) = B (x0,1 / /) . Since supp /x = X, p. (V}) > 0. Ergodicity
of S shows that

is null, and it is clearly compact. Let

Since V^{x0}, K is compact, and clearly null. Suppose x is periodic under S with orbit

P = {x,Sx,...,Smx}.

Since xQeK, we may assume xo£P. Hence there is a largest / such that P n Vs * 0 .
Then Skx e Vt for some k, while maximality of/ means that S'x& Vj+l for every /, so

finishing the proof. Q
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Let LipY (0 < y < 1) denote the space of functions / : T" -> R such that

\f(x)-f(y)\^Cd(x,yy

for some constant C.

THEOREM 3. / / /eLip 7 , then $fdfik converges to Ifdfi exponentially fast.

Proof. Using the same notation as in the proof of theorem 2, it is standard that if,,
/eLip7, then

l|Fm*/-/IU<On-v

for a constant C = C(f) (see [7: p. 21]). Put m = [sk] for fixed s <r, where r comes
from lemma 4.1. Then

supp Fm n supp /Xk = {0} for large k

by lemma 4.1, and so

Thus

| J J | | | | | | l | 7 < C l 5 - 1 ' k . D

5. The failure of weak Bernoulli
Bowen [4] showed that smooth partitions are weak Bernoulli for hyperbolic systems,
in particular for hyperbolic toral automorphisms. This means the following.

Two finite measurable partitions a and p are e-independent if

Z \ti(AnB)-n(A)n(B)\<e. (5.1)
Aea.Bep

Let S be a measure-preserving transformation. For typographical convenience let
a[r, t] denote the common refinement of

A partition a is weak Bernoulli for S if for every e > 0 there is a K0{e) such that
for every M>K>K0 and every 7V>0, the partitions a[-N, 0] and a[K,M] are
^-independent. The importance of this notion is that it is a sufficient condition for
5" to be measurably isomorphic to a Bernoulli shift on the tr-algebra generated by
a under S [12]. In particular, one can show that S is Bernoulli by finding a weak
Bernoulli generator. This is the way that Friedman and Ornstein first proved that
mixing finite-state Markov chains are Bernoulli.

It turns out that every partition in a Bernoulli shift obeys a weaker asymptotic
independence property called very weak Bernoulli (see [12]). Smorodinsky [18]
constructed an example of a partition in a Bernoulli shift that is not weak Bernoulli.
Shields [16] found a more natural example using a skew product of the 2-shift with
rotations of the circle. We show here that fine partitions are never weak Bernoulli
for quasihyperbolic automorphisms (cf. Bowen's result above).

The geometrical idea is roughly the same as in Shields [16]. Past fibres are pieces
of unstable manifold, while future fibres are pieces of stable manifold. Because of
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the extra central direction, stable and unstable manifolds intersect almost nowhere,
and cannot be e-independent. The approximate version of this with thickened
fibres, established via the martingale theorem, suffices for the proof.

THEOREM 4. Let S be a quasihyperbolic automorphism. Then no fine measurable
partition is weak Bernoulli for S.

Proof. It is convenient to pass to a limit on one side and use the measurable partition
machinery of Rohlin [14]. Recall that a partition £ of a Lebesgue space (AT, /x) into
fibres C is measurable if the quotient X/£ is also a Lebesgue space. Rohlin shows
that a.e. C carries a Lebesgue space measure fie, and XIC carries the natural
quotient measure /zf. These are related via a Fubini theorem as follows. I
is measurable, then C-*(ic(MnC) is ^measurable, and

We now reformulate the weak Bernoulli criterion by allowing an infinite past.
To say that a[-N, 0] is e-independent of a[K,M] means that

I I \HC(D)-(JL(D)\H(C)<E, (5.2)
Ceat-N.O) Dea[KM]

where fic(D) = /x(CnD)/^t(C) if/x (C) > 0 and 0 otherwise. The first sum is really
an integral over the atomic Lebesgue space X/a[-N, 0] assigning measure /x(C)
to the fibre C Put a~ = a[-oo, 0] and a + = a[0, oo]. Letting N-*oo and applying
the martingale theorem to (5.2) (see [16] for details), we get that weak Bernoulli
is equivalent to: for every e >0 there is a K0(e) such that for every M>K>K0

we have

1, I \tic(D)-fi(D)\dfjLa-(C)<e. (5.3)
Dea[K,St]

What do past fibres Cea~ look like? Suppose x and y are in the same atom of
S~*a for —oo < / < 0. The argument in the proof of theorem 1 shows that x and y
can only differ in the Eu direction. Thus C is a translate of a piece of Eu with
diameter <<f>. Similarly, each D 6 a + is a translate of a piece of Es with diameter <<f>.

We need a finite approximation of the last statement. The proof of theorem 1
shows that given 5 > 0 , there is an L0(S) such that for L>L0, a collection Q) of
atoms D in a[0,L] has j t ( U ® ) > l - 5 and each D e ^ is contained in a translate
of

B =B\4>)®Bc{S)®Bu{p-u<!>).

Note the thinness of B in the Ec direction.
Lebesgue measure /A on Rn splits into /xt X/ic x^ u on E$®EC@EU. Lift B to B

in R". Suppose Cea~ has CnS~KD^0y where De2) is contained in pt+B.
Then
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Now

where A is a constant independent of K and 5. For fixed K, by choosing S small
enough we get this less than •&.

For De® let D* = \J{Cea~: CnS~KD = 0 } . Hence for C c D * we have
lic(S~KD) = Q. Letting M-K + L, a typical atom D' in a[/if,M] has the form
S~KD, Dea[0,L\ The above shows that

lt(D*)> I-n(S-KB+Bu&

for D 6 © if L > Lo(S). Hence

L-.s

DeQ) J D * / O ~

>To(l~5) — 25 — To>2.

Thus for every K there is an Af = K+L such that a[/C,Af] is not 2-independent
of a ~, completing the proof. •

COROLLARY 5.1. / / S K a quasihyperbolic automorphism and a is a fine partition, then

I |/i(a|a[l,/:])-/i(5,a)| = oo.
k - l

Proof. Del Junco and Rahe [5] have shown that if conditional entropy /t(a|a[l, it])
converges to h(S,a) fast enough to make the discrepancy summable, then a is
weak Bernoulli for S. Q

6. Vie limits of almost weak Bernoulli
In his proof that ergodic toral automorphisms arc Bernoulli, Katznclson introduced
the notion of an almost weak Bernoulli partition, a property lying between weak
and very weak Bernoulli. The previous section explains why he was forced to a
property weaker than weak Bernoulli. Below is a quantitative analysis of how far
almost weak Bernoulli can be pushed.

A partition a is almost weak Bernoulli for 5 if for every e > 0 there is a Ko{e)
such that for every K >K0 and N>0 we have that a [-AT, 0] is e-independent of
a[K>K ]. Let dcp(a~,a[K,M]) denote the quantity in (5.3). As before, letting
N-* oo shows that an equivalent formulation is
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This property easily implies very weak Bernoulli. Katznelson showed that smooth
partitions are almost weak Bernoulli, so they generate Bernoulli shifts. A careful
look at his proof shows that it actually yields more. There is an r > 1 such that

dep(a~ta[K,rK])~*0 astf->oo,

so the amount of future allowed can grow exponentially in the gap size. However,
for central skew automorphisms, this fails for all large enough r.

THEOREM 5. Suppose S is central skew. Tlien there are numbers \<r\<r2 such that
if a is a smooth fine partition, then

lim dep(a~,a(X,rK']) = 0 ( l < r < n ) , (6.1)
K—oo

liminfdep(a~,a[*:,rK])>5 (r2<r). (6.2)

Proof. To prove (6.1), note that if K2 is replaced by rK in the proof of theorem 1
of [8], the inequality (19) there becomes

\\vda)\\>C2p
Kr-n{n+l+l)K,

where ||tft(a)||-*0 as K-*oo. This still leads to an inconsistency if

l<r<ri=pUn(n+l+l\

This argument applies to all ergodic automorphisms.
For simplicity, we prove (6.2) for the lowest dimensional central skew automorph-

ism. The same idea works for all of them.
Let So be the companion matrix of

and S =/(S'o, 2), a central skew automorphism of T8 (see [9]). Here Ec = En®E\2,
and S\EC has matrix J(R, 2), where R is an isometry. The idea is that the shearing
of S in Ec cuts down the measure of intersections at a predictable rate (unlike the
ergodic theorem used in § 5), giving an explicit bound for the L0(S) in § 5.

As above, each Cta~ is a translate of a piece of E" of diameter <<p. The
argument in [9] shows that each D e a[0, L] is contained in a translate of

B'(<f>)®B\x(4>)®Bc
l2(2<t>/L)®Bu(<f>p-L).

Note that the size of B\2(2<f)/L) decreases like IT2.
For D e«[0, rK] put D* = U { C e a " : CnS~KD = <Z>). As before,

where A depends only on S. The same estimate as in the proof of theorem 4 shows
that if r>£, then

dcp(a~,a[AVK])>2

for large enough K. Thus we can let r2 = & •
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For the automorphism of T described above, this shows that for every smooth
fine a,

lim dep (a~, a[K, (1.013)*]) = 0,
K-oo

while
lim inf dep (a", a[K, (4.612)K])>J.

Since e-independence can only be improved by lumping atoms, there is a critical
number r(S,a) such that (6.1) holds if r<r(S,a) while it fails if r>r(S,a). US is"
central skew, then r(S, or) is uniformly bounded by f2 for smooth fine a, while if S
is hyperbolic then r(S, a) = oo by weak Bernoullicity. It is unknown to us whether
r(S, a)<oo if S is central spin. We conjecture that r(S, a) has the same value for
all smooth fine a. The common number r(S) would perhaps be an interesting
invariant for quasihyperbolic automorphsims. What is its value?

7. Exponential mixing
Anosov difleomorphisms preserving a smooth measure mix Lipschitz functions
exponentially fast. On the combinatorial level, this is described in Bowen [3: 1.26],
This carries over to quasihyperbolic automorphisms.

LEMMA 7.1. Let K r < p 1 / ( n + 1 ) , and let

Hk ={/€Z: |/| <rk}n.

Tfien for sufficiently large k we have Hk n S~kHk = {0}.

Proof. There is a constant b > 0 such that

[-rk,rk]nczB(brk).

By Katznelson's lemma, there is a constant C>0 such that if 0^z 6Zrt, then

dist(z,£c©£u)>C||z|rn.
Suppose zeHk with Skz eHk. Then ||Skz||<6r\ ||7r5z||<fcr\ Hence

dist(5fcz,Ece^M)>C||5fcz|rn>C6-nr-'lk

while

d\st(SkztE
c®Eu)

Comparison shows

which fails for large k. D

Recall the definition of Lip7 from §4. We abbreviate \fd^i to /x(/).

THEOREM 6. Forf, g e Lip7, fi(f • Skg) converges to /t(/)/x(g) exponentially fast.

Proof. Use Fejer approximations as in the proof of Theorem 2. There are
trigonometric polynomials fk and gk with frequencies in Hk such that
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Now
H(f • Skg) = /*[(/-/*) • 5fcg]+/x[/fc • Sk(g -

The first two terms are O(r~yk), while the third is eventually

since
supp A n supp (SkgS <= Hfc n S~kJ7fc = {0}. D

Remarks. (1) For/, geC^OT), lemma 7.1 plus standard approximations show
that /x(/ • Skg) converges to /x(/)/x(g) faster than any exponential.

(2) Using lacunary absolutely convergent Fourier series, it is easy to construct
continuous / and g for which /x(/ • Skg) converges more slowly than a preassigned
rate.

8. Exponential decay of return probabilities
A mapping between two measure spaces that also carry topologies is called finitary
if it is continuous after removing appropriate invariant null sets from each space.
Smorodinsky observed that if a transformation T of (Y, v) is a finitary image of a
Bernoulli shift, then T must necessarily have the following property. Let V <= Y
contain an open set (up to a null set), and for y e V define

The property is that every such V has exponentially decaying return probabilities,

exponentially fast. Smorodinsky next constructed a mixing countable state Markov
chain without this property for a particular choice of V, thereby giving a mixing
Markov chain of finite entropy that is measurably but not finitarily isomorphic to
a Bernoulli shift. Constrast this with the Keafie-Smorodinsky theorem that all finite
state Markov chains are finitarily isomorphic to Bernoulli shifts. Recently, Dan
Rudolph has applied his criterion for finitarily Bernoulli [15] to show that a mixing
countable state Markov chain is finitarily Bernoulli if and only if it has exponentially
decaying return probabilities.

No one knows whether quasihyperbolic automorphisms are finitarily Bernoulli.
One thing to check is the character of return probabilities. We show that these
satisfy Smorodinsky's necessary condition, lending further support to the conjecture
that ergodic group automorphisms are finitarily Bernoulli.

THEOREM 7. An ergodic toral automorphism has exponentially decaying return
probabilities on open sets.

Proof. Let V c T " contain (up to a null set) a cube whose complement we denote
by U. Since

x

it suffices to prove that ^(D^QS'ID-^O exponentially fast. Using either the
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Stone-Weierstrass theorem or Fejer approximation, it is easy to find a trigonometric
polynomial g such that g^xu and Igdfx =17<1. We interrupt the proof for a
needed lemma.

Definition. A sequence {F/}!?̂  of subsets of an abelian group is independent if
whenever zu eFh and zh + 2/, + • • • + zlr = 0 with the /< distinct, then each zu - 0.

LEMMA 8.1. Let S be an aperiodic automorphism of Z", and suppose F c Z " is finite?
TJien there is a positive integer m such that {SmlF: j e Z} is independent.

Proof. We can assume OeF, and that F is symmetric. It is then enough to find m
such that if Zjl0 S

mlz, = 0 with zy € F, then each z} = 0. Let TTS : R
n -> E s alongEc ®EU.

Since
(£c0EM)nZn={O},

there are 5, A > 0 such that if 0 * z € F, then 5 < U^z || < A. Pick m so that p "m < 5/2 A,
where p is the same as from § 2.

Suppose l } l 0 5 ^ = 0 with z0 # 0. Then

5<lk2o| | = | z S^irJ* I p-m/A<2p"mA,

contradicting the choice of m. D

We remark that Peters [13] has a more quantitative version of this kind of
independence under powers of S, but for specific types of F.

Proof of theorem 7 (continued). Let F = supp g, a finite subset of Zn. Choose m as
in lemma 8.1. Since

{5m/F:/eZ}

is independent, the Smlg are uncorrelated random variables. Thus if q~[k/m],
then

) ^ ( n ) f n
/-0 / \f-0 / J 1-0

i - 0

Remark. Lemma 8.1 and theorem 7 are valid for ergodic automorphisms of general
compact metrizable abelian groups. The proof would take us too far afield, and so
is deferred to another paper.

9. Questions and conjectures
Here are some questions, and more or less likely answers, that cropped up during
this work.

(1) Is r(St a) of § 6 the same for all smooth fine a? If so, what is its value?
Conjecture: Yes, with r(S, a) = h{S).

(2) Are there geometric proofs for the geometric statements proved here by
harmonic analysis? In particular, it would be nice to have geometric proofs of
theorem 2, corollary 4.2, and theorem 6.
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(3) Livsic showed that a Lipschitz function g on a basic set for an Axiom A
diffeomorphism is cohomologous to 0 (i.e. / = g ° 5 - g for some Lipschitz g) iff the
sum of the values of / over every periodic orbit is 0. Is the same true for
quasihyperbolic automorphisms?

(4) Marcus [11] proved that for quasihyperbolic S the periodic orbit measures
are weakly dense in the set of all invariant probability measures. However, are
'most' periodic orbits nearly uniformly distributed in some sense? If v is an
S-invariant measure, is there a relationship between the asymptotic number of
periodic orbit measures in P* 'close' to v and hv{S)1

(5) The proposition in § 4 shows there is a compact null K containing at least
one point from each periodic orbit. Is there such a K containing exactly one point
from each periodic orbit? Can such a K be countable?

(6) In theorem 6, we conjecture that if /, g e Lip1, then

and that h{S) is best possible.
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