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Abstract

Generalised wreath products of permutation groups were discussed in a paper by Bailey and us. This
note determines the orbits of the action of a generalised wreath product group on m-tuples (m > 2) of
elements of the product of the base sets on the assumption that the action on each component is
m-transitive. Certain related results are also provided.

1980 Mathematics subject classification (Amer. Math. Soc): 20 B 99.

1. Introduction

In an earlier paper with R. A. Bailey [3] we discussed a number of properties of
the generalised wreath product group (over a poset (/, p)), denoted by (G, A) =
n ( / p)(G,, A,), and, in particular, determined the orbits of the action of G on
A X A. These orbits take a particularly simple form if (G,, A,) is 2-transitive for
each / e /. One of the purposes of this note is to derive the corresponding result
for G acting on Am for m > 2, under the assumption that (G,, A,) is m-transitive
for each /' e /. We go on to discuss the action of certain subgroups of G on
certain subsets of the orbits so determined.

The results of this note are required for a discussion of cumulants and
^-statistics, of order higher than 2, of families of random variables labelled by the
index sets which arise in complicated analyses of variance.
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2. Preliminaries

The notation and terminology of Bailey et al. [3] will be used without comment.
The poset (/, <) is assumed finite throughout this note. For any natural number
m, we write m = {1,. . . ,m} and, if h: m -* S is any map defined on m, we write
ker h for the partition of m induced by h, i.e. x and y in m are in the same block
of ker/i if and only if xh = yh. The lattice of all partitions of m is denoted by
^"(m); see Aigner [1] for many properties of these lattices.

We write Hom(7, ^(m)) for the set of all monotone maps <J>: / -> ^(m); this
is a lattice under the pointwise operations. Now, any map h: m -» A defines an
element <f>* e Hom(/, ^"(m)) by the formula <J>*(j) = A7>l-ker hp where h} = hvj.
Note that

(a) for all x, y e nt, we have that x and y are in the same block of </>*(/) if and
onlyifx/i ~A[l]yh,

(b)4>h(i) = ker/iTr' A ker/i,,
(c) we have </>* = <j>k if and only if AJeJkerhj = Aj^jkerkj for all ancestral

sets / .
For <J> e Hom(/, &>(m)), we write Q* = {h e Am: 4>h = </>}.

3. The main result

Our main result is the following.

THEOREM. / / (G,, A,) is m-transitive for each i e /, then {0^. $ e
Hom(/, ^(m))} is exactly the set of orbits of the generalized wreath product group
G acting on Am.

The proof is contained in the following lemmas.

LEMMA 1. 0^ is G-invariant.

PROOF. For each i e / and h e Am, Theorem B of [2] shows that, if x, y e nt,

xh ~ yh if and only if xhf ~ yhf.
A[i] A[i]

Thus , by note (a) above, <£* = <j>H/.

LEMMA 2. //(G,, A,) is m-transitive for each i e /, then G acts transitively on 6^.
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PROOF. Fix / G / and h, k e 0+, and suppose that ker hm' has blocks Bx,... ,BS.
Then, for all r < 5 and x, y G Br, we have xhir' = yhir' if and only if xkir' = ykm'
and, consequently, xhmt = yh-n^ if and only if xkirt = yk"nt. Since each \Br\ < w,
our assumptions imply that, for all r < s, there exists gr e G, such that, for all
x G Br, we have (x/i),gr = (xk)f. Also, by the definition of ker Aw', there is a
m a p / : A' -» G, such that, for all r < s and JC G 2?r, we have (xhn')fj — gr.

Carrying out this process for each i G / produces an element/ = ( / ) G G such
that A' = k.

The proof of Lemma 2 shows more, namely that if, for each i G /, we have Gt

being m,•-transitive with w, > sup{|5|: 5 is a block of <£(')}> then G is transitive

These two lemmas show that, when all the (G,, A,) are w-transitive, the orbits
of G on Am are labelled by the elements of Hom(7, ^"(m)) (a result which is well
known when | / | = 1), as follows: the \0^\ are disjoint, and each is non-empty
since, for tj> G Hom(7, ^ ( m ) ) , we can define an h: m -* A such that <f>h = <f> by
arbitrarily choosing its component maps /i,: m -» A, subject only to ker/i, = <£(/)
for each / G / .

The following reformulation of the definition of <S>h is of some interest.

LEMMA 3. <»* = V{</> e Hom(7, ^"(m)): (V i G 7)(^>(/) < ker A,.)}.

PROOF. Denote the right-hand side of the above expression by \ph. If / «; j , then
\ph(i) < \ph(j) < ker hj and thus, if x and j>> belong to the same block of t//*(/),
then x/iy = yhj for ally > /. But this means that xhir' = yhm' and so \pH < <j>h. On
the other hand, <j>h < ^* by definition, and so <j>h = \ph.

REMARK. When m = 2, the lattice ^"(m) is just the 2-element chain and in this
case Hom(7, ^ ( m ) ) is isomorphic to the distributive lattice of all ancestral sets
(i.e. dual ideals or filters) of 7. Thus these conclusions are consistent with
Theorem C of Bailey et al. [2].

As an illustration of our conclusion for m > 2, we depict in Figure 1 the lattice
Hom(7, ^ ( m ) ) where 7 is the poset {1,2: 2 < 1} and m = 3. This lattice labels
the orbits of Sn wr Sk acting on triples of elements from n x f .

In Speed and Bailey [5] it was shown that the poset (7, p) defines an association
scheme on A. Theorem C of Bailey et al. [3] shows that the associate classes
coincide with the orbits of G if each G, is 2-transitive. The above proof gives the
following stronger result: if each G, is 2-transitive then the poset-defined associa-
tion scheme is /-transitive for all /, in the sense of Cameron [4, p. 103], and hence
/-regular for all /, in the sense of Babai [2, p. 2].
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(123,123)

[4]

( 1 2 3 . 1 1 2 3 ) ^ (123,2113 (123,3112)

(1123,1123) (3112,3112)

(1I23,1I2I3)X (2113,11213)'r (3112,11213)

(11213,11213)

Figure 1. A lattice Hom( / , & ( m ) )

4. Related results

For certain results in statistics, which will be published elsewhere, it is neces-
sary to have information concerning the actions of some subgroups of G on
certain subsets of 0^.

Let ) £ / be fixed and write (GJ, A) for the generalized wreath product
n ( / ^)((/,, A,) where, for i =£ j , the group G, contains the identity permutation
alone, whilst Gy = Gj. Thus GJ is the subgroup of G corresponding to an action
which moves only the yth coordinate; see Lemma 4 below. For / i e i ™ and
</> e Hom(7, ^"(m)), we write

(?*•> = {k e <V kt = ^ for all i*j),

£ + J = { k e 0+. k,, = h t f o r a l l i > j ) .

LEMMA 4. / / / , = /i,/or a// / ^ 7.
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PROOF. This is an immediate consequence of the definition of GJ and the action
of generalized wreath product groups: if/ = (/,), where/): A' -» G, for each / e / ,
and x 6 m , then, for / ¥= j ,

(Xhf)i = (^),((X/Z77')/,) = (XA),1, = (Xh)h

where we have denoted the identity permutation on A, by 1,.

COROLLARY. G'fixes both 6%J andM*lJ setwise.

LEMMA 5. IfGj is m-transitive the GJ is transitive on (9£J.

PROOF. Take k e G*'j. It is sufficient to find / e Gj so that kf = h, and by
Lemma 4 we need only consider they th coordinates.

We denote the blocks of ker/my by B1,...,BS and, by the reasoning in the
proof of Lemma 2, we see that, for each r = 1, . . . ,s, we can choose gr e Gj such
that, for each x e Br, we have (xk)jgr = (xh)j. Continuing the line of reasoning
of Lemma 2, we choose/^ arbitrarily subject only to the requirement that, for each
r = \,...,s and x e Br, we have (xhirj)fj = gr. The definition of / is now
completed by defining/ (i: ¥= j) in the only way possible and we have found a n /
with/fc/= h.

REMARK. The proof has in fact shown that, if h, k e 6^ and /i, = kt for all
/' > j , then there exists an e l emen t / e G> such that (kf),• = /i, for all / >y. This
shows that the orbits of GJ on,2*^ are labelled by the elements of {{A:,: i£j):
k G 2.^>} and are exactly the sets

{l^d)^li = hi,i>jji = ki,i^j}.

Our final result shows that, for h, k e 0^, we can find a n / e G such that
kf — h, having the form

(1) / = A/ 2 • • • / « , w i t h / e G ^ ' (t = l,...,u),

where / = {j\,---,ju}- Loosely speaking, we can "move over" 0^ using elements

from the subgroups GJ of G. This is the only result for which / must be finite.

LEMMA 6. / / (G,, A,), for each i e / , is m-transitive then, for h, k e 0^, there
exists f e G of the form (1) such that kf = h.

PROOF. We number the elements of / , beginning with the maximal ones, in such
a way that if / > j in / , then the number that j is assigned is larger than that
assigned to /.
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By the remark following the proof of Lemma 5, we can find/j e Gjl such that
>! = hj- Assume now that this has been done for^, . . . J(_1; t > 2, and so
' ' " ft-i) a g r e e s w i t h h atj\,...,j,_v T h e n w e h a v e k' = k{fr ••• f t _ ^ ) &

and, by the last remark, once more there exists /, e Gjl which sends k' to
""' ft) e £+Jl- Thus k(fi • • • /,) agrees with h aty\,... J, and the induction

proof is complete.
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