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Abstract. In this note we use the Hopf map to construct a family of metrics in
the 3-sphere parametrized on the space of positive smooth functions in the 2-sphere.
All these metrics make the Hopf map a Riemannian submersion. Also, the fibres are
all geodesics if and only if the metric comes from a constant function and so, we
have a Berger 3-sphere. Every geodesic in a 3-dimensional Riemannian manifold is a
minimum for each elastic energy functional. Therefore, we characterize those func-
tions on the 2-sphere that locally give metrics which have all the fibres being elastica,
i.e., critical points of those functionals. Some applications are given including one to
the Willmore-Chen variational problem.

1991 Mathematics Subject Classification. 53C15, 53C40.

1. Introduction. The Willmore-Chen functional [5] is defined on the space of
inmersions, IðN;PÞ, of an n-dimensional compact smooth manifold N into a semi-
Riemannian manifold ðP; �ggÞ by

Wð’Þ ¼

Z
N

ð �ggðH;HÞ � �eÞ
n=2dv;

where H and �e denote the mean curvature vector field and the extrinsic scalar cur-
vature function of ’, respectively, and dv is the volume element of ’�ð �ggÞ on N.

Since the group of conformal transformations of ðP; �ggÞ preserves this functional
[4], it is also called the conformal total tension functional, an it states a variational
problem in ðP; ½ �gg�Þ, where [ �gg] is the conformal structure defined by �gg. The critical
points of W are known as Willmore-Chen submanifolds. Certainly, this is the natural
extension to highest dimensions of the Willmore functional which corresponds with
n=2, and now its critical points are the Willmore surfaces [10].

The reduction of symmetry method gives a strong relationship between this
variational problem and another one associated with a certain elastic energy func-
tional. For example, let P be a principal fibre G-bundle (G being an r-dimensional
compact Lie group) endowed with a principal flat connection over a semi-Rie-
mannian manifold ðM; gÞ. If �gg is a metric on P obtained by the Kaluza-Klein
mechanism, then the principle of symmetric criticality [9] can be used to produce
symmetric solutions to the Willmore-Chen variational problem in ðP; ½ �gg�Þ. These
solutions are associated with the critical points of the elastic energy functional

F rð�Þ ¼

Z
�

�rþ1ds;
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defined on the space of closed curves � in ðM; gÞ, where � denotes the corresponding
curvature function [2]. We call r-elasticae to the critical points of F r, and again
observe that this notion naturally extends the classical one of free elastic curves,
which is obtained for r=1 [7]. Every closed geodesic in ðM; gÞ is automatically an r-
elastica.

On the other hand, if ðS2; gÞ is the standard round 2-sphere with radius 1/2, the
usual Hopf map � : S3

�!S2 is a principal fibre S1-bundle which admits a canonical
principal connection ! with non-trivial holonomy. For every positive smooth func-
tion f on S2, we construct on S3 the metric �gg f ¼ ��ðgÞ þ ð f � �Þ2!�ðdt2Þ. It is not
difficult to see that all the fibres in ðS3; �gg fÞ are geodesics if and only if f ¼ a is a
constant and so, �gga is a Berger metric, i.e. ðS3; �ggaÞ is up to a constant factor, iso-
metric to a distance sphere in CP2 or its dual.

In this note, we study the following natural problem.
Given an open subset U in S2, characterize those funtions f such that all the fibres

in ��1ðUÞ are r-elastica in ðS3; �gg fÞ.
We also obtain some applications including one that shows the existence of non-

trivial conformal structures which are foliated by equivariant Willmore-Chen sub-
manifolds.

2. Some preliminaires. Let � : S3
�!S2 be the usual Hopf fibration. Here S3 is

viewed as the unit 3-sphere in C2 so that �gg will denote its standard metric of constant
curvature 1. We define a global vector field V on S3 by: VðzÞ ¼ iz for any z 2 S3. We
use V and �gg to define the canonical principal connection ! in this principal fibre S1-
bundle. In particular, if we choose on the base S2 the metric g of constant Gaussian
curvature 4, then � : ðS3; �ggÞ�!ðS2; gÞ is a Riemannian submersion with geodesic
fibres. The following O’Neill formulae are well known. (See [8].)

�rr �XX
�YY ¼ rXY� �ggði �XX; �YY ÞV; ð2:1Þ

�rr �XXV ¼ �rrV
�XX ¼ i �XX; ð2:2Þ

�rrVV ¼ 0; ð2:3Þ

where �rr and r stand for the Levi-Civita connection of �gg and g, respectively, and
overbars means horizontal liftings.

For any positive smooth function f on S2 and " ¼ �1, we define the semi-
Riemannian generalized Kaluza-Klein metric �gg f on S3 by

�gg f ¼ ��ðgÞ þ "ð f � �Þ2!�ðdt2Þ; ð2:4Þ

where dt2 is the standard metric on S1. Then � : ðS3; �gg fÞ�!ðS2; gÞ is still a semi-
Riemannian submersion. Notice that �gg f is Riemannian or Lorentzian according to "
is +1 or �1, respectively. Although in this note we will work in the Riemannian
case, similar conclusions can be obtained in the Lorentzian one. For the sake of
simplicity, we shall write f instead of f � �. Let T ¼ 1

f V be the �gg f-unit tangent vector
field to the fibres. Then, a standard computation involving some well-known facts
from the theory of semi-Riemannian submersions allows us to obtain the corre-
sponding O’Neill formulae:
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�rrf
�XX
�YY ¼ rXY� �gg fði �XX; �YY ÞV; ð2:5Þ

T; �XX
� �

¼
�XXð f Þ

f
T; ð2:6Þ

�rr f
TT ¼ �gradðlog f Þ; ð2:7Þ

where �rrf and grad stand for the Levi-Civita connection and the gradient of �gg f,
respectively.

3. The fibres in a generalized Kaluza-Klein metric. Recall that a helix in a semi-
Riemannian manifold is a curve which has constant all its curvature functions.
Notice also that the fibres are geodesics, and so helices, in a generalized Kaluza-
Klein metric on S3 if and only if f is a constant (see equation (2.7)). More generally,
if p 2 S2, then ��1ðpÞ is a geodesic in �gg f if and only if p is a critical point of f.
Otherwise, let � and N be the curvature and the unit principal normal of ��1ðpÞ in
�gg f, respectively. Then, we combine equation (2.7) with the first Frenet equation of
the fibre to obtain

�gradð f Þ ¼ f�N: ð3:1Þ

In particular we observe that the fibres have constant curvature � ¼
jgradð f Þj

f
:

Let � and B be the torsion and the unit binormal of a fibre in �gg f. Then we
combine the formula (2.6) with the second Frenet equation to have

�rr f
NT ¼ ��B: ð3:2Þ

Let � be the set of critical points of f. It is not difficult to see that fT;Ng span an
involutive distribution on S3

� ��1ð�Þ. Furthermore, every leaf of this foliation can
be regarded as a Hopf tube shaped on a curve on S2, i.e., the leaves are as ��1ð�Þ,
where � is an inmersed curve in S2. Notice that these tubes, S� , can be parametrized
by � : I� R�!S3 as follows:

�ðs; tÞ ¼ eit ���ðsÞ;

where I is the domain of � and ��� denotes a horizontal lift of �. It should be observed
that in this parametrization, the coordinate curves t=constant generate the N-flow
while those curves obtained for s=constant are fibres. The unit normal vector field
to S� in ðS3; �gg fÞ coincides with the unit binormal to the fibre. Now, one can compute
[1] the shape operator, Af, of S� in ðS3; �gg fÞ. In the orthonormal basis fT ¼ 1

f �t;
N ¼ �sg, it is given by the matrix:

Af ¼
�Bðlogð f ÞÞ f

f �

� �
;

where � stand for the curvature of � in ðS2; gÞ:
On the other hand, formula (3.2) shows that �rr f

NT is normal to S� and so

�rr f
NT ¼ �ggfðAfðN Þ;T ÞB ¼ fB:
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Now, we compare this formula with (3.2) to deduce the following result.

Proposition 1. For any positive smooth function f on S2, the fibres of
� : ðS3; �gg fÞ�!ðS2; gÞ are helices in ðS3; �gg fÞ with curvature � and torsion � given by

� ¼
j gradð f Þ j

f
and � ¼ �f

Remark 1. Notice that the fibres of � in Proposition 1 are trivially helices
because the S1-action on S3 is carried out throughout isometries of ðS3; �ggfÞ. How-
ever, we shall need these particular values of � and � in the next section.

4. Elasticity of fibres. Let � be the manifold of regular closed curves in a semi-
Riemannian manifold ðM; d�2Þ. For any natural number r, define an elastic energy
functional F r : ��!R by

F rð�Þ ¼

Z
�

ð�2Þ
rþ1
2 ds;

where � denotes the curvature function of � 2 �; and we write the integrand in this
form to point out that it is an even function of the curvature. The variational prob-
lems associated with these functionals were considered in [2], [3]. The critical points
of F r are called r-elasticae (or r-elastic curves), and the Euler-Lagrange equations
characterizing these curves were computed there.

In particular, since the fibres of � : ðS3; �gg fÞ�!ðS2; gÞ are helices, we use those
equations to deduce that a fibre is an r-elastica if and only if

�rððrþ 1Þ �RRfðN;TÞTþ ðr�2 � ðrþ 1Þ�2ÞNÞ ¼ 0; ð4:1Þ

where �RRf denotes the curvature operator associated with �ggf.
As a consequence of this formula, we see that every geodesic fibre is auto-

matically an r-elastica for any natural number r. In other words, for any p 2 �, the
fibre ��1ðpÞ is an r-elastica in ðS3; �ggfÞ for arbitrary r.

Let U be an open subset of S2
��: The problem is to characterize those posi-

tive smooth functions f on U in order for ��1ðpÞ to be an r-elastica in ðS3; �gg fÞ for
any p 2 U: To solve this problem, we only need to compute the curvature term
appearing in equation (4.1). A straightforward calculus involving some formulae
obtained in the last section gives

�RRfðN;T ÞT ¼ ðNð�Þ þ �2 þ
Nð f Þ

f
�ÞNþ � �rr f

NN;

and so it can be combined with equation (4.1) and Proposition 1 to deduce the
following.

Proposition 2. Let U be an open subset of S2
��. Then all the fibres in ��1ðUÞ

are r-elastica in ðS3; �gg fÞ if and only if
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(1) the unitary field given by N ¼ �
gradð f Þ

j gradð f Þ j
defines a unit speed geodesic flow on

��1ðUÞ;

(2) along this N-flow, f evolves according to

ðrþ 1ÞfNðNð f ÞÞ � rðNð f ÞÞ2 ¼ 0:

Corollary 1. Let p a point of S2 and denote by �p its antipode. We define
U ¼ S2

� fp;�pg and f : U�!R by fðxÞ ¼ ðdðx; pÞÞrþ1, where dðx; pÞ denotes the
distance in S2 from x to p. Then, ð��1ðUÞ; �gg fÞ admits a foliation with leaves being
r-elastica. Furthermore, this is a subfoliation of a foliation in ð��1ðUÞ; �gg f Þ with leaves
being flat tori with constant mean curvature.

In the next result, we choose ðU; f Þ as in Corollary 1.

Corollary 2. Let G be a compact Lie group of dimension r endowed with a bi-
invariant metric d�2. Let H be a closed subgroup of the fundamental group �1ð�

�1ðUÞÞ

and  : �1ð�
�1ðUÞÞ=H�!G a monomorphism.

(1) There exists a principal fibre G-bundle, � : P�!��1ðUÞ which admits a prin-
cipal flat connection �.

(2) The metric h ¼ ��ð �ggf þ ��ðd�2ÞÞ on P defines a conformal structure, ½h�, on P
which is foliated by ðrþ 1Þ-dimensional G-invariant, Willmore-Chen submanifolds
which have constant mean curvature in the metric h.

Proof. The way to construct ðP; �Þ is well-known [6]. To show the second state-
ment, we first notice that the space of ðrþ 1Þ-dimensional compact G-invariant
submanifolds of P can be identified with Q ¼ f��1ð�Þ j � is a closed immersed curve
in ��1ðUÞg: The Willmore-Chen functional W : �QQ�!R is defined on the space �QQ of
ðrþ 1Þ-dimensional compact submanifolds of P and it only depends on the con-
formal structure. Since the natural action of G on P is carried out throughout iso-
metries of ðP; hÞ, it preserves W and hence, we can apply the principle of symmetric
criticality (see [9]). Therefore, to obtain G-invariant Willmore-Chen submanifolds in
ðP; [h] Þ we only need to compute critical points of W but restricted to Q. However,
this restriction can be computed to obtain that Wð��1ð�ÞÞ is a constant multiple of
F rð�Þ (see [2]). Consequently, ��1ð�Þ is Willmore-Chen in ðP; [h] Þ if and only if � is
an r-elastica in ð��1ðUÞ; �gg fÞ. Now the second statement follows from Corollary 1.
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