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Abstract

We extend the result obtained in E. Godelle [‘The braid rook monoid’, Internat. J. Algebra Comput. 18
(2008), 779–802] to every Renner monoid: we provide a monoid presentation for Renner monoids, and
we introduce a length function which extends the Coxeter length function and which behaves nicely.
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1. Introduction

The notion of a Weyl group is crucial in linear algebraic group theory [4]. The seminal
example occurs when one considers the algebraic group GLn(K). In that case, the
associated Weyl group is isomorphic to the group of monomial matrices, that is, to the
permutation group Sn . Weyl groups are special examples of finite Coxeter groups.
Hence, they possess a group presentation of a particular type, and an associated
length function. It turns out that this presentation and this length function are deeply
related to the geometry of the associated algebraic group. Linear algebraic monoid
theory, mainly developed by Putcha, Renner and Solomon, has deep connections with
algebraic group theory. In particular, the Renner monoid [10] plays the role that the
Weyl group does in linear algebraic group theory. As far as I know, in the case of
Renner monoids, there is no known theory that plays the role of Coxeter group theory.
Therefore it is natural to look for such a theory, and therefore to address the question of
monoid presentations for Renner monoids. In [2], we considered the particular case of
the rook monoid defined by Solomon [15]. We obtained a presentation of this monoid
and introduced a length function that is nicely related to the Hecke algebra of the rook
monoid. Our objective here is to consider the general case. We obtain a presentation of
every Renner monoid and introduce a length function. In the case of the rook monoid,
we recover the results obtained in [2]. Our length function is not the classical length
function on Renner monoids [10]. We remark that the former shares with the latter
several nice geometrical and combinatorial properties.
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Let us postpone to the next section some definitions and notation, and state here
our main results. Consider the Renner monoid R(M) of a regular algebraic monoid M
with a zero element. Denote by W the unit group of R(M) and consider its associated
Coxeter system (W, S). Denote by 3 a cross section lattice of the monoid E(R(M))
of idempotent elements of R(M), and by 3◦ the set of elements of 3 that are distinct
from the identity. Finally, denote by λ the associated type map of R(M); roughly
speaking, this is a map that describes the action of W on E(R(M)).

THEOREM 1.1. The Renner monoid R(M) admits the monoid presentation whose
generating set is S ∪3◦ and whose defining relations are:

(COX1) s2
= 1, s ∈ S;

(COX2) |s, t〉m = |t, s〉m , ({s, t}, m) ∈ E(0);
(REN1) se = es, e ∈3◦, s ∈ λ?(e);
(REN2) se = es = e, e ∈3◦, s ∈ λ?(e);
(REN3) ew f = e ∧w f , e, f ∈3◦, w ∈ D̃↑(e) ∩ D↑( f ).

We define the length ` on R(M) in the following way: if s lies in S, we set `(s)= 1;
if e lies in 3, we set `(e)= 0. Then we extend ` by additivity to the free monoid of
words on S ∪3◦. If w lies in R(M), its length `(w) is the minimal length of its word
representatives on S ∪3◦. In Section 3 we investigate the properties of this length
function. In particular, we prove that it is nicely related to the classical normal form
defined on R(M), and we also prove the following proposition.

PROPOSITION 1.2. Let T be a maximal torus of the unit group of M. Fix a Borel
subgroup B that contains T . Let w lie in R(M) and s lie in S. Then,

Bs BwB =

BwB if `(sw)= `(w);
BswB if `(sw)= `(w)+ 1;
BswB ∪ BwB if `(sw)= `(w)− 1.

This article is organized as it follows. In Section 2 we first recall the background
of algebraic monoid theory and of Coxeter group theory. Then we prove Theorem 1.1.
In Section 3 we consider several examples of Renner monoids and deduce explicit
presentations from Theorem 1.1. In Section 4 we focus on the length function and, in
particular, we prove Proposition 1.2.

2. Presentation for Renner monoids

Our objective in the present section is to associate a monoid presentation to every
Renner monoid. The statement of our result and its proof require some properties of
algebraic monoid theory and of Coxeter group theory. In Section 2.1 we introduce
Renner monoids and state the results we need about algebraic monoids. In Section 2.2
we recall the definition of Coxeter groups and some of their well-known properties.
Using the two preliminary sections, we can prove Theorem 1.1 in Section 2.3. This
provides a monoid presentation for every Renner monoid.
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We fix an algebraically closed field K. We denote by Mn the set of all n × n
matrices over K, and by GLn the set of all invertible matrices in Mn . We refer
to [9, 10, 14] for the general theory and proofs involving linear algebraic monoids
and Renner monoids; we refer to [4] for an introduction to linear algebraic groups.
If X is a subset of Mn , we denote by X its closure with respect to the Zariski topology.

2.1. Algebraic monoid theory. We introduce here the basic definitions and notation
of algebraic monoid theory that we shall need later.

2.1.1. Regular monoids and reducible groups.

DEFINITION 2.1 (Algebraic monoid). An algebraic monoid is a submonoid of Mn ,
for some positive integer n, that is closed in the Zariski topology. An algebraic monoid
is irreducible if it is irreducible as a variety.

It is very easy to construct algebraic monoids. Indeed, the Zariski closure M = G
of any submonoid G of Mn is an algebraic monoid. The main example occurs when
one considers for G an algebraic subgroup of GLn . It turns out that in this case the
group G is the unit group of M . Conversely, if M is an algebraic monoid, then its
unit group G(M) is an algebraic group. The monoid Mn is the seminal example of
an algebraic monoid, and its unit group GLn is the seminal example of an algebraic
group.

One of the main differences between an algebraic group and an algebraic monoid
is that the latter have idempotent elements. In the following we denote by E(M)
the set of idempotent elements of a monoid M . We recall that M is regular if
M = E(M)G(M)= G(M)E(M), and that M has a zero element if there exists an
element 0 such that 0× m = m × 0= 0 for every m in M . The next result, which is
the starting point of the theory, was obtained independently by Putcha and Renner in
1982.

THEOREM 2.2. Let M be an irreducible algebraic monoid with a zero element.
Then M is regular if and only if G(M) is reductive.

The order ≤ on E(M), defined by e ≤ f if e f = f e = e, provides a natural
connection between the Borel subgroups of G(M) and the idempotent elements of M .

THEOREM 2.3. Let M be a regular irreducible algebraic monoid with a zero element.
Let 0 = (e1, . . . , ek) be a maximal increasing sequence of distinct elements of E(M).

(i) The centralizer ZG(M)(0) of 0 in G(M) is a maximal torus of the reductive
group G(M).

(ii) Set

B+(0) = {b ∈ G(M) | ∀e ∈ 0, be = ebe},

B−(0) = {b ∈ G(M) | ∀e ∈ 0, eb = ebe}.

Then, B−(0) and B+(0) are two opposed Borel subgroups with common
torus ZG(M)(0).
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2.1.2. Renner monoid.

DEFINITION 2.4 (Renner monoid). Let M be a regular irreducible algebraic monoid
with a zero element. If T is a Borel subgroup of G(M), then we denote its normalizer
by NG(M)(T ). The Renner monoid R(M) of M is the monoid NG(M)(T )/T .

It is clear that R(M) does not depend on the choice of the maximal torus of G(M).

EXAMPLE 2.5. Consider M = Mn(K), and choose the maximal torus T of diagonal
matrices. The Renner monoid is isomorphic to the monoid of matrices with at most
one nonzero entry, that is equal to 1, in each row and each column. This monoid is
called the rook monoid Rn [16]. Its unit group is the group of monomial matrices,
which is isomorphic to the symmetric group Sn .

From the definition we almost immediately have the following proposition.

PROPOSITION 2.6. Let M be a regular irreducible algebraic monoid with a zero
element, and fix a maximal torus T of G(M). The Renner monoid R(M) is a finite
factorizable inverse monoid. In particular, the set E(R(M)) is a commutative monoid
and a lattice for the partial order ≤ defined by e ≤ f when e f = e. Furthermore,
there is a canonical order-preserving isomorphism of monoids between E(R(M))
and E(T ).

2.2. Coxeter group theory. Here we recall some well-known facts about Coxeter
groups. We refer to [1] for general theory and proofs.

DEFINITION 2.7 (Coxeter system). Let 0 be a finite simple labelled graph whose
labels are positive integers greater than or equal to 3. We denote by S the vertex set
of 0. We denote by E(0) the set of pairs ({s, t}, m) such that either {s, t} is an edge
of 0 labelled by m or {s, t} is not an edge of 0 and m = 2. When ({s, t}, m) belongs
to E(0), we denote by |s, t〉m the word sts · · · of length m. The Coxeter group W (0)

associated with 0 is defined by the group presentation〈
S

∣∣∣∣s2
= 1 s ∈ S
|s, t〉m = |t, s〉m ({s, t}, m) ∈ E(0)

〉
.

We say that (W (0), S) is a Coxeter system.

PROPOSITION 2.8. Let M be a regular irreducible algebraic monoid with a zero
element, and denote by G its unit group. Fix a maximal torus T and a Borel
subgroup B that contains T . Then:

(i) the Weyl group W = NG(T )/T of G is a finite Coxeter group;
(ii) the unit group of R(M) is the Weyl group W .

REMARK 2.9. Combining the results of Propositions 2.6 and 2.8, we get

R(M)= E(T ) ·W =W · E(T ).
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DEFINITION 2.10. Let (W, S) be a Coxeter system. Let w belong to W . The
length `(w) of w is the minimal integer k such that w has a word representative of
length k on the alphabet S. Such a word is called a reduced word representative of w.

In the following, we use the following classical result [1].

PROPOSITION 2.11. Let (W, S) be a Coxeter system and I, J be subsets of S. Let
WI and WJ be the subgroups of W generated by I and J , respectively.

(i) The pairs (WI , I ) and (WJ , J ) are Coxeter systems.
(ii) For every element w which belongs to W there exists a unique element ŵ of

minimal length in the double class WJwWI . Furthermore, there exist w1 in WI
and w2 in WJ such that w = w2ŵw1 with `(w)= `(w1)+ `(ŵ)+ `(w2).

Note that (ii) holds when I or J is empty.

2.3. Cross section. Our objective here is to prove Theorem 1.1. We first need to
make precise the notation used in this theorem. Throughout this section, we assume
that M is a regular irreducible algebraic monoid with a zero element. We denote by G
the unit group of M . We fix a maximal torus T of G and a Borel subgroup B that
contains T . We denote by W the Weyl group NG(T )/T of G. We denote by S the
standard generating set associated with the canonical Coxeter structure of the Weyl
group W .

2.3.1. The cross section lattice. To describe the generating set of our presentation,
we need to introduce the cross section lattice, which is related to Green’s relations.
The latter are classical tools in semigroup theory. Let us recall the definition of
relation J . The J -class of an element a in M is the double coset MaM . The
set U(M) of J -classes carries a natural partial order ≤ defined by MaM ≤ MbM
if MaM ⊆ MbM . It turns out that the map e 7→ MeM from E(M) to U(M) induces
a one-to-one correspondence between the set of W -orbits on E(T ) and the set U(M).
The existence of this one-to-one correspondence leads to the following definition.

DEFINITION 2.12 (Cross section lattice). A subset3 of E(T ) is a cross section lattice
if the map 3→ U(M), e 7→ MeM is an order-preserving bijection.

Note that such a cross section lattice is a transversal of E(T ) for the action of W . It
is not immediately clear that such a cross section lattice exists. Indeed it does, and the
following theorem holds.

THEOREM 2.13 [9, Theorem 9.10]. For every Borel subgroup B of G that contains
T , we set

3(B)= {e ∈ E(T ) | ∀b ∈ B, be = ebe}.

The map B 7→3(B) is a bijection between the set of Borel subgroups of G that
contain T and the set of cross section lattices of E(T ).

EXAMPLE 2.14. Consider M = Mn . Consider the Borel subgroup B of invertible
upper triangular matrices and T the maximal torus of invertible diagonal matrices.
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Denote by ei the diagonal matrix
(Idi 0

0 0

)
of rank i . Then, the set 3(B) is {e0, . . . , en}.

For every index i , we have ei ≤ ei+1.

REMARK 2.15.

(i) Let 0 be a maximal chain of idempotent elements of T and consider the Borel
subgroup B+(0) defined in Theorem 2.3. It follows from the definitions that
0 ⊆3(B+(0)).

(ii) [9, Definition 9.1] A cross section lattice is a sublattice of E(T ).

2.3.2. Type map. In order to state the defining relations of our presentation, we
now turn to the notion of a type map. Recall that we have fixed a Borel subgroup B
of G that contains T . We write3 for3(B). We consider3 as a sublattice of E(R(M))
(see Proposition 2.6).

NOTATION 2.16 [10]. Let e belong to 3.

(i) The type map λ : e 7→ λ(e) of the regular monoid M is defined by

λ(e)= {s ∈ S | se = es}.

(ii) We set
λ?(e)=

⋂
f≤e

λ( f ) and λ?(e)=
⋂
f≥e

λ( f ).

(iii) We set

W (e)= {w ∈W | we = ew}, W?(e)= {w ∈W (e) | we = e}.

We denote by W ?(e) the subgroup of W generated by λ?(e).

PROPOSITION 2.17 [10, Lemma 7.15]. With the above notation:

(i) λ?(e)= {s ∈ S | se = es = e} and λ?(e)= {s ∈ S | se = es 6= e};
(ii) the sets W (e), W?(e) and W ?(e) are the standard parabolic subgroups of W

generated by the sets λ(e), λ?(e) and λ?(e), respectively. Furthermore, W (e) is
the direct product of W?(e) and W ?(e).

NOTATION 2.18 [10]. By Propositions 2.11 and 2.17, for everyw in W and every e, f
in 3, each of the sets wW (e), W (e)w, wW?(e), W?(e)w and W (e)wW ( f ) has a
unique element of minimal length. We denote by D(e), D̃(e), D?(e) and D̃?(e) the
set of elements w of W that are of minimal length in their classes wW (e), W (e)w,
wW?(e) and W?(e)w, respectively. Note that the set of elements w of W that are of
minimal length in their double class W (e)wW ( f ) is D̃(e) ∩ D( f ).

2.3.3. Properties of the cross section lattice. As in previous sections, we fix a
Borel subgroup B of G that contains T , and denote by 3 the associated cross section
lattice contained in E(R(M)). We use the notation E(0) of Section 2.2. We set
3◦ =3− {1}. To make the statement of Proposition 2.24 clear we need a preliminary
result.
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LEMMA 2.19. Let e1, e2 lie in E(T ) such that e1 ≤ e2. There exist f1, f2 in 3 with
f1 ≤ f2 and w in W such that w f1w

−1
= e1 and w f2w

−1
= e2.

PROOF. Let 0 be a maximal chain of E(T ) that contains e1 and e2. The Borel
subgroup B+(0) contains the maximal torus T . Therefore, there exists w in W such
that w−1 B+(0)w = B. This implies that w−13(B+(0))w =3. We conclude using
Remark 2.15(i). 2

LEMMA 2.20. Let h, e belong to 3 such that h ≤ e. Then, W (h) ∩ D̃(e)⊆W?(h)
and W (h) ∩ D(e)⊆W?(h).

PROOF. Let w lie in W (h) ∩ D̃(e). We can write w = w1w2 = w2w1 where w1 lies in
W?(h) andw2 lies in W ?(h). Since h ≤ e, we have λ?(h)⊆ λ?(e) and W ?(h)⊆W ?(e).
Since w belongs to D̃(e), this implies that w2 = 1. The proof of the second inclusion
is similar. 2

PROPOSITION 2.21. Let e, f lie in 3◦ and w lie in D̃(e) ∩ D( f ). There exists h
in 3◦ with h ≤ e ∧ f such that w belongs to W?(h) and ew f = hw = h.

To prove the above proposition, we use the existence of a normal decomposition
in R(M).

PROPOSITION 2.22 [10, Section 8.6]. For every w in R(M) there exists a unique
triple (w1, e, w2) with e ∈3, w1 ∈ D?(e) and w2 ∈ D̃(e) such that w = w1ew2.

Following [10], we call the triple (w1, e, w2) the normal decomposition of w.

PROOF OF PROPOSITION 2.21. Consider the normal decomposition (w1, h, w2)

of ew f . Then w1 belongs to D?(h) and w2 belongs to D̃(h). The element w−1ew f
is equal to w−1w1hw2 and belongs to E(R(M)). Since w2 lies in D̃(h), this
implies that w3 = w2w

−1w1 lies in W?(h), and that f ≥ w−1
2 hw2. By Lemma 2.19,

there exists w4 in W and f1, h1 in 3◦, with f1 ≥ h1, such that w−1
4 f1w4 = f and

w−1
4 h1w4 = w

−1
2 hw2. Since 3 is a cross section for the action of W , we have f1 = f

and h1 = h. In particular, w4 belongs to W ( f ). Since w2 belongs to D̃(h), we deduce
that there exists r in W (h) such that w4 = rw2 with `(w4)= `(w2)+ `(r). Then w2
lies in W ( f ). Now write w1 = w

′

1w
′′

1 where w′′1 lies in W ?(h) and w′1 belongs to
D?(h). Then ew f = w′1hw′′1w2, and w′′1w2 lies in D(h). By symmetry, we get that

w′1 belongs to W (e). Hence, w′−1
1 ww−1

2 is equal to w′′1w
−1
3 and belongs to W (h). By

hypothesis w lies in D̃(e) ∩ D( f ). Then we must have

`(w′′1w
−1
3 )= `(w−1

2 )+ `(w′
−1
1 )+ `(w).

Since w′′1w
−1
3 belongs to W (h), it follows that w2 and w′1 belong to W (h) too.

This implies that w2 = w
′

1 = 1 and w = w′′1w
−1
3 . Therefore, ew f = hw′′1 = hw = wh.

Finally, w belongs to W?(h) by Lemma 2.20. 2
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2.3.4. A presentation for R(M).

NOTATION 2.23.

(i) For each w in W , we fix a reduced word representative w.
(ii) We denote by e ∧w f the unique element in 3◦ that represents the element h in

Proposition 2.21.

Note that for s in S, we have s = s. We recall that 3 is a sublattice of E(T ) for
the order ≤ defined by e ≤ f if e f = f e = e. We are now ready to state a monoid
presentation for R(M).

PROPOSITION 2.24. The Renner monoid has the following monoid presentation
whose generating set is S ∪3◦ and whose defining relations are:

(COX1) s2
= 1, s ∈ S;

(COX2) |s, t〉m = |t, s〉m , ({s, t}, m) ∈ E(0);
(REN) se = es, e ∈3◦, s ∈ λ?(e);
(REN2) se = es = e, e ∈3◦, s ∈ λ?(e);
(REN3′) ew f = e ∧w f , e, f ∈3◦, w ∈ D̃(e) ∩ D( f ).

The reader should note that the relations of type (REN3) in Theorem 1.1 are a
special case of the relations of type (REN3′). Note that when e ≤ f and w = 1, then
relation (REN3′) becomes e f = f e = e. More generally, e ∧1 f = e ∧ f .

PROOF. By Remark 2.9 the submonoids E(R(M)) and W generate the monoid
R(M). As S is a generating set for W , it follows from the definition of 3 that the
set S ∪3◦ generates R(M) as a monoid. Clearly, relations (COX1) and (COX2)
hold in W , and relations (REN1) and (REN2) hold in R(M). Relations (REN3′) hold
in R(M) by Proposition 2.21. It remains to prove that we obtain a presentation of the
monoid R(M). Let w belong to R(M) with (w1, e, w2) as normal form. Consider any
word ω on the alphabet S ∪3◦ that represents w. We claim that, starting from ω, one
can obtain the word w1ew2 using the relations of the above presentation only. This is
almost obvious by induction on the number j of letters of the word ω that belong to3◦.
The property holds for j = 0 (in this case w = w1 and e = w2 = 1) because (COX1)
and (COX2) are the defining relations of the presentation of W . The case j = 1 is
also clear, applying relations (COX1), (COX2), (REN1) and (REN2). Now, for j ≥ 2,
the case j can be reduced to the case j − 1 using relations (REN3′) (and the other
relations). 2

The presentation in Proposition 2.24 is not minimal; some relations can be removed
in order to obtain the presentation stated in Theorem 1.1. Let us introduce some
notation used in this theorem.

NOTATION 2.25. If e lies in 3, we denote by D̃↑(e) the set

D̃(e) ∩

(⋂
f>e

W ( f )

)
.
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Similarly, we denote by D↑(e) the set

D(e) ∩

(⋂
f>e

W ( f )

)
.

REMARK 2.26.

(i)
(⋂

f>e

λ( f )

)
∩ λ?(e)= ∅

by Proposition 2.17.
(ii) D̃↑(e)= D̃(e) ∩W∩ f>eλ( f ) and D↑(e)= D(e) ∩W∩ f>eλ( f ).

The reader may note that, for e ≤ f , D̃↑(e) ∩ D↑( f )= {1}.

PROOF OF THEOREM 1.1. We need to prove that every relation ew f = e ∧w f
of type (REN3′) in Proposition 2.24 can be deduced from relations (REN3) of
Theorem 1.1, using the other common defining relations of type (COX1), (COX2),
(REN1) and (REN2). We prove this by induction on the length of w. If `(w)= 0
then w is equal to 1 and therefore belongs to D̃↑(e) ∩ D↑( f ). Assume that `(w)≥ 1
and that w does not belong to D̃↑(e) ∩ D↑( f ). Assume, furthermore, that w does
not lie in D̃↑(e) (the other case is similar). Choose e1 in 3◦ such that e1 > e
and w does not lie in W (e1). Then, applying relations (REN3), we can transform
the word ew f into the word ee1w f . Using relations (COX2), we can transform the
word w into a word w1 w2 where w1 belongs to W (e1) and w2 belongs to D̃↑(e1).
Then, applying relations (COX2) and (REN1), we can transform the word ee1w f
into the word ew1e1w2 f . By hypothesis on w, we have w2 6= 1 and, therefore,
`(w1) < `(w). Assume that w2 belongs to D↑( f ). We can apply relation (REN3) to
transform ew1e1w2 f into ew1(e1 ∧w2 f ). Using relations (COX2), we can transform
w1 into a word w′1 w

′′

1 w
′′′

1 with w′′′1 in W?(e1 ∧w2 f ), w′′2 in W ?(e1 ∧w2 f ) and w′1
in D(e1 ∧w2 f ). Then ew1(e1 ∧w2 f ) can be transformed into ew′1(e1 ∧w2 f )w′′1 .

Since `(w′1)≤ `(w1) < `(w), we can apply an induction argument to transform the
word ew1(e1 ∧w2 f ) into the word e ∧w1 (e1 ∧w2 f )w′′1 . Now, by the uniqueness

of the normal decomposition, w′′1 has to belong to W?(e ∧w1 (e1 ∧w2 f )). Therefore
we can transform e ∧w1 (e1 ∧w2 f )w′′1 into e ∧w1 (e1 ∧w2 f ) using relations (REN2).
Note that the letters e ∧w1 (e1 ∧w2 f ) and e ∧w f have to be equal as they represent
the same element in 3. Assume, finally, that w2 does not belong to D↑( f ). By
similar arguments we can, applying relations (COX2) and (REN1), transform the
word ew1e1w2 f into a word ew1e1w3 f1w4 where f1 > f in 3◦ and w2 = w3w4

with w3 in D↑( f1) and w4 in W ( f1). At this stage we are in position to apply
relation (REN3). Thus, we can transform the word ew1e1w2 f into the word
ew1(e1 ∧w3 f1)w4 f . Since we have `(w1)+ `(w4) < `(w)we can apply an induction
argument to conclude as in the first case. 2
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3. Some particular Renner monoids

Here we focus on some special Renner monoids considered in [5–7]. In each case,
we provide an explicit monoid presentation using the general presentation obtained in
Section 1.

3.1. The rook monoid. Consider M = Mn and choose B for the Borel subgroup (see
Example 2.14 and Figure 1). In this case, the Weyl group is the symmetric group Sn . Its
generating set S is {s1, . . . , sn−1} where si is the transposition matrix corresponding
to (i, i + 1). The cross section lattice 3= {e0, . . . , en−1, en} is linear (e j ≤ e j+1 for
every j). For every j ,

λ?(e j )= {si | j + 1≤ i} and λ?(e j )= {si | i ≤ j − 1}.

In particular, D̃↑(ei ) ∩ D↑(ei )= {1, si } and, for i 6= j , D̃↑(ei ) ∩ D̃↑(e j )= {1}.
Therefore, we recover the monoid presentation of the rook monoid R(M) stated

in [2]: the generating set is {s1, . . . , sn−1, e0, . . . , en−1} and the defining relations
are

s2
i = 1, 1≤ i ≤ n − 1;

si s j = s j si , 1≤ i, j ≤ n − 1 and |i − j | ≥ 2;
si si+1si = si+1si si+1, 1≤ i ≤ n − 1;

e j si = si e j 1≤ i < j ≤ n − 1;
e j si = si e j = e j 0≤ j < i ≤ n − 1;
ei e j = e j ei = emin(i, j) 0≤ i, j ≤ n − 1;

ei si ei = ei−1 1≤ i ≤ n − 1.

3.2. The sympletic algebraic monoid. Let n be a positive even integer and Spn
be the symplectic algebraic group [4, p. 52]: write n = 2` where ` is a positive
integer, and consider the matrix J` =

(
1

1

)
in M`. Let J =

( 0 J`
−J` 0

)
in Mn . Then Spn

is equal to {A ∈ Mn | At JA = J }, where At is the transpose matrix of A. We set
M =K× Spn . This monoid is a regular monoid with 0 whose associated reductive
algebraic unit group is K× Spn . It is called the symplectic algebraic monoid [7]. Let B
be the Borel subgroup of GLn as defined in Example 2.14, and set B =K×(B ∩ Spn).
This is a Borel subgroup of the unit group of M . It is shown in [7] that the cross
section lattice 3 of M is {e0, e1, . . . , e`, en} where the elements ei correspond to
the matrices of Mn defined in Example 2.14 (see Figure 2). In particular, the cross
section lattice 3 is linear. In this case, the Weyl group is a Coxeter group of type B`.
In other words, the group W is isomorphic to the subgroup of Sn generated by
the permutation matrices s1, . . . , s` corresponding to (1, 2)(n − 1, n), (2, 3)(n − 2,
n − 1), . . . , (`− 1, `)(`+ 1, `+ 2), and (`, `+ 1), respectively. We have
λ?(ei )= {si+1, . . . , s`} and λ?(ei )= {s1, . . . , si−1}. Therefore, D̃↑(e`) ∩ D̃↑(e`)=
{1, s`, s`s`−1s`} and, for i in {1, . . . , `− 1}, D̃↑(ei ) ∩ D↑(ei )= {1, si }. A direct
calculation proves that ei si ei = si ei−1 for every i , and e`s`s`−1s`e` = e`−2. Hence, a
monoid presentation of R(M) is given by the generating set {s1, . . . , s`, e0, . . . , e`}
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FIGURE 1. Coxeter graph and Hasse diagram for Mn .

FIGURE 2. Coxeter graph and Hasse diagram for Spn .

and the defining relations

s2
i = 1, 1≤ i ≤ `;

si s j = s j si , 1≤ i, j ≤ ` and |i − j | ≥ 2;
si si+1si = si+1si si+1, 1≤ i ≤ `− 2;

s`s`−1s`s`−1 = s`−1s`s`−1s`;
e j si = si e j 1≤ i < j ≤ `;
e j si = si e j = e j , 0≤ j < i ≤ `;
ei e j = e j ei = emin(i, j), 0≤ i, j ≤ `;

ei si ei = ei−1, 1≤ i ≤ `;
e`s`s`−1s`e` = e`−2.

3.3. The special orthogonal algebraic monoid. Let n be a positive integer and Jn
be defined as in Section 3.2. The special orthogonal group SOn is defined as
SOn = {A ∈ SLn | gT Jng = Jn}. The group K× SOn is a connected reductive group.
Following [5, 6], we define the special orthogonal algebraic monoid to be the Zariski
closure M =K×SOn of K× SOn . This is an algebraic monoid [5, 6], and B = B ∩ M
is a Borel subgroup of its unit group. In this case, the cross section lattice depends on
the parity of n. Furthermore, the Weyl group is a Coxeter group whose type depends
on the parity of n too.

Assume that n = 2` is even. In this case, W is a Coxeter group of type D`. The
standard generating set of W is {s1, . . . , s`} where, for 1≤ i ≤ `− 1, the element si
is the permutation matrix associated with (i, i + 1)(n − i, n − i + 1), and s` is the
permutation matrix associated with (`− 1, `+ 1)(`, `+ 2). It is shown in [6] that
the cross section 3 is equal to {e0, e1, . . . , e`, f`, en}. The elements ei correspond
to the matrices of Mn defined in Example 2.14; the element f` is the diagonal
matrix e`+1 + e`−1 − e`. The Hasse diagram of 3 is as represented in Figure 3. For j
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FIGURE 3. Coxeter graph and Hasse diagram for SO2`.

in {0, . . . , `− 2} one has λ?(e j )= {si | j + 1≤ i} and λ?(e j )= {si | i ≤ j − 1}.
Furthermore, one can verify that

λ?(e`−1) = λ?( f`)= λ?(e`)= ∅,

λ?(e`−1) = λ
?( f`)= {si | i ≤ `− 2},

λ?(e`) = {si | i ≤ `− 1},

λ?( f`) = {si | i 6= `− 1}.

Therefore, for i in {1, . . . , `− 2}, we have D̃↑(ei ) ∩ D↑(ei )= {1, si }. Furthermore,

D̃↑(e`−1) ∩ D↑(e`−1)= {1} and

D̃↑( f`) ∩ D↑( f`)= {1, s`−1}; D̃↑(e`) ∩ D̃↑(e`)= {1, s`};

D̃↑(e`) ∩ D↑( f`)= {1, s`s`−2s`−1}; D̃↑( f`) ∩ D̃↑(e`)= {1, s`−1s`−2s`}.

The monoid R(M) has a presentation with generating set {s1, . . . , s`, e0, . . . , e`, f`}
and defining relations

s2
i = 1, 1≤ i ≤ `;

si s j = s j si , 1≤ i, j ≤ ` and |i − j | ≥ 2;
si si+1si = si+1si si+1, 1≤ i ≤ `− 2;
s`s`−2s` = s`−2s`s`−2;

e j si = si e j , 1≤ i < j ≤ `;
e j si = si e j = e j , 0≤ j < i ≤ `;
ei e j = e j ei = emin(i, j), 0≤ i, j ≤ `;
f`e` = e` f` = e`−1;

ei si ei = ei−1, 1≤ i ≤ `− 1;
e`s`e` = f`s`−1 f` = e`−2;

e`s`s`−2s`−1 f` = f`s`−1s`−2s`e` = e`−3.

Assume that n = 2`+ 1 is odd. In that case, W is a Coxeter group of type B`. It
is shown in [5] that the cross section lattice is linear as in the case of the symplectic
algebraic monoid. It turns out that the Renner monoid of SO2`+1 is isomorphic to the
Renner monoid of symplectic algebraic monoid K× Sp2`, and that we obtain the same
presentation as in the latter case.
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3.4. More examples: adjoint representations. Let G be a simple algebraic group,
and denote by g its Lie algebra. Let M be the algebraic monoid K×Ad(G) in End(g).
The cross section lattice of M and the type map of M have been calculated for
each Dynkin diagram (see [10, Section 7.4]). Therefore one can deduce a monoid
presentation for each of the associated Renner monoid.

3.5. More examples: J -irreducible algebraic monoids. In [11], Renner and
Putcha consider among regular irreducible algebraic monoids those that are J -
irreducible, that is, those whose cross section lattices have a unique minimal nonzero
element. It is easy to see that the J -irreducibility property is related to the existence
of irreducible rational representations [11, Proposition 4.2]. Renner and Putcha
determined the cross section lattice of those J -irreducible that arise from special kinds
of dominant weights [11, Figures 2, 3]. Using [11, Theorem 4.13], one can deduce
the associated type maps and therefore a monoid presentation of each corresponding
Renner monoids.

4. A length function on R(M)

In this section we extend the length function defined in [2] to any Renner monoid.
Throughout this section, we assume that M is a regular irreducible algebraic monoid
with a zero element. We denote by G the unit group of M . We fix a maximal torus T of
G and a Borel subgroup B that contains T . We denote by W the Weyl group NG(T )/T
of G. We denote by S the standard generating set associated with the canonical Coxeter
structure of the Weyl group W . We denote by 3 the associated cross section lattice
contained in R(M). As before, we set 3◦ =3− {1}.

4.1. Minimal word representatives. The definition of the length function on W and
of a reduced word is given in Section 2.2.

DEFINITION 4.1.

(i) We set `(s)= 1 for s in S and `(e)= 0 for e in 3. Let x1, . . . , xk be in S ∪3◦
and consider the word ω = x1 · · · xk . Then, the length of the word ω is the
integer `(ω) defined by `(ω)=

∑k
i=1 `(xi ).

(ii) The length of an element w which belongs to R(M) is the integer `(w) defined
by

`(w)=min{`(ω) | ω is a word representative of w over S ∪3◦}.

The following properties are direct consequences of the definition.

PROPOSITION 4.2. Let w belong to R(M).

(i) The length function ` on R(M) extends the length function ` defined on W .
(ii) `(w)= 0 if and only if w lies in 3.
(iii) If s lies in S then |`(sw)− `(w)| ≤ 1.
(iv) If w′ belongs to R(M), then `(ww′)≤ `(w)+ `(w′).

PROOF. (i) and (ii) are clear: the letters of every representative word of an element
which lies in W are in S. If w lies in R(M) and s lies to S, then `(sw)≤ `(w)+ 1.
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Since w = s2w = s(sw), the inequality `(w)≤ `(sw)+ 1 holds too. Point (iii)
follows, and (iv) is a direct consequence of (iii). 2

PROPOSITION 4.3. Let w belong to R(M).

(i) If (w1, e, w2) is the normal decomposition of w, then `(w)= `(w1)+ `(w2).
(ii) If ω1, ω2 are two representative words of w on S ∪3◦ such that the

equalities `(w)= `(ω1)= `(ω2) hold, then using the defining relations of the
presentation of R(M) in Proposition 2.24, we can transform ω1 into ω2 without
increasing the length.

PROOF. (i) Let ω be a representative word w on S ∪3◦ such that `(w)= `(ω). It is
clear that we can repeat the argument of the proof of Proposition 2.24 without using
(COX1). Therefore

`(ω)≥ `(w1ew2)= `(w1)+ `(w2)≥ `(w).

(ii) This is a direct consequence of the proof of (i). 2

COROLLARY 4.4. Let w lie in R(M) and e belong to 3◦. Denote by (w1, f, w2) the
normal decomposition of w.

(i) `(we)≤ `(w) and `(ew)≤ `(w).
(ii) `(we)= `(w) if and only if the normal decomposition of we is (w1, e ∧ f, w2).

Furthermore, in this case, w2 lies in W ?(e).

PROOF. (i) This is a direct consequence of the definition of the length and of
Proposition 4.3(i):

`(we)= `(w1 fw2e)≤ `(w1)+ 0+ `(w2)+ 0= `(w).

The same arguments prove that `(ew)≤ `(w).
(ii) Decompose w2 as a product w′2w

′′

2w
′′′

2 where w′′′2 lies in W?( f ), w′′2 lies in
W ?( f ), w′2 lies in D( f ) and `(w2)= `(w

′

2)+ `(w
′′

2)+ `(w
′′′

2 ). Then

we = w1 fw2e = w1 fw′2ew′′2 = w1( f ∧w′2 e)w′′2 .

In particular, `(we)≤ `(w1)+ `(w
′′

2). Assume that `(we)= `(w). We must have
w′2 = w

′′′

2 = 1. The element w′′2 (that is, w2) must belong to D?( f ∧1 e)= D?( f ∧ e),
and the element w1 must belong to D̃?( f ∧ e). In particular, w2 lies in W ?(e).
Furthermore, w2 lies in D( f ∧ e) since λ?( f ∧ e)⊆ λ( f ) by Proposition 2.17(i).
Conversely, if the the normal decomposition of we is (w1, e ∧ f, w2), then `(we)=
`(w1)+ `(w2)= `(w). 2

4.2. Geometrical formula. In Proposition 4.6 below we provide a geometrical
formula for the length function ` defined in the previous section. This formula
extends naturally the geometrical definition of the length function on a Coxeter
group. Another length function on Renner monoids has already been defined and
investigated [8, 10, 13]. This length function has nice properties, which are similar
to those in Propositions 4.2, 4.3(i) and 4.6. This alternative length function was first
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introduced by Solomon [13] in the special case of rook monoids in order to verify a
combinatorial formula that generalizes Rodrigues’ formula [12]. That is why we call
this length function the Solomon length function in the following. We proved in [2]
that our length function for the rook monoid satisfies the same combinatorial formula.
We also proved in [2] that in the case of the rook monoid, our presentation of R(M)
and our length function are related to the Hecke algebra. In a forthcoming paper, we
will prove that this remains true in the general case.

LEMMA 4.5. Let w belong to R(M) and denote by (w1, e, w2) its normal
decomposition. Let s be in S.

(i) We have one of the two following cases:

(a) there exists t in λ?(e) such that sw1 = w1t . In this case, sw = w;
(b) the element sw1 lies in D?(e) and (sw1, e, w2) is the normal

decomposition of sw.

(ii) Denote by l̃ the Solomon length function on R(M). Then

`(sw)− `(w)= l̃(sw)− l̃(w).

PROOF. (i) If sw1 lies in D?(e), then by Proposition 2.22, the triple (sw1, e, w2) is
the normal decomposition of sw. Assume now that sw1 does not belong to D?(e). In
that case, e cannot be equal to 1. Since w1 belongs to D?(e), by the exchange lemma,
there exists t in λ(e) such that sw1 = w1t . Therefore,

sw = sw1ew2 = w1tew2 = w1ew2 = w.

(ii) The Solomon length l̃(w) of an element w in R(M) can be defined by the
formula l̃(w)= `(w1)− `(w2)+ ˜̀e where (w1, e, w2) is the normal decomposition
of w and ˜̀e is a constant that depends on e only [8, Definition 4.1]. Therefore the
result is a direct consequence of (i). 2

As a direct consequence of Lemma 4.5(ii) and [10, Theorem 8.18] we get
Proposition 1.2.

PROPOSITION 4.6. Let w belong to R(M), and (w1, e, w2) be its normal
decomposition. Then

`(w)= dim(Bw1eB)− dim(Bew2 B).

When w lies in Sn , then e = w2 = 1, and we recover the well-known formula

`(w)= dim(BwB)− dim(B).

PROOF. By [8, Section 4], for every normal decomposition (v1, f, v2) we have the
equality

dim(Bv1 f v2 B)= `(v1)− `(v2)+ k f ,

where k f is a constant that depends on f only. Therefore,

dim(Bw1eB)− dim(Bew2 B)= `(w1)+ ke − (−`(w2)+ ke)= `(w).

This concludes the proof. 2
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