
AUTOMATICITY AND COMMUTATIVE SEMIGROUPS

MICHAEL HOFFMANN and RICHARD M. THOMAS
Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, England

e-mail: mh55@mcs.le.ac.uk, rmt@mcs.le.ac.uk

(Received 13 June, 2000; revised 17 November, 2000)

Abstract. We give an example of a finitely generated commutative semigroup
that is not automatic.

2000 Mathematics Subject Classification. 20M05, 20M35.

1. Introduction. A natural question concerning automatic semigroups is the
following: is every finitely generated commutative semigroup automatic? (This is
stated as an open problem in [2].) If we restrict semigroups to groups the answer is
known to be positive; a proof can be found in [4], for example.

One might expect that this result generalizes to semigroups and that all finitely
generated commutative semigroups will be automatic; however, this turns out not to be
the case. We will look at the commutative semigroup Q defined by the presentation

ha; b; x; y : aax ¼ bx; bby ¼ ay; ab ¼ ba; ax ¼ xa;
ay ¼ ya; bx ¼ xb; by ¼ yb; xy ¼ yxi:

We will prove that Q is not automatic (see Example 4.1 below).
Before we do this, we will list some preliminary results from other sources in

Section 2, and then prove some technical lemmas in Section 3, all of which we will
need for the proof that Q is not automatic which we will establish in Section 4. One
of these technical results, Lemma 3.5, is a sufficient condition for a semigroup not to
be automatic and this may be of some independent interest; in general, it is often
difficult to establish that particular semigroups are not automatic. We finish the
paper with some open questions concerning the automaticity of commutative semi-
groups in Section 5.

2. Preliminaries. In this section, we list some preliminary definitions and results
we need and introduce some notation. For general background on semigroups see
(for example) [7] or [8] and, for formal languages, see [5] or [6]. For a general
account of automatic semigroups, see [2].

For any set S, we let }ðSÞ denote the set of all subsets of S. For any finite set A,
we let Aþ denote the set of all non-empty words over A, and let A� denote the set of
all words over A (including the empty word �). For any word � in A�, we let j�j
denote the length of � (where j�j is taken to be 0). If a 2 A, we let j�ja denote the
number of occurrences of a in the word �.

If S is a semigroup and A 
 S is a set of generators of S, then there is a natural
homomorphism � : Aþ ! S where each word � in Aþ is mapped to the

Glasgow Math. J. 44 (2002) 167–176. # 2002 Glasgow Mathematical Journal Trust. Printed in the United Kingdom

https://doi.org/10.1017/S0017089502010121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502010121


corresponding element of S. We will normally be concerned with finite sets A, so
that the semigroup S is finitely generated. Where there is no danger of confusion, we
will suppress the reference to � by simply writing � for the element of the semigroup
represented by �. In this context, if � and � are elements of A�, we will write � � � if
� and � are identical as words, and (for �; � 2 Aþ) we will write � ¼ � if � and �
represent the same element of S (i.e. if �� ¼ ��). If we wish to stress which semi-
group we are working in, we will write � ¼S � if � and � represent the same element
of the semigroup S. We may also then write � ¼ s (or � ¼S s), where � 2 Aþ and
s 2 S, which says that �� ¼ s in S.

As in the case of automatic groups, we will want to consider automata accepting
pairs ð�; �Þ of words with �; � 2 Aþ. If � � a1a2 . . . an and � � b1b2 . . . bm, this is
accomplished by having an automaton with input alphabet A 
 A and reading pairs
ða1; b1Þ, ða2; b2Þ, and so on. To deal with the case where n 6¼ m, we introduce a pad-
ding symbol $. More formally, as with automatic groups, we define a mapping
�A :A� 
A� !Að2; $Þ�, where $ =2A and Að2; $Þ ¼ ððA [ f$gÞ
ðA [ f$gÞÞ�fð$; $Þg, by

ð�; �Þ�A ¼

ða1; b1Þ . . . ðan; bnÞ if n ¼ m
ða1; b1Þ . . . ðan; bnÞð$; bnþ1Þ . . . ð$; bmÞ if n < m
ða1; b1Þ . . . ðam; bmÞðamþ1; $Þ . . . ðan; $Þ if n > m:

8<
:

Given this, we make the following definition:

Definition 2.1. If S is a semigroup, A is a finite set, L is a regular subset of Aþ,
and � : Aþ ! S is a homomorphism with L� ¼ S, we say that ðA;LÞ is an automatic
structure for S if

1. L¼ ¼ fð�; �Þ : �; � 2 L; � ¼ �g�A is a regular subset of Að2; $Þ�, and
2. La ¼ fð�; �Þ : �; � 2 L; �a ¼ �g�A is a regular subset ofAð2; $Þ� for each a 2 A.

If a semigroup S has an automatic structure ðA;LÞ for some A and L, then we say
that S is automatic.

We next recall some standard facts about regular languages (see [1], [4] and [6]
for example):

Proposition 2.2. If A is a finite set and if K and L are regular subsets of A�, then
K [ L, K \ L, K � L, KL and K� are regular.

Proposition 2.3. If A and B are finite sets, if � : A� ! B� is a homomorphism,
and if L is a regular subset of B�, then L��1 is a regular subset of A�.

Proposition 2.4. If A is a finite set and if K and L are regular subsets of A�, then
ðK 
 LÞ�A is a regular subset of Að2; $Þ�.

Proposition 2.5. If A is a finite set and if U1; . . . ;Un are regular languages over
Að2; $Þ, then the set

fð�; �Þ�A : �; � 2 A� and there exist !1; . . . ; !n�1 2 A� such that

ð�; !1Þ�A 2 U1; ð!1; !2Þ�A 2 U2; . . . ;

ð!n�2; !n�1Þ�A 2 Un�1; ð!n�1; �Þ�A 2 Ung

is regular.
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If L is a regular language over A, then ðL 
 LÞ�A is regular over Að2; $Þ by
Proposition 2.4; so, if U is a regular subset of Að2; $Þ�, then U \ ðL 
 LÞ�A is regular
by Proposition 2.2. So, by replacing each Ui by Ui \ ðL 
 LÞ�A, we may generalize
Proposition 2.5 slightly to the following result.

Proposition 2.6. If L is a regular language over the set A and if U1; . . . ;Un are
regular languages over Að2; $Þ, then the set

fð�; �Þ�A : �; � 2 L and there exist !1; . . . ; !n�1 2 L such that

ð�; !1Þ�A 2 U1; ð!1; !2Þ�A 2 U2; . . . ;

ð!n�2; !n�1Þ�A 2 Un�1; ð!n�1; �Þ�A 2 Ung

is regular.

We recall the definition of an ‘‘automatic structure with uniqueness’’:

Definition 2.7. Let ðA;LÞ be an automatic structure for S. We say that ðA;LÞ
is an automatic structure with uniqueness for S if L maps one-to-one onto S.

We then have (as for groups):

Lemma 2.8. If S is a semigroup with an automatic structure ðA;LÞ, then there
exists an automatic structure ðA;KÞ with uniqueness for S such that K 
 L.

See [2] for a proof of Lemma 2.8. We also recall the following result from [2].

Proposition 2.9. Let S be a semigroup and let S1 be the monoid formed by add-
ing an identity element to S. Then S is automatic if and only if S1 is automatic.

Lastly, we recall the following useful result from [3].

Theorem 2.10. If M is an automatic monoid and if A is any finite (semigroup)
generating set for M, then there is a regular subset L of Aþ such that ðA;LÞ is an
automatic structure for M.

3. Loops and sequences. We now establish some results we will need in the proof
that the semigroup Q mentioned in Section 1 is not automatic. The following idea is
not new; it is just convenient for us to give a name to this phenomenon.

Definition 3.1. Let L be regular language over a finite alphabet A. We call
v 2 Aþ a loop of a word � in L if there exist u;w 2 A� with � � uvw and
fugfvg�fwg 
 L.

We call v 2 Aþ a reduced loop of a word � in L if there exist u;w 2 A� with
� � uvw and fugfvg�fwg 
 L (so that v is a loop) and if there do not exist �1 2 A�,
�2 2 Aþ and �3 2 A� with j�1j þ j�3j � 1, v � �1�2�3 and fu�1gf�2g

�f�3wg 
 L.

The point we wish to note here is the following.
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Remark 3.2. Let L be a regular language and let M be a finite automaton
accepting L. Suppose that M has n states. By the pumping lemma for regular lan-
guages every word � in L of length at least n contains a loop. So the set of reduced
loops

fv 2 Aþ : v is a reduced loop of some word in Lg

of L is finite.

Having done this, we introduce the idea of a ‘‘sequence’’.

Definition 3.3. Let S be a finitely generated semigroup and let A be a finite
generating set for S. If a 2 A, then the maps �a; �a : }ðA

þÞ ! }ðAþÞ are defined as
follows:

�aðX Þ ¼ f� 2 Aþ : � ¼S �a for some � 2 Xg;

�aðX Þ ¼ f� 2 Aþ : �a ¼S � for some � 2 Xg:

A map � ¼ �1�2 . . . �n, with each �i of the form �a or �a (for some a 2 A in each case),
is called a sequence of S over A.

Note that, by our conventions, �ðX Þ denotes a subset of the semigroup S as
well as a subset of the free semigroup Aþ, and we will use this in what follows.
There is clearly no problem with doing this, as, if �1 and �2 are words in Aþ with
�1 ¼S �2, then �1 2 �ðX Þ (as an element and a subset of Aþ) if and only if
�2 2 �ðX Þ.

Despite the fact that we have elsewhere written our maps on the right, we are
writing our sequences on the left (i.e. we are writing �ðX Þ as opposed to X�) as this
seems to be easier to read in this case. Notwithstanding this, we will still apply our
map composition as if the maps were written on the right, i.e. the sequence �1�2 . . . �n

will represent �1 applied first, followed by �2, and so on. In addition, when applying
a sequence � to a singleton set f�g, we will simply write �ð�Þ in place of �ðf�gÞ. We
then have:

Lemma 3.4. Let S be a semigroup with an automatic structure ðA;LÞ and let � be
a sequence of S over A. Then the set

L� ¼ fð�; �Þ�A : �; � 2 L and � 2 �ð�Þg

is regular.

Proof. For every a 2 A we have that the sets L�a
¼ La and

L�a
¼ fð�; �Þ�A : ð�; �Þ�A 2 Lag

are regular. The sequence � can be written as � ¼ �1�2 . . . �n with each �i of the form
�a or �a. So
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L� ¼ fð�; �Þ�A : �; � 2 L and � 2 �ð�Þg

¼ fð�; �Þ�A : there exists � 2 L with ð�; �Þ�A 2 L�1 and

ð�; �Þ�A 2 L�2...�n
g

. . .

¼ fð�; �Þ�A : there exists �1; . . . ; �n�1 2 L with ð�; �1Þ�A 2 L�1 ;

ð�1; �2Þ�A 2 L�2 ; . . . ð�n�2; �n�1Þ�A 2 L�n�1
; ð�n�1; �Þ�A 2 L�n

g

is regular by Proposition 2.6. Note that we are using the fact that L maps onto S in
asserting that we may choose the words �1; . . . ; �n�1 to lie in L. &

The following result is really the critical one in proving that our commutative
semigroup Q from Section 1 is not automatic.

Lemma 3.5. Let S be a semigroup and let A be a finite generating set for S. Sup-
pose that B is an infinite regular subset of Aþ such that no word in B represents the
same element of S as any other word in Aþ. Let � be a sequence of S over A such that

(i) �ð�Þ \ B is a finite subset of S for all � 2 B, and
(ii) if B0 
 B is infinite then fj�j � j�j : � 2 B0; � 2 �ð�Þ \ Bg is not bounded.

Then S is not automatic.

Proof. Suppose that S is automatic, so that S1 is automatic by Proposition
2.9. Let A1 ¼ A [ feg where e represents the identity element of S1. By Lemma 2.8
and Theorem 2.10 there exists an automatic structure ðA1;LÞ with uniqueness for
S1.

Let � : A�
1 ! A� be the homomorphism defined by

a� ¼ a for a 2 A; e� ¼ �:

Note that, if �� 6� �, then both � and �� represent an element of S (i.e. they do not
represent the adjoined identity), and, moreover, they both represent the same ele-
ment of S. So � and �0 represent the same element of S if and only if �� and �0�
represent the same element of S. Given this, if X 
 Aþ, then we have

�aðX�Þ ¼ �aðX Þ and �aðX�Þ 
 �aðX Þ ð1Þ

for a 2 A. Note that, in �aðX Þ, we are considering �a as a sequence for S1 over A1

and �aðX Þ as a subset of S1, and, in �aðX�Þ, we are considering �a as a sequence for S
over A and �aðX�Þ as a subset of S (and similarly for �aðX Þ and �aðX�Þ). The point is
that, if X 
 Aþ, then �aðX Þ cannot contain e; on the other hand, �aðX Þ might
contain e, in which case �aðX�Þ ¼ �aðX Þ � feg.

Let C ¼ B��1 \ L. If � 2 B, then � represents some element s of S. Choose � to
be the unique element of L representing s. Since � and �� both represent s and � is
the unique element of Aþ representing s by hypothesis, we must have that �� � �.
So � maps C bijectively onto B. In addition, using Propositions 2.2 and 2.3 and the
fact that B is regular, we see that C is regular. Let n be the number of states in a
finite state automaton accepting C.
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Let P be the set of reduced loops of words in C. By Remark 3.2 we have that P
is finite. Let v 2 P be such that l ¼ jvj

jv�j is minimal, i.e. such that there exists no v0 2 P
with

jv0j

jv0�j
<

jvj

jv�j
:

Because v is a loop in C, there exist u;w 2 A�
1 such that fugfvg�fwg 
 C with juj < n

and jwj < n. Let D ¼ fugfvg�fwg. Let � 2 D, say � � uviw. Then

j�j ¼ juj þ jwj þ ijvj

¼ juj þ jwj þ ijv�jl

¼ juj þ jwj þ ðj��j � ju�j � jw�jÞl

� juj þ jwj þ j��jl

� 2n � 2þ j��jl:

ð2Þ

Let � 2 C. If j�j � n then � contains a reduced loop vð1Þ in C, say � � uð1Þvð1Þwð1Þ. Let
�ð1Þ � uð1Þwð1Þ, so that �ð1Þ 2 C. Then

j�j ¼ j�ð1Þj þ jvð1Þj

¼ j�ð1Þj þ
jvð1Þj

jvð1Þ�j
jvð1Þ�j

� j�ð1Þj þ jvð1Þ�jl:

Iterating, we get

j�j � j�ð1Þj þ jvð1Þ�jl

� j�ð2Þj þ jvð1Þ�jl þ jvð2Þ�jl

� j�ð3Þj þ jvð1Þ�jl þ jvð2Þ�jl þ jvð3Þ�jl

. . .

� j�ðrÞj þ jvð1Þ�jl þ jvð2Þ�jl þ jvð3Þ�jl þ . . .þ jvðrÞ�jl

¼ j�ðrÞj þ ðj��j � j�ðrÞ�jÞl;

where j�ðrÞj < n, and so j�ðrÞ�j < n. Hence

j�j � j�ðrÞj þ ðj��j � j�ðrÞ�jÞl

� j��jl � j�ðrÞ�jl

> j��jl � nl:

ð3Þ

Now we consider j�j � j�j for � 2 D and � 2 �ð�Þ \ C. We have, from equations (2)
and (3),

j�j � j�j > j��jl � nl � 2n þ 2� j��jl

¼ �nl � 2n þ 2þ ðj��j � j��jÞl:
ð4Þ
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Let B0 ¼ D� 
 C� ¼ B, so that B0 is infinite (as � maps C bijectively onto B); see
Figure 1.

Now the set

fj� 0j � j�0j : �0 2 B0; � 0 2 �ð�0Þ \ Bg

is not bounded by hypothesis (ii). Since � maps D onto B0, we have that the set

fj� 0j � j��j : � 2 D; � 0 2 �ð��Þ \ Bg

is not bounded. As � maps C bijectively onto B, we have that

fj��j � j��j : � 2 D; � 2 C; �� 2 �ð��Þ \ Bg

is not bounded. Since � 2 C, the condition �� 2 B is superfluous, and we have that

fj��j � j��j : � 2 D; � 2 C; �� 2 �ð��Þg

is not bounded. Since �� represents the same element of S as �, and as �ð��Þ 
 �ð�Þ
by (1), we have that

fj��j � j��j : � 2 D; � 2 C; � 2 �ð�Þg

is not bounded; note that we are now considering � as a sequence in S1. Using (4),
we see that

fj�j � j�j : � 2 D; � 2 �ð�Þ \ Cg

is not bounded. Let

Figure 1. Mappings.
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E ¼ fð�; �Þ�A1
: � 2 D; � 2 �ð�Þ \ Cg

¼ ðD 
 CÞ�A1
\ L�;

where the notation L� is as in Lemma 3.4.
The set E is the intersection of two regular languages by Proposition 2.4 and

Lemma 3.4, and is therefore also regular by Proposition 2.2. Let m be the number of
states in a finite state automaton M accepting E. Let � 2 D and � 2 �ð�Þ \ C with
j�j � j�j � m. So ð�; �Þ�A1

2 E and the last m þ 1 letters of ð�; �Þ�A1
are of the form

ð$; aiÞ for some ai 2 A1. Whilst reading the last m þ 1 letters of ð�; �Þ�A1
the machine

M must be in the same state q twice. We can decompose � as �1�2�3, where �2 is
the loop read between successive such visits to q. We can pump this loop �2 in M
and get that ð�; �1�

i
2�3Þ�A1

2 E for all i � 0. So �1�
i
2�3 2 �ð�Þ \ C, and then

ð�1�
i
2�3Þ� 2 �ð��Þ \ B for all i � 0.
Recall that L has uniqueness and that � maps C bijectively to B; so

ð�1�
i
2�3Þ� 6¼S ð�1�

j
2�3Þ� for i 6¼ j. Hence �ð��Þ \ B is not finite, which contradicts

hypothesis (i). &

4. Commutative but not automatic. We can now demonstrate the existence of a
finitely generated commutative semigroup (namely our example Q from Section 1)
that is not automatic.

Example 4.1. The commutative semigroup Q defined by the presentation

} ¼ ha; b; x; y : aax ¼ bx; bby ¼ ay; ab ¼ ba; ax ¼ xa;

ay ¼ ya; bx ¼ xb; by ¼ yb; xy ¼ yxi

is not automatic.
To see this, we let A ¼ fa; b; x; yg and B ¼ fai : i > 0g. None of the relations in }

can be applied to an element of B. Therefore, for � 2 Aþ with � ¼Q � for some
� 2 B, we must have that � � �. Let � ¼ �y�y�x�x (recalling that our convention is
that we then apply �y first).

First we note that, if � 2 fa; bgþ, then

� 2 �xð�Þ , j�jx ¼ 1 and j�ja þ 2j�jb ¼ j�ja þ 2j�jb;

� 2 �yð�Þ , j�jy ¼ 1 and 2j�ja þ j�jb ¼ 2j�ja þ j�jb:

Combining these facts together, we see that

� 2 �ð�Þ , there exists � 2 fa; bgþ with

2j�ja þ j�jb ¼ 2j�ja þ j�jb and j�ja þ 2j�jb ¼ j�ja þ 2j�jb

, there exists � 2 fa; bgþ with

4j�ja þ 2j�jb ¼ 4j�ja þ 2j�jb ¼ 3j�ja þ j�ja þ 2j�jb:

Letting k denote j�ja, we have that

�ðaiÞ ¼ f� 2 fa; bgþ : 4i ¼ 3k þ j�ja þ 2j�jb for some k 2 Ng;
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and so

�ðaiÞ \ B ¼ fa j : there exists k 2 N such that j ¼ 4i � 3kg: ð5Þ

Therefore �ð�Þ \ B is a finite subset of Q for all � 2 B.
We also see from (5) that a4i 2 �ðaiÞ \ B for all i > 0. Hence, for any infinite

B0 
 B, we have that

fj�j � j�j : � 2 B0; � 2 �ð�Þ \ Bg

is not bounded. So, by Lemma 3.5, we have that Q is not automatic. &

5. Questions. We have seen that a finitely generated commutative semigroup
need not be automatic. However, it may well be that there are some natural extra
assumptions that could be added to ensure automaticity.

One natural choice would be that of ‘‘bounded indegree’’.

Definition 5.1. A semigroup S generated by a finite set A is said to have
bounded indegree if there exists a constant k such that, for all s 2 S, the set
ft 2 S : s ¼ ta for some a 2 Ag has size at most k.

Note that this property does not depend on which (finite) generating set we
choose.

Proposition 5.2. If a semigroup S has bounded indegree with respect to one finite
generating set A, then it has bounded indegree with respect to any finite generating set.

Proof. Assume that S has bounded indegree with respect to A, i.e. that there is a
constant k such that, for any a 2 A, we have

jft 2 S : s ¼ tagj � k

for all s 2 S. So, if � 2 Aþ, then

jft 2 S : s ¼ t�gj � kj�j

for all s 2 S.
Let B be another finite generating set for S. We can express every element b of B

by a word �b of Aþ. Let p ¼ maxfj�bj : b 2 Bg; note that B is finite and therefore p
exists. So, if b 2 B, then

ft 2 S : s ¼ tbg ¼ ft 2 S : s ¼ t�bg

has size at most kp for all s 2 S. &

The example of a commutative semigroup Q given above which is not automatic
has unbounded indegree as all the elements ai (i 2 N) are distinct and a4

i

xy ¼ axy
for all i 2 N. So we have the following question.
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Question 5.3. Is every finitely generated commutative semigroup that has
bounded indegree automatic?

Recall that Green’s relations R and L are defined on a semigroup S by aRb
(respectively aLb) if a and b generate the same principal right (respectively left)
ideal, i.e. if and only if aS1 ¼ bS1 (respectively S1a ¼ S1b). The relation H is the
intersection of R and L. The commutative semigroup Q in Example 4.1 has infi-
nitely many H-classes (equivalently, infinitely many R-classes or L-classes, since the
relations R, L and H coincide in a commutative semigroup), and so we ask

Question 5.4. Is every finitely generated commutative semigroup that has
finitely many H-classes automatic?
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