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Abstract 

A general formalism for describing the radiation transfer in a medium 

with arbitrary velocity fields is presented. It is demonstrated that 

classical microturbulence and mesoturbulent models based on Markov pro­

cesses can be considered as the two lowest order members within a 

hierarchy of model equations with an increasing degree of approximation 

to reality. Some preliminary results concerning the relevance of low 

order model equations are presented. 

1. Introduction 

In interpreting line profiles originating from stellar atmospheres with 

internal motions, one encounters the problem that the observed flux 

within a spectral line is composed of contributions from regions with 

quite different velocities. In order to obtain the line profile which 

actually is observed, an averaging process has to be applied with respect 

to the ensemble of flow situations which occur along all lines of sight 

which contribute to the measured flux. 

If the velocity distribution v(x,t) within the atmosphere is known, the 

calculation of the radiation intensity exhibits no special problem (ex­

cept for numerical difficulties) and the required average is simply cal­

culated as an integral of the emergent intensity over all directions of 

interest. In this case, there is no need for a statistical treatment of 

the line transfer problem. 

If, however, the flow is turbulent and thus can only be described in 

terms of its statistical properties or if the information on the state 

of motion of the matter is incomplete, it is not possible to assign in 

an unambiguous way to each line of sight a velocity profile v(r) along 

this ray. On the other hand, a definitive knowledge of this function 

v(r) is a pre-requisite for solving the ordinary equation of radiative 

transfer in a moving medium. In this case, one has to take recourse to 

statistical methods. 
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Even if the statistical properties of the flow are completely known (for 

instance, if the complete hierarchy of probability densities defined in 

chapter 2 is known), it is not possible to specify uniquely the quanti­

ty v(r) for each line of sight. However, for a large ensemble of equi­

valent rays it is possible to determine for each possible distribution 

of velocities along a ray the probability, that this specific v(r) is 

realized. Since, for a given v(r), one is able to solve the radiative 

transfer problem, one obtains a certain intensity distribution I(r) 

along the ray. The probability of realization of this distribution I(r) 

equals the probability of realization of the specific v(r), on which 

this solution I(r) is based. Thus it is natural to describe the radi­

ation field in terms of probability densities and to reformulate the 

radiative transfer equation in terms of these quantities. A general 

theory of this kind has been developped for the case of LTE and negli-

gable scattering (see chapter 3 and 4). 

If no or incomplete information about the velocity field is available, 

it is nevertheless useful to apply statistical methods. The best proce­

dure in this case would be (i) to isolate the basic parameters of the 

velocity field which are relevant for the line transfer problem and 

(ii) to substitute the equations of the original problem by model equa­

tions, which depend on the relevant parameters only. 

One method to proceed in this direction is, to derive a hierarchy of 

statistical model equations, which incorporate an increasing degree of 

information on the structure of the velocity field. By a study of the 

properties of the members of such a hierarchy it will be possible to 

find out the relevant parameters and the adequate model equations. The 

classical microturbulence model and the Markov-process models of 

Auvergne et al.(1973) and Gail et al.(1974) can be considered as the 

zeroth order and the first order models within such a hierarchy (see 

chapter 5). Model equations of higher order have not been derived up to 

now. Thus, it is not possible at present to decide, whether first order 

model equations already are sufficient to treat the line transfer problem 

or not. 

A second method is to start with a statistical theory, valid for general 

velocity fields, and to derive from this the model equations. Some pre­

liminary results in this direction are presented in chapter 6. 

2. Description of the velocity field 

The ensemble of different flow situations, which one encounters along 

https://doi.org/10.1017/S0252921100075370 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075370


185 

different rays in a stellar atmosphere is most conveniently described 

by the hierarchy of n-point probability densities 

Fn(x1.v1;i2.v2;...;5n,vn) = Pfl ( 1 n) . (2-1) 

P is the probability of finding at x. the velocity v- and at x_ the 

velocity v_ ... and at x the velocity v . The following properties of 

the P are self evident: n 

P (1,...,n) > 0 , ( 2 , 2 ) 

n — 

/d3viPn(1,...,i-1,i,i+1,...,n) = Pn_1(1,...,i-1,i+1,...,n) , (2.3) 

/d3v1P1(1) = 1 . (2.4) 

Since only the component of the velocity parallel to the ray under con­

sideration enters into the radiative transfer problem, we define a new 

probability density by 

VX1'V1irX2'V2ll;---;VVnll;k) 

d V U - - - j d V„l Pn ( 1 n) (2-5) 

which gives the corresponding probabilities for the || component of the 

velocity. For anisotropic P (x-,v.. ; . . .) they depend explicitly on the 

direction k of the ray. The x. (i=1 , ... ,n) are the coordinates of the 

points to which P refers along the ray. We assume these points to form 

an ordered sequence with x. < x_ < ... < x , since in the application 

to the radiative transfer problem the P occur only in this special 

form. In the following we simply write v. instead of v... and omit the k 

from our notation. 

Since every hydrodynamic flow has the property of being continuous for 

distances between the points x., x. - smaller than a certain length, 

the probability densities P have to satisfy the condition: 

lim P (1,...,i,i+1,i+2,...,n) = P . (1 , . . . ,i ,i+2 ,. . . ,n) • <5 (v. .-v.) 
n n-i l-1 I 

Xi+l"*xi (2.6) 

since, if x. . equals x. then v. - necessarely equals v. due to the con-
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tinuity of the flow. Especially, it follows 

n 
lim IPn(1,...,n) =P 1(1)TTMv._ 1-v ) . (2.7) 

x HOC. i = 2 

n 1 

A wide class of flows has the property, that there exists a finite 

correlation length 1 such that the velocities v. * and v. become statis­

tically independent, if the distance between x. . and x. becomes large 

compared to 1. If the flow has this special property, then the IP 's 

have to satisfy the condition 

Pn(1,...,i,i+1 ,...,n) = I>l(1,...,i) Pn_i(i+1,...,n) if x 1-xi>>1 . 

(2.8) 

This condition is valid for instance for turbulent flows. It is not 

valid for instance for harmonic waves. 

The concept of a description of the velocity field by means of the 

hierarchy of the P 's is flexible enough to allow a unified description 

of such different cases like (for instance) a purely deterministic ve­

locity field v(x): 

P (1,...,n) = 6(v1-v(x1))-6(v -v(x_)) ••• 6(v -v(x )) (2.9) 
n i i z z n n 

or a pure noise 

P (1,...,n) = P (x ,v ) ••• p (x ,v ) . (2.1o) 
n i l l I n n 

3. Description of the Radiation Field 

In analogy to the description of the velocity field by means of the P 's 

we describe the joint process (I,v) by means of the hierarchy of n-point 

probability densities (Gail et al, 1979, henceforth called paper I): 

Pn(x1 ,V1 /Iv'x2'v2'I2; • • • 'Xn'vn'In;k'v) = pn<
1/•••#n) . (3.1) 

P is the probability of finding at x.. the velocity v- and the intensi­

ty of radiation I. and at x_ the velocity v_ and the intensity I- ... 

and at x the velocity v and the intensity I . From the physical pro-n J n J n 
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perties of radiative transfer it follows, that we are interested only 

in probability densities, where the x. (i=1,...,n) form an ordered se­

quence along the ray under consideration (with direction k). 

The probability densities P have to satisfy conditions analogue to 

(2.2), (2.3) and (2.4). In paper I it is shown, that the general P can 

be written as 

n-1 n-1 
Pn(1,...,n) =P1(1)Tf P2(i|i+1) F (1,...,n)/(P1 (DfT P2(i|i+D) . 

i=2 i=2 
(3.2) 

Here we have introduced the conditional probabilities 

•P2(1|2) = P2(1,2)/Pl(1)
 (3-3) 

P2(1|2) = P2(1,2)/P1(1) . (3-4) 

Hence , the complete information on the radiation field is already con­

tained in P_. 

The conditional probability P_ (1|2) has a simple interpretation. The 

analogue of (2.3) may be written as 

dlJdv1P1 (1)P2(1 |2) = P1 (2)
 (3-5) 

and from this we infer, that P_ (112) is the kernel function of an evo­

lution operator, which solves the transfer problem for P.. 

In order to construct P_(11 2) we approximate K(X,V(X)), S(X,V(X)) and 

v(x) by step-functions. Then we consider one arbitrary realization of the 

velocity field between x. and x_ with fixed velocities v- at x. and v_ at 

x2> If the final intensity at x. is just equal to I_, the initial inten­

sity I. at x. is given by 

n n 1 
I = I . e x p Q K Ax ) - I K S e i p Q K Ax )Ax = 1 ( 3 ' 6 ) 

1 z i=i 1 * 1=1 L L 1=1 x 1 x 

with K = < (x ,v(x.j)), S.=S(x. ,v(x.) ) and Ax. beeing the length's of the 

intervals of the step-functions. This is simply a discretized version 

of the solution of the ordinary equation of radiative transfer. Then 

P-O 12) is given by 
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P2 (1 I 2) = \d\ • * -fdVan-1 (l>n+1 *1 ,M1 "n"1 '̂  ̂  <1)} e X !4 = 1
Ki A xi) * 

6(l r^) . (3'7) 

The delta function assures, that only those realizations of the velocity 

field contribute, which have the correct final intensity I„ for fixed 

I-. The factor P ,/lP. is the probability of realization of the consi-
1 n+1 1 

dered step-function approximation of the velocity field. The exponential 

function takes care of the contraction of the interval dl. to dl_ in 

going from x- to x . Finally, we integrate over all possible velocities 

at the division points of the interval x-,x„ . More details with re­

spect to the derivation of Eq. (3.7) can be found in paper I. 

4. The Mean Intensity and the Conditional Intensity 

In many cases, interest is concentrated on the mean intensity <I>. This 

quantity can be calculated from P.. as follows: 

<I> = /dv /dl'I-P (4.1) 

The direct calculation of <I> or P.. may become quite tedious. However, 

for the quantity 

/dl-I-P (4.2) 

one derives from (3.5) and (3.6) an equation, which can often be solved 

much easier than the equation for <I> or P.. The mean intensity <I> is 

obtained from Q by a simple integration. 

In order to derive the equation for Q, one multiplies (3.7) with I2 and 

integrates with respect to I2 with the result 

Q(2) = jdv1jdv0i...jdvan_i(Pn+1(1,a1 an_1,2)^P1(1))exp(-E=i<.Ax.). 

n 1 
{Q(D +1 K.Snexp(j; K.AX.)P,(1)AX.} . (4.3) 

1=1 L l i=1 ^ 1 n L 

Since one easily shows (of paper I): 
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X2 X2 X 
2 y 
dsnTT <(v) , (4.4) 

v=1 

n °» r2 r2 
lim exp{+£ K.AX.} = 1 + £ (-1)u ds ds . . . 

~i=1 1 1 u=1 ' ' 
X1 S1 sn-1 

one arrives at the final equation 

Q(2) = |dVlQ(1)E(1,2) + |dsa|dvaP1 (a)K(a)S(a)E(a,2) (4.5) 

X1 

with 

x2 x2 

Ed,2) =P,(1|2) + I (-1)n |ds„ ...jds„ ]dv„ ...|dv 

s 
n=1 ' a1 > an 1 a1 J an 

a -n-1 

?n+2
(1'ai V2)/P1(1))E / ( V 

u=1 

(4.6) 

Eqs. (4.5) and (4.6) are the basic equations, which serve to calculate 

the mean intensity for arbitrary velocity fields, described by their 

n-point probability densities. 

5. Stochastic Models 

Different stochastic models have been used to treat the line transfer 

problem in presence of velocity fields. These models are discussed in 

some detail in the preceding contribution of Traving. Thus we limit our­

selves at this place to show, how they fit into our general formalism. 

a) The classical microturbulence-macroturbulence approach 

Pure microturbulence is described by n-point probability densities of 

the type (2.1o). Pure macroturbulence on the other hand is described by 

IP 's of the type (2.6). The superposition of both yields n-point proba­

bility densities of the type 

P ((v , . . . , v ) = fdw13Pr|,ac(w1)TTl>rIliC(vi-w ) . (5.1) 
> i=1 

Then, a simple calculation shows that the mean value <I> is just 
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<I> 

x2 

d w ^ ^ w ^ ^ e x p f - d s Vic(w1») + 

x2 x 

ds exp(-

x 

mic 
x-

ds'Kmic(w1))S(s')Kmic(w1)] (5-2) 

'1 

where 

<mic(w1) = jdv p
mic(v)K(v-w1) (5.3) 

and we have used the obvious initial condition 

Q(1) = IQP1(1) . ((5.4) 

Eq. (5.2) is just the classical microturbulence-macroturbulence result, 

as was to be expected. 

b) Markov-processes 

Markov-processes can be defined by the property 

JPn(1,...,n)/Pn_1(1,...,n-1) = P2(n-1|n) . ( 5 , 5 ) 

Then the general P can be expressed by P_(i-1|i) as follows: 

P (1,...,n) = P1 (1)TTP2(i-1|i) . (5,6) 

i=2 

The conditional probability P 2 (i-1 |i) is due to condition (2.3) subject 

to the restriction to be a solution of 

dv2 P2(1|2)P2(2|3) =P2(1|3) . (5.7) 

Examples of P_ are given in the contribution of Traving. For other ex­

amples see for instance Brissaud and Frisch (1974). 

While pure microturbulence can be interpreted as a stochastic process 

without memory on the velocities encountered at x. if we go from x. to 

x. ...» the Markov-process is a stochastic process with "short" memory. 

The velocities encountered at x. - are not independent of the velocity, 

which we have found at x.» but are completely uncorrelated with all pre-
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vious velocities at x. with j<i. 

In the case of Markov-processes, a simple equation for Q can be derived. 

By multiplying Eq.(4.6) with K(0) P_(O|1) and integrating with respect to 

v and x , one derives the following integral equation for E (see paper 

I) : 

X2 

ds1|dv1K(1)P2(l|2)E(0,1) =-E(0,2) +P2(0|2) . (5'8) 

k1 

Then, by multiplying (4.5) by K (a) P_(a|2) and integrating with respect 
to v , x one derives by using (5.8) : a a 

X2 +~ 

Q(2) dvoP2(0|2)Q(0) - dx1 dv1K(1)P2d|2){Q(1)-P1 (1)S(1)} .
 (5,9> 

x -°° o 

Differentiating this with respect to x_, we obtain 

^ 2 ^ ' = [dv [lira J L p (0|1)]Q(0) - <(0){Q(0)-P1 (0)S(0)} (5.1o) 
o > x ^ x o 1 

which is equivalent with equation (25) of the preceding contribution of 

Traving. For a discussion of the special model of Auvergne et al (1973) 

and Gail et al (1974) see that contribution. 

c) Higher order models 

The microturbulence model and the Markov-process model may be considered 

as the two lowest order members of a hierarchy of model equations in the 

following sense: 

(i) The microturbulence model assumes, that the general P can be fac-
n 

torized into a product of one-point probability densities P.. (v.). 

(ii) The Markov-process model assumes, that the general P can be fac-

torized into a product of two-point conditional probability densities 

P2(i|i+1) (cf Eq. (5.6)). 

(iii) The next step would be to assume, that the general P can be fac-

torized into a product of three-point conditional probability densities 

P, (i,i+1|i+2) and to derive a model equation based on this special form 
of the P . n 
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In this way, one would obtain a hierarchy of model equations which allow 

to incorporate an increasing degree of information on the structure of 

the velocity field into the theory. However, higher order models have 

not been studied up to now. 

6. Some comments on the relevance of low-order model equations 

In this chapter, we consider velocity fields with finite correlation 

length. The starting point are Eqs. (4.5) and (4.6) . From these one de­

rives 

X2 

<I(x2)> = S(x2) - J d t ' < E ( x 2 , t ' ) > d ^ V ) + ( K x 1 ) - S ( x 1 ) ) < E ( x 2 , x 1 ) > 

x1 
(6.1) 

with 
X2 
. CO 

<E(x ,x )> = exp{- d t ' K 2 ( t ' ) } ( 1 + I ( -1 ) n e (x 2 ,x )) , (6.2) 
' n=1 

where 

X2 1 n_ 1+™ +oo 

e n ( x 2 , x 1 ) = j d t J d t 2 . . . j d t n J d v 1 . . . j d v n P n ( 1 n>X K(U) . ( 6 ' 3 ) 

V V V —03 — CO ^ 
X1 X1 X1 

Here we have assumed, that the absorption coefficient consists of two 

parts 

K = K ^ V ) + K2 , (6-4) 

one of which, K 2, is independent of the velocity. The actual choice of 

K- and K_ will be specified later. 

a) The case x2-x. << 1 

At this place we choose 

1 line ' 2 continuum 

We introduce the new integration variable s. = (t.-x.)/l. By assumption 

we have 

e = (x -x )/l << 1 . (6.6) 
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It is natural, to expand the integrand in (6.3) into a Taylor series 

with respect to the small quantities s.,.,,,s . Then all s-integrations 

are easily done and one obtains to first order in the small quantity e 

e = 1 Idv,...Idv n I 1 J n 
n n SIP 

V 1 , J T 2
a ( v r V + n r r l = 1 3 i 7 

S - 1 n 

(n+1-i) 
o 

ds.... fT K(V) . ,(6.7) 

0 i V=1 

The dominating contribution corresponds to pure macroturbulence, as was 

to be expected. The first order correction depends only on P,, since due 

to (2.6) and assuming P to be uniform continuous at the origin, we have 

3P 
n 

3s. 
l 

3P 
= lim lim lim -r—— 

° s i + r ° v s
i + i s i - r s i S i 

3P3(0,i,i+1) 1̂ 1 n^ 
= iim — Tj 6(v v , T T (vv_rv ) . (6.8) 
s.+1-»-0 I u=2 K v=i+2 

Since preliminary results indicate, that 1 is of the order of the skale 

height of the atmosphere (see the subsequent contribution of Sedlmayr), 

the present case applies to strong lines. Thus, in strong lines no in­

formation on the structure of the velocity field is contained, which 

extends beyond the three-point probability density ]P,. 

b) The case x_-x1 >> 1 

At this place we choose 

K . =/dv,P, (1) <n . (1) l(- Qv 
mic 11 line (6.9) 

K. = Kn . - K . , K„ = K ^ . + K . . (6.1o) 
1 line mic 2 continuum mic 

The integration in (6.3) is extentended over a n-dimensional simplex. 

Within this volume, the quantity 

« . (D •"< (n)> = dv,...fdv P (1 ,. ..,n)K. (1) •••K. (n) (6.11) 
i i J i J n n i 1 

is different from zero only in regions of the integration volume, where 

all points s. form clusters of at least two points with mutual distances 

between the members of a cluster of at most ^1 correlation length 1. If 

https://doi.org/10.1017/S0252921100075370 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075370


194 

at least one point is isolated, then due to (2.8) there will occur a 

factor <K..> in (6.11) which is zero according to the definition of <1 . 

By analyzing the various possible clusters, one can show that, provided 

the condition 

max K (v)»1 << 1 (6.12) 

Vv 

is satisfied (cf Brissaud and Frisch, 1974, and Frisch,1968), the domi­

nating contribution is provided by two cases: (i) only clusters of two 

points occur and (ii) besides one or at most 2 clusters of three points 

only clusters of pairs occur. Since max(K.(v)) is of the order of the 

line absorption coefficient in the centre of the line, this case corres­

ponds to weak lines, since 1 itself is probably of the order of the 

scale height. Thus, weak lines, just as strong lines, do not contain 

any significant information on the structure of the velocity field ex­

tending beyond F3. 

These results suggest, that model equations for the radiative transfer 

problem in moving media based on P. or ff>, are sufficient, at least for 

strong and weak lines. 

Acknowledgement 

This work has been performed as part of the program of the Sonderfor-
schungsbereich 132 "Theoretische und praktische Stellarastronomie" which 
is sponsored by the Deutsche Forschungsgemeinschaft. 

https://doi.org/10.1017/S0252921100075370 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075370



