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NETS OF CONICS IN THE EUCLIDEAN 
PLANE AND AN ASSOCIATED 

REPRESENTATIONAL GEOMETRY 
BY 

R. BLUM AND A. P. GUINAND 

Introduction. The study of systems of conies and other algebraic curves was 
initiated in the middle of the nineteenth century by Cayley, Hesse, Cremona, and 
others. Most of the investigations from that time to the present have been concerned 
with extensions to algebraic varieties and systems of higher orders or dimensions, 
or with associated algebraic curves such as Jacobians and Hessians. By contrast, 
scant attention has been given to the details of internal structure of even the simplest 
systems of curves in the plane. References to much of the source material for any 
work on systems of curves can be found in references (1), (2), and (3). 

In the present paper we discuss certain aspects of nets of conies in the euclidean 
plane. A net of conies here means a linear system of conies AS1+^S2+vSB=0,whevQ 
S1==0, 5*2=0, ^ = 0 are three independent co-planar conies. 

The paper has three parts. In the first part we discuss the elementary properties 
of those nets of conies in the euclidean plane which we call general nets. We use a 
method of setting up the net in a standard form by taking as basis three degenerate 
parabolas of the net. This standard form leads to the consideration of analogies 
with the special cases where the net consists of all the conies circumscribing a fixed 
triangle. We call these latter nets "triangular nets". In particular, the nine-point 
circle of the fixed triangle is shown to be a degenerate case of a twelve-point circle 
associated with any more general net. 

In the second part we discuss a representational "net-geometry" based on any 
general net of the type considered in Part I. The individual conies of the net 
become the point-elements of the net-geometry, and pencils of conies become line-
elements. This representational geometry is, of course, a plane projective geometry 
which can be made euclidean by an arbitrary choice of the absolute elements (i.e. 
the line at infinity and the circular points). However, we show that in general a 
non-degenerate net of conies in the euclidean plane does possess distinctive elements 
whose choices as absolute elements seem specially appropriate. We are thereby 
led to a euclidean metric and a cartesian co-ordinate system which seem, by virtue 
of their mathematical elegance, to be the most natural for this net-geometry. 

In the third part we examine the special or degenerate nets which were specifically 
excluded from consideration in the first two parts. For this purpose we use another 
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standard form for the net, taking as basis two rectangular hyperbolas and a circle 
of the net. Again, the basis can be so set up that it is well suited to the net-geometry, 
and this latter form is more appropriate when considering nets which do not 
necessarily contain three distinct degenerate parabolas. We are thereby able to 
indicate a method of classifying the types of nets excluded from Parts I and II. 

PART I 

Circles associated with a net of conies. A triangular net of conies contains one 
circle only, the circum-circle of the triangle which all the conies of the net circum
scribe. Also, the locus of the centres of the rectangular hyperbolas of the net is the 
nine-point circle of this triangle (Salmon, reference (4), 215, Ex. 2). 

Similar results hold for the general net. To show this, consider the net of conies 

(1) XS1+iiS2+vSz = 0 

where, in orthogonal cartesian coordinates, 

Sr = arx
2+2hrxy+bry*+2grx+2fry+cr = 0 (r = 1, 2, 3) 

are three linearly independent conies, none of which are circles or rectangular 
hyperbolas. If (1) is to be a circle, then 

(2) Kdi-h)+[ji{a^b^+v(az-bz) = 0, 

and 

(3) A/zx+M2+^3 = 0. 

In general these equations have only one solution for the ratio X:/x:v, so the net 
contains one circle only, which we will call the circumcircle of the net. (For the 
cases when (2) and (3) have more than one solution, see Part III). 

Also, if (1) is to be a rectangular hyperbola then (reference (4), 169) 

(4) Kai+bi)+l*{az+b2)+v{az+bz) = 0. 

That is, there is a pencil of rectangular hyperbolas in the net. Further, the four points 
common to the conies of this pencil form an orthocentric set, since any line-pair 
through all four points must be a degenerate rectangular hyperbola. 

If (x, y) is the centre of (1), then (reference (5), 114) 

(5) Œ>)*+Q»j+Œ%) = o, 

(6) gl)x+(2%+(^/) = 0, 

where we write Xax+^ia2+vaz=^(^ Ad), and similarly for other coefficients. That is 

^(a1x+h1y+g1)+fj>(a2x+h2y+g2)+v(azx+h3y+g3) = 0, 

Khx+hy+fù+viKx+hy+fù+vihx+bzy+fù = o. 
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Hence the locus of centres of rectangular hyperbolas of the net is 

481 

(7) 
a1x+h1y+g1 a2x+h2y+g2 a3x+h3y+g3 

h1x+b1y+f1 h2x+b2y+f2 h3x+b3y+f3 

a2+b2 a3+b3 

= 0. 

This reduces to 

(8) 

-(.x2+y*)\ 

+y\ 

ax a2 a3 
bx b2 b3 

hx h2 h3 

+x 
"i 

Â 
K 

a2 a3 

/. h 
b2 b3 

gl g* g*\ 
bx b2 h +y 

I ai ai Qz\ 

This is a circle provided that 

+x 

h K h3 

fx h /a 
ax+bx a2+b2 a3+b3\ 

+ 

#2 g* 

h2 h3 

a2+b2 a3+b3 

gl g2 

/ i / . 
ai+bi di+b% 

+ 

a3+b3 

= 0. 

(9) 
ax a2 a3 

bx b2 b3 

hx h2 h3 

5*0. 

Let us assume that this is so.* Then the circle (8) must pass through the three inter
sections of mutually perpendicular lines associated with the above-mentioned 
orthocentric set. 

The locus of centres of degenerate conies of the net. For (1) to be degenerate it is 
necessary and sufficient that 

I Q » Q » (2%) I 
(10) Q » CM) (2 A/) =0. 

\(lk) ŒV) Q » | 
Eliminating À, fi, v from (5), (6), and (10) we find that the locus of centres of 

degenerate conies of the net is the cubic 

(11) 

aix+Ky+gi a2x+h2y+g2 a3x+h3y+g3 

h1x+b^y+f1 h2x+b2y+f2 h3x+b3y+f3 

gi*+/iJ+Ci g2X+f2y+c2 g*x+f3y+c3 

= 0. 

This is the Jacobian of the net. (Sommerville, reference (5).) 

Parabolas of the net. For (1) to be a parabola A, //, v must satisfy 

(12) ( 2 ^ ) ( 2 ^ ) - Q > ) 2 = 0. 

* The cases when this determinant vanishes are considered in Part III. 
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That is, the parabolas form a quadratic family of conies of the net. The degenerate 
parabolas (or parallel line-pairs) correspond to those A, fi, v which satisfy both (10) 
and (12). These equations are a cubic and a quadratic in A, ju, v, but as each solution 
is repeated, there cannot be more than three distinct solutions. Using (12) and putting 

then (10) becomes 

whence 

(2>)_Q>) 
= p> 

Q » Q » (2 A/) 
ilk) ŒW Q » 

= o, 

o o (Ik)-p(IV) 
= o. 

Hence 

or 

In either case we have 

or 

(13) 

(Ik)=p(IV), 

Q»(2A/)=Q»(2%) 

_ ( I » _ Œ » _ Œ » 
P Q » (2^) Œ V)' 

(2 l(a-V)) = (2 A(A-i/0) = (2 %"#) ) = 0 

Hence p is a root of the cubic* 

(14) 
ax—hxp a2—h2p a3—h3p 
hx—bxp h2—b2p hz—bzp 
gi-fiP gz-fzP gz-ÂP 

= 0. 

Each root of this cubic in/? leads, in general, to one solution for the ratio À:fx:v, 
via the equations (13). 

Thus, in general, a net contains three degenerate parabolas. Unlike the three 
degenerate rectangular hyperbolas, these three degenerate parabolas will not, in 
general, belong to a pencil, for there is no third parallel line-pair through the four 
points of intersection of two parallel line-pairs, unless the latter either have their 
axes parallel, or if at least one is a repeated line. 

A standard form for a general net of conies. The preceding considerations suggest 
that for a general net the three degenerate parabolas can be selected as a "canonical 

* For the cases when this cubic is degenerate, see Part III. 
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basis" for the net, which basis then depends only on the intrinsic properties of the 
net itself, and not on the co-ordinate system chosen. 

We shall refer to the triangle formed by the axes of this triad of degenerate 
parabolas as the "axial triangle" of the net, and to its vertices as the "axial vertices" 
of the net. We adopt a "standard form" by choosing the orthocentre of the axial 
triangle as origin, writing R for the circum-radius of the axial triangle, A, B, C 
for its angles, and 6l9 02, d3 for the angles between the x-axis and the perpendiculars 
to BC9 CA, AB respectively. The equations of the sides BC, CA, AB can then be 
written: 

m1 = x cos dx+y sin 61—2R cos(6s—d1)cos(d1—62) = 0, 
(15) m2 = x cos 62+y sin d2—2R cos(d1—d2)cos(d2—6B) = 0, 

m3 = x cos 6Z +y sin d3—2R cos(62—ds)cos(dz—d1) = 0. 

If the spacings of the three parallel line-pairs (or degenerate parabolas) are 2a, 
2/9, 2y respectively, then the canonical basis consists of the three conies 

S± = m2-oc2 = 0, 

(16) S2 = m\-p = 0, 

Circumcircle of the net in standard form. If, in the standard form (16), the conic 

(17) S SE XS1+fiS2+vS2 = 0 

is to be a circle, then 
( 2 A cos2 ^ ( l A s i n ^ ) , 

( 2 ^ cos flj sin 0i) = 0. 
That is 

( 2 A cos 2<9j) = ( 2 A sin 2dx) = 0. 
Hence 

(18) l\}i\v = sin2((92-e3):sin2(03-01):sin2((91-e2). 

Setting these values in (17) we find, after some trigonometric manipulation, that 
the circum-circle is of the form 

(19) ( * 2 + / ) 2 sin 2(02-03) = 22 a2 sin 2(02-03)-8i?2 £ sin 2(02-03) 

xcos2(01-e2)cos2(03-e i). 

This can be expressed more simply in terms of the angles A, B, C, of the axial 
triangle, since, modulo 2TT, 

(20) A = 7T + d2-6z, B = 77 + 0 3 - 0 ! , C = 77 + 0X-02. 

The equation (19) becomes 

(x2+y2)(2 sin 2A) = 2 £ a2 cos 2A-8R2 2 sin 2A cos2 B cos2 C. 
Since 

2 sin 2A = 4 sin A sin B sin C 
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and 

this can be written 

where 

2 cot B cot C = 1, 

x2+y2 = r2, 

-4R" cos 4̂ cos 5 cos C. 
2 a cos ,4 j82 cos B y cos C 

(21) r = + ; + 
sin B sin C sin C sin 4̂ sin A sin 5 

Thus the centre, of the circum-circle of the net is the orthocentre of the axial 
triangle, and the radius r is given by (21). 

The twelve-point circle of a net of conies. In the standard form the condition (4) 
for rectangular hyperbolas becomes 2.+ju+v=09 and the equation (7) of the locus 
of their centres becomes 

m1 cos Oi m2 cos 62 m3 cos 62 

m1 sin 0J m2 sin d2 m3 sin d3 

That is 

(22) 

1 

CN = ra2m3 sin A+m3m1 sin B+mxm2 sin C = 0. 

This passes through the points where two of ml9 ra2, m3 vanish; that is, through the 
axial vertices of the net. In the case of a triangular net the axial vertices are the 
mid-points of the sides of the triangle which all the conies of the net circumscribe; 
but this is not true of a general net. Thus the locus of the centres of the rectangular 
hyperbolas of a net is a circle through twelve points, namely the three centres of the 
orthogonal line-pairs of the net, the six mid-points of the associated orthocentric 
set, and the three axial vertices. 

The Euler axis of a general net. For a triangle the Euler axis passes through the 
circum-centre, the centroid, the orthocentre, and the nine-point centre. For a general 
net there does not seem to be an unambiguous analogue of the orthocentre, but we 
can draw the following analogies. 

Point related to a 
triangular net 

Nine-point centre of the 
circumscribed tri
angle A 

Circum-centre of A 
Centroid of A = 

Centroid of its mid
points triangle 

Analogous point 
for a general net 

Twelve-point 
centre 

Circum-centre 
Centroid of the 

axial triangle 

Point as related to 
the axial triangle 

Circum-centre 

Orthocentre 
Centroid 

Designation 

N 

O 
G 
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With these analogies the Euler axis of the net coincides with the Euler axis of the 
axial triangle, and OG=2GN, just as for the Euler axis of a triangle. For a triangle 
the nine-point radius is equal to half the circum-radius. For a general net this is 
replaced by the formula (21). 

Some special cases. 

(i) Triangular net. 
If OL=2R sin B sin C, j3=2RsinCsmA9 y=2RsinAsmB, then the parallel 

line-pairs of the canonical basis all pass through three points D, E, F, where D is 
the point (2R cos(02+03-0J, 2R sin (<92+03-0!)), and similarly for E and F. The 
net consists of all the conies through D, E, and F, and (21) reduces to r—2R, 

(ii) If the half spacings oc, fi, y are so chosen that the conies Sly S29 Ss have a 
point of concurrency, then all conies of the net must pass through this point, 
including the circum-circle of the net. Then r is equal to the distance between the 
orthocentre of the axial triangle and the point of concurrency. In particular, if 
<x=2R cos B cos C, /3=2R cos C cos A, y==2R cos A cos B, then there is a point 
of concurrency at the orthocentre of the axial triangle, and r = 0 , as may also be 
verified by (21). 

(iii) If oc=/?=y, then any two of the parallel line-pairs of the canonical basis 
form a rhombus. The diagonals of each rhombus form an orthogonal line-pair 
which is a conic of the net, their centre being at the associated axial vertex, and the 
line-pair being the internal and external bisectors of the angle of the axial triangle 
there. Hence in this case also the twelve-point circle of the net degenerates into a 
circle through only nine points. 

(iv) If a = / 2 = y = 0 , then the net consists of the conies for which the axial tri
angle is self-conjugate. 

The locus of centres of conies of the net which have eccentricity e. For a general 
conic 

(23) ax2+2hxy+by2+2gx+2fy+c = 0 

the eccentricity e satisfies the equation 

(2-e2)2(ab-h2) = (l-e2)(a+b)2. 

For the conic (17) of a general net in standard form this becomes 

(2-e 2 ) 2 ( (2 A cos2 0^(2; À sin2 Oj)—Œ X c o s °i s i n W = (l-e2)(À+ft+v)2 

This can also be written 

(24) (2-e2)2 2 pv sin2 A = (1 -e2)(A+/*+v)2. 
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Now the centre (x, y) of (17) satisfies the equations 

^ = ^> = 0 
dx dy 

That is, by (15) and (16), 

Œ ^ m i c o s ^ i ) = Œ ^ m i s*n ^ i ) = o. 
Hence 

Xm1 = /*m2 = vm3 

sin A sin 5 sin C 

Substituting this in (24) and re-arranging, we obtain 

(26) (2—e2)2 sin A sin B sin C m1m^mzÇ^ m1 sin 4̂) = (1 --e2)(2 #V^3 sin Àf 

for the locus of centres of conies of the net of eccentricity e. Now 

(27) ^m1sinA = x^cos 0t sin(02—d3)+y 2 sin 0x sin(02—d3) 

-2R 2 sinCfla-e^cos^-eOcosCfli-fla) 

= — 2R 2 sin 4̂ cos B cos C 

= — 2R sin ^ sin B sin C. 

By (22) and (27) we can write (26) in the form 

(l-e2)C2
N+2R(2-e2)2 sin2 A sin2 B sin2 C m1m2m3 = 0. (28) 

That is, the locus of centres is a bicircular quartic passing through the vertices of 
the axial triangle, and having nodes there. If e 2 =l (for parabolas) this degenerates 
into the line at infinity and the sides of the axial triangle. If e2=2 (for rectangular 
hyperbolas) it degenerates into the twelve-point circle, repeated. 

Also, the locus is independent of the half spacings a, /?, y. If we consider a 
particular conic of a particular net, keeping 6l9 02, d3, À, jx, v constant, and vary the 
a, /?, y of the canonical basis, then the centre, orientation, and eccentricity of the 
conic remain unchanged; only its size alters. Accordingly, given any general non-
degenerate net we can find an associated triangular net with corresponding conies 
having the same centres, orientations, and eccentricities (but not necessarily the 
same sizes) as the corresponding conies of the original net. 

Further, the axial vertices are singular points of the net in the sense that for each 
vertex there is a pencil of conies of the net whose centres are at the vertex. For 
other points there is only one conic of the net whose centre is at the point. 
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The Jacobian of the standard form of a net. In standard form the equation (11) 
of the Jacobian becomes 

m1 cos 0! m2 cos d2 m3 cos 63 

m1 sin dx m2 sin 62 m3 sin 63 

2Rm1 cos B cos C 2Rm2 cos C cos A 2Rm3 cos ̂ t cos B 
+ a2 -f̂ 2 +y2 

= 0. 

This reduces to 

(29) 2Rm1m2m3 sin 4̂ sin i? sin C = 2 0L2m2m3 sin 4̂. 

That is, a cubic through the axial vertices which touches the conic 2 o(.2m2m3 sin ̂ 4 = 
0 at those points. If oL=f}=y, this conic is the twelve-point circle of the net. 

PART II 

A geometry on a net. A plane geometry can be set up whose point-elements are 
the conies of the net. We shall use the following nomenclature and notations to 
distinguish the elements of this "net-geometry". 

Plane geometry 

Conic of the net 
Pencil of conies of the 

net 
Quadratic family of 
conies of the net 

Net-geometry 

Net-point 
Net-line 

Net-conic 

Co-ordinates of 
equation in A, ju,, v 

A, /u, v (homogeneous) 
pû+q/u+rv = 0 

AX*+Bn*+Cv* 
+2Fpv+2GvÀ+2mp = 0 

Thus two net-lines meet in a net-point, two distinct net-points determine a net-
line, and a net-line meets a net-conic in two net-points. In order to develop this 
projective geometry into a euclidean plane geometry we must choose a "net-line at 
infinity" and two "circular net-points" on it (reference (5), Chapter XIV). These 
absolute elements may, of course, be chosen arbitrarily, but there is one particular 
choice of them which appears peculiarly natural to this net-geometry. There are 
even natural choices for setting up a system of cartesian co-ordinates in the net-
geometry. 
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We make the following choices: 

Plane geometry 

Pencil of 
rectangular 
hyperbolas 
of the net. 

Quadratic family 
of parabolas of 
the net. 

Intersections of 
the above pencil 
and quadratic 
family. 

Unique circle or 
circum-circle of 
the net. 

Pencils of conies 
including the 
circum-circle of 
the net. 

Net-geometry 

Net-line at 
infinity. 

Net-unit-circle 
about the origin. 

Net-circular points, 
/ and / . 

Net-origin for 
orthogonal car
tesian coordinates. 

Net-axes of 
orthogonal car
tesian coordinates. 

Coordinates or equation 
in A, /J , v 

X+p,+v = 0. 

2 pv sin2 A = 0. (30) 

(e~lB sin A, eA sin B, —sin C) 

{eB sin A, e~lA sin B, —sin C) 

(sin 2,4, sin 2£, sin 2C) 

2 A cos 20! = 0, 
2 A sin 20x = 0. 

The reasons for describing these choices as natural are, firstly, that the pencil 
of rectangular hyperbolas is the only unique net-line immediately determined by the 
nature of the conies constituting it, and, secondly, that the quadratic family of 
parabolas is the only net-conic similarly determined (the equation of the latter 
follows on putting e=l in (24)). Next, the net-circular points must be the inter
sections of the net-line at infinity and the net-unit-circle. Furthermore, these inter
sections certainly correspond to imaginary conies of the net in that they are 
simultaneously parabolas and rectangular hyperbolas, so that in the form (23) we 
have a— —b=±ih. Their essentially imaginary nature thus makes them appropriate 
for choice as / and J. 

The centre of the net-unit-circle must then be the pole, in the (A, JLL, V) plane, of 
the net-line A+JLL+V=0 with respect to the net-conic (30). This pole is the net-point 
(sin 2A, sin 2B, sin 2C), which corresponds to the circum-circle of the net, by (18) 
and (20). This unique circle of the net makes a natural choice as net-origin O. The 
equations of the net-lines OI and OJ are then 

(31) 2 fa™1 = o, 2 fo~2m = o-
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If these are to be regarded as essentially conjugate imaginary net-lines, then a 
natural choice of real net-lines through the net-origin as net-axes of co-ordinates is 
to take the sum and the difference of the equations (31). That is, we choose the 
net-lines 

(32) 2 * c o s 2di = °> 

(33) 2 À sin 2di = ° 

as net-axes of co-ordinates. This choice, unlike the previous choices, does not 
depend only on the intrinsic structure of the net; it also depends on the orientation 
of the axes of reference taken for the canonical basis of the net. The net-line (32) is 
the pencil of conies of the net whose axes are at 45° to the original axes, and (33) is 
the similar pencil with axes parallel to the originals. These net-axes (32), (33) are 
orthogonal in the net-geometry since they form a harmonic pencil of net-lines with 
01, OJ. 

Unit net-distances along the net-axes will be cut off where the net-unit-circle 
meets them, and the tangents to the net-unit-circle at these net-points should be 
the net-lines whose equations, in cartesian net-coordinates ( | , rj), are f = ± l and 
rj = ±l. Now 

( 2 A cos 2<91)
2+(2 X sin Idtf = (X+[i+vf-4 2 ptv sin2 A, 

so the two tangents where (33) cuts (30) are 

Jfcos261=: ±(X+p+v). 

We choose (32) as the net rj-axis- 1=0, and (33) as the net £-axis, rj=0. We 
choose the sense of these axes so that the net-line 

2 A COS 20x = À + JLI + V 

is, in cartesian net-coordinates, 1 = 1 , and similarly 

2 A sin 20! = h+pi+v 

as rj = l. Then the net-lines | = a and rj=b correspond to 

(34) 2 ^ c o s 20i = a(À+/j,+v), 

and 

(35) 2 x s i n 2di = ^(A+^+r) , 

respectively. Solving these equations for À, \i, v we find that the conic of the stan
dard net corresponding to the net-point with cartesian net-coordinates {a, b) is 

a{2 Si (sin 202-sin 203)}+Z>{2 Si (cos 202-cos 203)}+{2 Sx sin 2(02-03)} = 0. 

2 
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Distance in the net-geometry. If two net-points P, Q have cartesian net-co
ordinates (al9 b±) and (a2, b2) respectively, and if corresponding (X, [i, v) co
ordinates are (/l1? ftl9 v±) and (A2, //2, v2) then we can find the latter in terms of the 
former by solving (34) and (35). Since 

in cartesians, we find that in the (A, JJL, V) coordinates 

2 __ 4 { ^ (A^g—A2^i)2 sin2 C—2 ]T (A^—Aa^X^a—/^i^sin ,4 sin B cos C} 

(Ax+//x + ^)2(A2 + ^ 2 + ^ ) 2 

In particular, the canonical basis can be regarded as three net-points Sl9 S2> S3 

forming a net-triangle. By (34) and (35) their cartesian net-coordinates are 
(cos 201? sin 20^, (cos 262, sin 262), and (cos 203, sin 203), so in the net-geometry 
SxSzSz is a triangle with angles A,B, C equal to those of the axial triangle, and with 
unit circum-radius. 

Polar coordinates in the net-geometry. The patterns formed in the net-geometry 
by the conies of the original net can be very simply related to a system of polar 
coordinates in the net-geometry. Consider a system of polar coordinates (p, y), 
where 

£ = p cos ip, rj = p sin tp. 
Then by (34) and (35) 

{ ( l A c o s 2 e i )
2 + g A s i n 2 e i )

2 } 

(X+fJi + vf 
p = I +n = „ . . va 

Hence by (20) 
P+p2+v*+22,[ivcos2A = p\X+[i+vf. 

That is 

(36) 4 2 > * sin2 4 = (1 -/>2)(/l+ia+i>)2 

If we now put 

then 

= o^ e\2-e2Y2 

i(l-f>2) = ( l - ^ 2 ) (2 - e 2 ) -

and (36) is the necessary condition (24) that the conic AS1+fj,S2+vS3=0 should 
have the eccentricity e. That is, conies of the original net with eccentricity e corre
spond to net-points at a radial net-distance 

p = \e\2-e^\ 

from the net-origin. Note that conies of conjugate eccentricity ex also have the 
same p, since 

e-Her2 = 1, 
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and consequently 
ell(2-et) = -e*l(2-e*). 

For the angular net-coordinate y), 

tan y> = r\\$ = {V A sin 20i}/{Y X cos IdJ 
(37) 

= 2 ( 2 A cos 0! sin 0!}/{2 A(cos2 ^ - s i n 2 OJ}. 

Now the angles <f> between the axes of a conic in the form (23) and the axes of 
coordinates satisfy 

2ft 
tan2<£ 

a — b 

For the conic (17) of the standard net this is equal to (37), so tan^=tan2<£. 
Hence yj=2<f> modulo TT. That is, those conies of the original net which constitute 
a net-line through the net-origin all have axes making the same angles \ip±.\rm 
with the original axes, where ip is the angular net-coordinate of this net-line. 

Note that since the net-line passes through the net-origin, it corresponds to a 
pencil of conies including the unique circle, and any pencil of conies through four 
concyclic points consists necessarily of conies with parallel axes. 

The Jacobian of the net in the A, [A, v plane. The equation (10) is a cubic in 
A, /J , v corresponding to the Jacobian of the net. For the standard form of the net 
this becomes, after some trigonometric manipulation, 

(38) ( 2 fJtv sin2 A}{2.aL2+/jiP2+vy2}-4R2fyv sin2 A sin 2B sin2 C = 0. 

Now 

(39) Àoi2+[j,p2+vy2 = 0 

corresponds to a pencil through (0, y2, --/?2), and two other similar net-points. 
That is, the pencil includes the conic 

y2S2 = P2SS, 

which reduces to the line-pair 

(mJP) = ±(m,/y). 

These two lines are the diagonals of the parallelogram formed by the two parallel-
line-pairs 5*2=0 and /S3=0. Thus the pencil (39) consists of the conies through the 
four points determined by 

± ( W ° 0 = ± W/3) = ±(Phlv) 

with all possible sign combinations. These are the four centres of perspective of the 
four pairs of parallel-sided triangles formed by the canonical basis. 
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Hence the Jacobian (38) is a cubic in the (A, //, v) plane which touches the 
quadratic family of parabolas 

2 [AV sin2 A = 0 

at the points (1,0,0), (0,1,0) , and (0,0,1) , and which passes through the 
points (0, y2, -fi2), ( -y 2 , 0, a2), and (/32, - a 2 , 0). That is, effectively through 
nine points; however these nine points do not suffice to determine the cubic, since 
they are common to all cubics of the pencil generated by varying K in 

( 2 pv sin2 A}{XoL2+^+vy2}-K?ifiv = 0. 

PART III 

The excluded types of net. We have assumed up to this point that our net of 
conies 

ASi+pSt+vSi = 0 
has the following properties : 

1. The locus of the centres of its rectangular hyperbolas is a non-degenerate circle. 
From (9) this leads to the condition that 

(40) 
#1 #2 #3 

bx b2 bz 

h h2 h3 

7*0. 

2. There exists a unique circle in the net. From (2) and (4) this leads to the con
dition that 

(4., ™ ™ ( ^ * ^ * ; * ) - * 

3. There exists a unique rectangular hyperbola whose asymptotes are parallel to 
the co-ordinate axes. {Cf. (32).} This leads to the condition that 

<«> *»* te:*)-* 
4. There exists a unique rectangular hyperbola whose axes are parallel to the co

ordinate axes. {Cf. (33).} This leads to the condition that 

«43, ^ ( Y " t iST*)=2-
5. There exist at least three distinct degenerate parabolas in the net. This is equiv

alent to the condition that equation (14) have at least three distinct roots, or, 
also equivalently, that the three points of contact between the net-cubic (10) 
and the net-conic (12) be distinct. 
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It may, of course, happen that the net-cubic (10) degenerates into the net-conic 
(12) and a straight line. In this case all the parabolas of the net are degenerate, and 
we can always choose three of them as base conies of the net. 

It is immediately obvious that condition (43) is equivalent to the geometric 
condition that the three linearly independent conies Sl9 *S2, S3 intersect the line at 
infinity in three pairs of points which are not in involution. Also, that the condition 
(40) implies conditions (41), (42), and (43), but not conversely. 

The conditions under which property 5 holds are less transparent, and therefore 
need some elaboration. Since condition (40) assures the existence of a unique circle 
and two unique rectangular hyperbolas in the net, as in properties 3 and 4, we 
can choose the base conies of the net as follows. 

First, we choose the centre of the unique circle as the origin of our co-ordinate 
system. Then we can take 

Sl = x
2-y2+2g1x+2f1y+cA 

(44) S2 = 2xy +2g2x+2f2y+c2\ 
S3 = x2+y2+ * + * +c3) 

A further simplification is obtained by a rotation about the origin through a 
suitable angle O, followed by a new choice of S1 and S2. In this way we can, for 
instance, arrange to have/ i=0. We do this as follows. The rotation through an 
angle O about the origin corresponds to the transformation 

x -> x cos O— y sin O, 

x -> x sin O + j cos O. 

This leaves £3 unchanged, but Sx and S2 become 

Si == x2 cos 20—2xy sin 20 — j 2 cos 20+2(gx cos 0 + / i sin 0)x 

+2(-gx sin 0 + / i cos 0 ) j + c l 5 

S2 = x2 sin 2®+2;cj cos 20— y2 sin 20+2(g2 cos 0 + / 2 sin 0)x 

+ 2 ( - £ 2 sin 0 + / 2 cos 0 ) j + c 2 . 

We now choose the following two distinct rectangular hyperbolas as our new base 
conies Sl9 S2. 

S± = S± cos 2 0 + 5 2 sin 20 , 

S2= —S± sin 2 0 + S 2 cos 20 . 
Then 

$! = x2-y2+2{(g1 cos 0 + / i sin 0)cos 20+(g2 cos 0 + / 2 sin 0)sin 20}x 

+ 2 ( - g i sin 0+ /x cos 0)cos 2 0 + ( - g 2 sin 0 + / 2 cos 0)sin 20};; 

+ c x c o s 2 0 + c 2 s i n 2 0 , 

£2 = 2xy+2{-(g1 cos 0 + / x sin 0)sin 20+(g 2 cos 0 + / 2 sin 0)cos 20}x 

+ 2 { - (—gi sin 0 + / x cos 0)sin 20 + (—g2 sin 0 + / 2 cos 0)cos 2 0 } / 

— ^ 8 ^ 2 0 + ^ 2 cos 20. 
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Since the angle of rotation 0 is still arbitrary we can choose it in such a way that 
the coefficient of y in Sx be zero. That is 

{-g1 sin 0 + / 1 cos 0)cos 2 0 + ( - g 2 sin 0 + / 2 cos 0)sin 2 0 = O. 

Note that there always exists a real angle O which satisfies this equation, since it is 
of degree three in /= tan O. In fact it is 

(-git+fi)(l-t*)+2t(-g2t+f2) = 0. 

We have thus shown that an orthogonal cartesian co-ordinate system (x9 y) in 
our original plane exists such that, if condition (40) is satisfied, then the three base 
conies of the net can be chosen to be 

Si = x*-f+2g1x+ * +cl9\ 
(45) S2 = 2xy +2g2x+2f2y+c2\ 

S2 = x2+J2+ * + * +c8.J 

This representation is particularly appropriate since the co-ordinates (X9 fx9 v) of 
a point-element in the net-geometry corresponding to the conic 

XSx+fxS2+vS3 = 0 

can be interpreted as homogeneous orthogonal cartesian co-ordinates. Thus S3 

corresponds to the origin (0,0, 1); the pencil of rectangular hyperbolas corre
sponds to the line at infinity, v=0; and the family of parabolas corresponds to the 
unit circle {Cf. (12)}. 

(46) X2+/x2-v2 = 0. 

Hence the parabolas which are also rectangular hyperbolas correspond to the 
circular points (1, /, 0) and (1, — /, 0). 

The curve which corresponds to the degenerate conies of the net is the cubic 
{Cf. (10)} 

(47) 
X + V fX Agi+fAg* 

ix —X+v [xf2 

4?1 + M?2 ftf* Xcx+[XC2-\-VCz 

= 0. 

As has been shown earlier, the cubic (47) is tangent to the circle (46) in three 
points, Pl9 P2, P3 , say. The rotation through an angle O in the (x, y) plane, as out
lined previously, corresponds to a rotation in the (X, /x, v) plane such that one of 
these three points, say Pl9 be the point (1, 0, 1). This is easily checked by putting 
these values in (47). The corresponding cubic equation (14) in/? then reduces to the 
quadratic equation 

(48) (gi-2f2)p2+2g2p-gl = 0. 

Hence (14) has the rootsp l 9p2 of (48), and the third root is/?3=oo. 
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We are now in a position to interpret the conditions for property 5 (that there 
exist at least three degenerate parabolas in the net). In order that this should 
happen it is necessary and sufficient that the equation (48) have neither the root 
/?3=oo, nor that its two roots pl9p2 co-incide. That is, both 

(49) g l - 2 / 2 * 0, 
and 

(50) g i ( g i - 2 / 2 ) + g 2 V 0 . 

We thus have: 

THEOREM. In order that a net of conies in the euclidean plane satisfying condition 
(40) should have three degenerate parabolas {at least) it is necessary and sufficient 
that, when reduced to the canonical form (45), conditions (49) and (50) be satisfied. 

Thus the net whose base conies are 

Sx = x*-y2+2glx+ * +cl9\ 
52 = 2xy +2gix+g1y+c2,\ gx * 0, g2 * 0, 
53 = x 2 + J 2 + * + * + cz.) 

has only two degenerate parabolas. Also, the net whose basic conies are 

Si s x*-y2+2g1x+ * +CA 
S2 = 2xy + * + £ x j + c 2 gt ^ 0, 
Sz = x2+y2+ * + * +c3) 

has only one degenerate parabola. 

Classification of nets. The representation (45) of a net of conies in the euclidean 
plane (to which all nets satisfying condition (40) can be reduced) can be made the 
basis of a classification of such nets. This is because there will clearly be as many, 
and only as many, types of such nets as there are distinct relative positions of the 
cubic (47) and the circle (46). One would also have to take into consideration the 
reality and multiplicity of the common points of (46) and (47); these matters have 
not been dealt with in this paper. 
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