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Abstract

The paper analyses the dynamics of a duopoly output game involving a warfare
strategy proposed by Robert Bishop. Necessary and sufficient conditions are
obtained for the stability of a duopoly warfare game.

1. Introduction

Theocharis [7] was one of the first to investigate the stability of the Cournot
oligopoly problem. He took a linear demand curve and assumed constant marginal
costs cl,i = \,...,n, for each of n sellers. Each seller assumes that his competitors'
quantities of output will remain unaltered in the next business period. Then every
seller attempts to maximize his profit during the next business period by producing
what he believes will be the optimal quantity of goods. Based on these assumptions,
Theocharis showed that stability occurs only in the duopoly case. For three sellers
he concluded that finite oscillations about the equilibrium position occur and for
more than three sellers there is always instability.

Theocharis' paper produced initial objections and improvements from Fisher [2]
and from McManus and Quandt [4]. Thereafter various generalizations and
extensions were developed.

Both the Fisher and the McManus and Quandt papers showed that either a
more general output adjustment process or variable marginal cost functions will
increase the stability of the process. Fisher assumed a linear demand curve and,
for the discrete time case, worked from the equation

where xt(t) is the quantity produced during the tth business period, xf(t+l) is
the quantity which the Cournot strategy suggests should be produced during the
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[2] Stability of Bishop's warfare strategy 419

(/+ l)th business period, and kt is the speed of adjustment or "confidence" which
firm i has in its theoretical result xf(t+i). For this discrete case, it is always
possible to find speeds of adjustment such that stable equilibrium occurs.

The variable cost functions, used by both Fisher and McManus and Quandt,
were of the form

Ct=9i + cixi+idxf, firms i = l,...,n,

where gh ct and d are constants. The restriction di = d for all / = 1,...,« means
that the slope of the marginal cost curves is assumed to be the same for all the
n firms.

Bishop [1] suggested possible alternative types of warfare when competing
duopolists persist in making mutually incompatible demands upon each other. He
discussed and illustrated a method by which each duopolist may convey to the
other, without verbal communication, both his demand for a certain collusive
profit and the threat of the warfare he would be prepared to wage, if necessary,
to enforce that demand. Central to the strategy was a reaction schedule with three
segments successively reflecting, first the collusive equilibrium proposed, secondly a
warring response if that offer is refused, and finally a limiting influence on the
severity of the warfare. Bishop considered in detail a specific case of constant and
equal costs for the duopolists and concluded that stable equilibrium would always
eventually occur in the discrete time situation he studied. However, Bishop did
not explain why the duopolists would eventually reach the equilibrium state
suggested, and neither was he concerned with how this equilibrium would be
reached.

Osborne [5] considered the comparative statics of a number of duopoly output
variation games with perfect information. Among the strategies considered was a
variant of Bishop's threefold warfare proposal. Osborne's approach differed from
Bishop's in that he sought the solution which is the best attainable by simul-
taneous pursuit of Bishop's strategies rather than an eventual equilibrium point.

In his paper, Bishop [1] also used the constant and equal cost structure to
discuss a more general single warfare hypothesis. At each time period, t, a duo-
polist, i, assumes that his rival, j , will maintain an unchanged output in the next
period. Duopolist / selects his new output to maximize

nfc+l)-a,nJ(t+\'), i,j=\,2, i*j,

where nt(t+1) is firm /'s profit at time (f +1) and each at is constant.
The present paper investigates the significance of the at's and considers the

dynamics of a duopoly model involving Bishop's warfare strategy. It incorporates
the non-instantaneous speeds of adjustment, kit of Fisher [2] and extends his
quadratic cost structure to allow marginal cost curves of duopolists to have
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different slopes. We will show that necessary conditions for asymptotic stability of
the system are that the sum of the k,'s be bounded above and that an interaction
term involving the o,'s be less than unity. It should be understood that when we
are considering stability of the system, we are in fact referring to asymptotic
stability.

2. Cost, demand and profit functions

Theocharis [7], Fisher [2] and others assumed a market demand curve of the
form

where a and b are positive constants and xt is the output of firm /. Osborne [5, 6]
and Bishop [1] chose, instead of equation (1), the relationship

P = 0-j>,, (2)

where D is a positive constant. It should be noted that equation (2) is no less
general than equation (1); in fact, the latter reduces to the former by letting
p =/? '/b and D = ajb. For simplicity we shall use (2).

In place of Bishop's constant and equal cost functions, we suppose that the cost
function of firm i is more generally a quadratic function of firm j's output, that is,

Ci^gi+CfXi+idtX?, i = \,...,n. (3)

Note that, unlike Fisher [2], we have not restricted firms to having identically
sloping marginal cost curves.

The profit of firm i is given by

71,- = pXj — C j

n

lVi

where At = D — ci and Bt = — (1+irf,).
We will assume that firm I'S marginal profit is a decreasing function of its own

output. This requires

4 > - 2 , i = l,...,«. (5)

We can reasonably place the additional restriction that it should, at some time, be
possible for the /th seller to make a non-negative profit by producing a positive
output. This should certainly be so when Xj—0,j—\,...,n,j^i, in which case
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7t,. = — gj+AiXi+Bixf. As gh —Bt and xt are all non-negative, such non-negative
profits can only be achieved if Ax ~2- 0, that is,

c , < A i = \,...,n. (6)

Now for firm /, the marginal cost is c.+^x,. Assuming that marginal costs are
always positive and remembering that 0 < xt < D, we obtain

c,->0 (7)
and

dlD>-ci. (8)
Equations (6)-(8) imply that

dt>-\, (9)

which states that marginal costs cannot decline as fast as price.

3. The warfare concept of a Bishop strategy for two firms

If two firms cannot agree on outputs, then they are likely to adopt warring
attitudes. Bishop [1] considered the warfare strategy whereby each firm i selected
xt(t+l) to maximize nt(t+l) — Kj(t+1), i,j= 1,2, i¥"j, assuming that

Xj{t+\)=Xj(t),

where xfo) and nt(t) refer to the production quantity and profit, respectively, of
firm i at time period t. Osborne [5] incorporated a version of this strategy into his
analysis. He considered the possible outcomes when duopolists adopted various
strategies, one of which was Bishop's. However, we shall discuss the more general
case, also considered by Bishop, where each firm / maximizes 7T;(/+1) — «,• 7Tj(f +1)
on the assumption that each firm j holds its own production constant. The signi-
ficance of the at will be discussed at length later in this section. When at = 0 we
have the Cournot strategy. When at = — 1 we have the case of joint profit
maximization by firm / and when a, = 1 we have the "rivalistic" case (see Fouraker
and Siegel [3]).

From (6) we have, in the duopoly case,

f-X! x2.

Firm i assumes that Xj(t+l) =Xj(t) and maximizes T T ^ + I ) — atnj{t+l) to give

xt.t+1) = {(l-adx{t)-Aty(2Bd. (10)

Before investigating the significance of the a,'s we consider the contract curve
obtained from det (dnJdXj) — 0. This yields

A1A2+(2B1A2-A1)xl+(2B2A1-A2)x2+4B1B2x1x2

-2Blx\-2B2xl=0. (11)
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This represents an hyperbola, an ellipse or a parabola according to whether
(BlB2 — 1) is positive, negative or zero. Thus many possible cases may arise. For
illustration, consider the case where the contract curve is a parabola and
A2<A1<2A2- For this case, Fig. 1 shows part of the contract curve and the
reaction functions of duopolists using the Bishop strategy, for various values of
«! and a2. That part of the contract curve passing through the points (/42,0) and
(0, Ax) has been omitted.

Fig. 1. This diagram shows the reaction functions of duopolists using the Bishop strategy lor
various values of a\, a2 (given A2<Ai<2A2).
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From (10), the reaction function for firm i is

xt = {(l-adxj-A,}l(2Bd, U= 1,2, i*j. (12)

In Fig. 1, the lines through Pt (xt = — /*;/(22?,), Xj;=0) indicate the reaction
functions for firm /, for various values of ah i = 1,2. The curve through Pv and P2

is the contract curve. It indicates the shape of the curve which can arise when it is
a parabola or an ellipse. In general, the point of intersection of the reaction
functions of the two firms is found by solving (12), giving coordinates

( a 1 - l ) ( a 2 - l ) - 4 B , B 2

provided (ax -1 ) (a2 -1 ) - 4BX B2 # 0.
The condition (a1 — l)(a2 — l) — 4BlB2=0 is equivalent to the reaction

functions for firms / and j being parallel. The special case of these two curves
being coincident will not be examined in this paper.

Consider now what increment in profit firm i believes that its new production
rate will yield. This is given by

(14)

Firm / also believes that the increment in firm/s profit will be

nj(t+l)-nj(t) = {.AMai- l)*/0+2S,*,(0:i*/0/(2*,). (15)

Thus firm i would expect the relative improvement in its own position to be

/, = {71,(1+ 1) - TT.-O)} - {«/ /+ 1) - 71/0}
= -[{^i+25,.xi(0}2-{(l-a,.)x/0}2]/(45,.). (16)

If di=0, then /, = -[{/4,+25iJCi(0}2-{^/0}2]/(45i) which may be positive,
zero or negative. Firm / seeks to maximize its own profit, even if this means
improving the position of the rival firm more than it does its own. This is precisely
the Cournot strategy. Hence the Cournot strategy can be considered a special case
of this Bishop warfare strategy.

If ai = 1, then It = -lAi+2Bixi(t)']
2/(4Bi) > 0. Firm / expects to improve its

position relative to firmy, or at worst to maintain its relative position, as a result
of changing its production schedule.

If a-, = - 1 , then 7f = -l{Ai+2Bixi(t)}
2-4{xJ(t)}

22/(4Bi). Firm / is seeking to
maximize the combined profit Jij(f+l)+7r/f+l). This is essentially a strategy of
cooperation rather than warfare. If both firms adopt this strategy (at = a2 = — 1)
then they are pursuing the same objective.

If 0 < a ( < l , firm / is concerned partly with the common good, and partly with
its own self-interest. Taking at<-\ would be an irrational and self-defeating
strategy.
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For at = l+r, r>0, the values of /,• are identical. Since n^t+l) would be
greater for at = \—r, firm / should not choose a value of at greater than unity.
Bishop also reached this conclusion. However, a firm might still select at — l+r
if it is confident that it can withstand short-term losses in order to drive its
opposition from the market.

If x1 and x2 are non-negative, then It ^ 0, provided

\Al+2B1x1\^\(l-a1)x2\.

In the rivalistic case, that is ax = 1, we have / t ^ 0 regardless of the non-negative
values of xx and x2. The shaded area in Fig. 2 indicates where /j 5= 0 for at # 1.

-A
2B,

Fig. 2. The shaded regions in this diagram indicate where firm 1 expects to improve its position
relative to firm 2 when it adopts a Bishop warfare strategy wit

Suppose that firm /' is interested only in improving its profit relative to its rival,
and it is uncertain whether its rival will maintain unchanged production. If firm i
uses a Bishop warfare strategy, then it should choose a, = 1. However, if at # 1,
firm / should choose a production xt away from —/4,/(2JBJ) (see Fig. 2).

4. Evolution and stability of games involving the Bishop warfare strategy

We now investigate the situation where each firm /, J = 1,2, repeatedly obtains
a value xf(t+i) after maximizing n^t+l)—aj7t,-(/+l), based on the assumption
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[8] Stability of Bishop's warfare strategy 425

that its opposition maintains an unaltered production at time (/+1). From (10),

Incorporating Fisher's speeds of adjustment, as outlined in the Introduction, we
let each firm i adjust its production with speed kt. Thus

} (18)

where kt>0, i= 1,2. Substitution of (17) into (18) gives

Having chosen kt and a;, equation (19) determines the new output for firm i. If
kt and a{ remain constant, and firm / uses (19) to determine all subsequent out-
puts, then (19) may be thought of as specifying the strategy of firm /. If both
firms pursue this strategy, it follows from (19) that the output of firm /, / = 1,2,
satisfies the linear difference equation

xi(t+2)-(2-k1-k2)xi(t+l)+{(l-k1)(l-k2)-klk2E1E2}xi(t)
= (B, Et Aj-A, Bj) kt kilQBt B2), (20)

where Et =(af-1)/(2£,). Hence E{ has the same sign as 1 - a ; . Equation (20) has
the solution

(21)pg-k,-x+) ,
=—j-z—A+

where Rh i = 1,2, are given by (13), P and Q are constants whose values depend
on the initial outputs Xj(l) and x2(l), and A+, A_ are assumed to be distinct roots
of the characteristic equation of (20), namely

l2-(2-k1-k2)X-{k1k2ElE2-(l-kl)(l-k2)}=0. (22)

The form of the solution (21) will be different in the case X+ =A_. However, the
following stability analysis still applies to this particular case.

It follows from (22) that

X± =±{2-kl-k2}±li-{{kl-k2y+4klk2E1E2}*. (23)

The roots A + ,A_ will be real provided the discriminant {(kl—k2)
2+4kik2El E2}

is non-negative, that is

(A:, — Ar2)
2-(-4/c1 k2 Et E2 > 0. (24)
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As ku k2 >0, (24) is satisfied for all ku k2 >0 if E1 E2 > 0. For convenience we put

a-E^-'M-'J. (25)
4BtB2

Hence if a 5= 0, that is, either ax and a2 are both greater than unity or both less
than unity, then we have real roots for all kuk2>0. To investigate inequality (24)
for <x<0, we temporarily introduce the change of variables

J l

Substituting (26) into (24), the inequality becomes

a ) F 2 ^ 0 . (27)

For a<0, it is convenient to write

a = -y , (28)

so that y>0, and (27) may be written

(l+y)Y2-yX2&0, (29)

or equivalently

(V(i+7) r-7(y) *).(V(i+iO y+VCv)^) > °- (30)

In terms of the original variables kuk2, inequality (30) becomes

£ 0 . (31)

The boundary of the region defined by inequality (31) is given by the equations

l ( 3 2 )
Wd+y)+V(y)/

and

p+y)W(y))i. (33)

As 7>0, V(l+y)>V(y). Hence N/(l+y)+N/()')>V(1+y)-V()')>0- Equations
(32) and (33) are thus of the form

and

For a<0 (that is, ElE2<0), Fig. 3 shows the regions in the k1—k2 plane corre-
sponding to real and complex roots, given k1,k2>0.
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7 r
Fig. 3. This shows the regions in the k\, k-i plane corresponding to real (shaded) and complex

roots of the characteristic equation, given E\ £ 2 < 0 and k\, /r2>0.

Having found the regions corresponding to real or complex roots of equation
(22), we now investigate the stability of solutions (21) to equation (20). Stable
solutions will exist if, for both real and complex roots X±, \ X± | < 1.

For the case of real roots X±, stable solutions exist provided

and
'C 2 }* ]<1 (34)

-\<^[2-{kl+k2)-{{kl-k2)
2+4aklk2}^<\. (35)

Inequal i t ies (34) a n d (35) c o r r e s p o n d to |A+ | < 1 a n d |A_ | < 1 , respect ively. T h e y
c a n be r e a r r a n g e d t o give, respect ively ,

a n d

-(k1+k2)<{(k1-k2)
2+4txklk2}

i<4-(k1+k2). (37)

To simultaneously satisfy inequalities (36) and (37), we need

max{-(kl+k2), -4+(kl+k2)}<{(k1-k2)
2+4ak1k2}*

),4-(kl+k2)}. (38)

Hence there are two cases to consider, namely
(i) 4-(fc1+fc2)SS(A:1+/c2) or ki+k2^2

and
(ii) 4-(k1+k2)<kl+k2 or k1+k2>2.
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First let us investigate case (i), when k1+k2 < 2 and thus

min{(k1+k2),4-(kl+k2)}=k1+k2

and

max{-(A:1+A:2)> kx+k2-4} = — (Arx+A:2)<0.

It follows that, when kt+k2 < 2, inequality (38) reduces to

0<{(ki-k2)
2+4ak1k2}

i<(kl+k2),

which may be further simplified to yield

4(a-l)Jfc,A:2<0. (39)

It follows that for real roots ((24) holds) and when kx+k2 < 2, A:,,A:2>0, we
have stable real solutions to equation (20) for a < 1.

Let us now turn our attention to case (ii), that is, when kt +/c2 >2. In this case

c1+£2, 4-{k1+k2)} = 4-(k1+k2)

and
max{-(A;1+A:2), k1+k2-4} = kt+k2-4,

and inequality (38) becomes

-4+(A:1+A:2)<{(A:1-A:2)
2+4aA:1A:2}*<4-(A:1+A:2). (40)

We note that inequality (40) can never be satisfied for any real &,,k2 if kt+k2 $s 4.
Thus for kt+k2 > 4 there can never be stable real solutions to the difference
equation (20).

When 2<&1+&2<4, inequality (40) reduces to

0<{(A:1-A:2)
2+4aA:1A:2}*<4-(/:1+A:2),

which may be further simplified to give

(lx-l)k1k2+2(k1+k2)<4. (41)

Recalling that we are considering 2<&!+&:2<4, then in order for inequality (41)
to be satisfied, we must have

(a-l)A:1A:2<0,
that is,

<x<l.

The boundary of the region defined by inequality (41) is given by the equation

(a-l)A:1A:2+2(A:1+A:2)=4, (42)

which has two asymptotes, at kt = 2/(1 —a) and k2 =2/(1 —a).
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[12] Stability of Bishop's warfare strategy 429

We are now in a position to delineate the regions of the k1—k2 plane corre-
sponding to real stable solutions of (20). For <x>0, a = 0 and a<0, these regions
are shown in Figs. 4(i), 4(ii) and 4(iii), respectively.

k,

Stable
solutions

0 J 2
Stable (real} solutions

Fig. 4. This shows the regions in the k \, A:2 plane corresponding to stable solutions of the difference
equation (20) for 0 < £ i £ 2 < l (4(0), £jE2 = 0 (4(ii)) and ElE2<0 (4(iii)).
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For the case of complex roots X±, stable solutions again exist provided | A± | < 1.
As complex roots can only occur for a<0, we again employ (28), that is,

<x=-y, y>0.

In this case we may write

X± =K2-(k1+k2)l±iK4yk1k2-(k1-k2)
2¥, (43)

from which it follows that | X± | < 1 is equivalent to

-l^(l+y)k1k2-(kl+k2)<0. (44)

The boundary of the region defined by inequality (44) is given by the equations

k2=-

k
2

(45)

The region of the kx-k2 plane corresponding to stable complex solutions is shown
in Fig. 4(iii). It is of interest to note that the point kx = k2 = 1 is in a region
corresponding to stable solutions only when y < 1 or, equivalently, a > — 1. Thus,
the solution of the Cournot problem with immediate and complete adjustment is
unstable when a < — 1.

One further constraint has yet to be discussed. An equilibrium point is of
practical interest only if it lies in the first quadrant of the xl-x2 plane. This will
be the case provided Rt>0, i = 1,2. For asymptotically stable solutions to occur,
it is necessary that a < 1. Hence necessary conditions for such stable solutions to
occur in the first quadrant are a < l and Rt>Q, i = \,2. The conditions are
equivalent, respectively, to

(a1-l)(a2-l)<(2+dl)(2+d2) (46)

and
ai>l-(2+di)(Ai/AJ), I,; = 1,2, i*j. (47)

Inequality (47) places a lower limit on the aggressiveness a firm must show in
order to reach a balance with the opposition, corresponding to a positive output
of its own product. Inequality (46) places an upper limit on the aggressiveness of
the firms if a stable situation is ever to be reached. We note that if

ai<l+(2+di)(Ai/Aj), i,j = 1,2, i*j,

then (46) is satisfied. Hence a sufficient condition for any equilibrium point to
occur in the first quadrant is

\al-l\<(2+dl)(Ai/AJ), i,j= 1,2, i*j- (48)
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5. Summary

We have investigated Bishop's suggestion that a duopolist, /, might adopt the
strategy of selecting xfa+l) to maximize n^t+l) — a,itj(t+l), assuming that his
rival, j , maintains an unchanged output Xj(t+l) = Xj(t). Dynamic solutions for a
duopoly situation have been found. Necessary conditions for stable equilibrium
points to occur are 0 < kl+k2 < 4 and <x< 1, where

These inequalities place upper limits on the speeds of adjustments and the
aggressiveness factors respectively.

Sufficient conditions to ensure stability of the system are, first in the case of
(at — 1) and (a2 — 1) having the same sign,

(X/Ci+A^a and 0 ^(a1-l)(a2-l)<(2+dl)(2+d2).

In the case of (a1 — 1) and (a2 — 1) having opposite signs (that is at< 1 and o,-> 1),
a sufficient condition to ensure stability is kj<2(l — a)"1. Hence, as the more
aggressive player increases his aggressiveness, this sufficient condition requires
that the kt decrease towards zero.

To ensure that any equilibrium points that occur, do so in the first quadrant,
it is sufficient that | a ; -11 K^l+d^AJAj).

When Fisher considered the Cournot solution of the oligopoly problem, he
found that sufficiently small speeds of adjustment could always be found to
produce equilibrium, regardless of the number of sellers. In addition, increasing
marginal cost functions were always a stabilizing factor. For the model we have
considered, increasing marginal costs are a stabilizing factor, but the effect of the
speeds of adjustment varies with different a;'s. However, these speeds of adjustment
or confidence factors have to exceed unity to affect the stability of the system.
The notion of the a,'s is unique to the Bishop strategy. If either firm is too
vindictive (a( too large) stability will not occur.
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