
Invited commentary

Glucose utilization dynamics and food intake

In 1955, Jean Mayer postulated that short-term articulation
of energy intake with energy needs is under glucostatic
control (Mayer, 1955). Since that time, by combining
behavioural and metabolic data, a strong and causal rela-
tionship has been demonstrated between declines in blood
glucose concentration and spontaneous meal onset. These
declines are thought to be the signals of a shortage in
immediately available glucose and, therefore, a shortage
in glucose utilization detected by central specialized neu-
rons. Thus, it is suggested that after an eating episode the
delay of occurrence of the drop in glucose availability is
dependent on the rate of utilization of the available carbo-
hydrates. The role of glucose in control of food intake is
therefore thought to be dynamic: it is a satiety factor and an
initiation signal.

Currently, as in the study from Melansonet al. (1999a),
interesting new methods are being used. A sensitive way to
evaluate the satiety power is to determine the onset latency
of the next meal when freely requested by subjects deprived
of time cues. Together with food intake measurements,
hunger or fullness or other subjective ratings, metabolic
and hormonal data are collected. A precise follow-up of the
metabolic and/or hormonal profiles is determined via con-
tinuous blood withdrawal associated with either continuous
blood glucose determination (Melansonet al. 1999b) or
collection of blood samples in tubes at different rates, i.e.
/min (Abdallahet al.1997), /5 min (Marmonieret al.1999)
and so on. These methods are useful as they provide strong
but indirect arguments about the role of nutrients, particu-
larly glucose utilization. More direct evidence is given by
the determination of metabolite oxidation via respiratory
gas exchange data.

The study from Melansonet al. (1999a) in this issue of
the British Journal of Nutritionfirst corroborates the syn-
chronization between hunger and declines in blood glucose.
The authors also show that the influence of high-fat, high-
carbohydrate and aspartame drinks on intermeal interval is
related to the duration of blood glucose responses and,
therefore, also to glucose utilization.

At each point of the intermeal interval, the amount of
available glucose is a function of the rate of glucose
absorption, a function of the additional glucose provided
by gluconeogenesis and also a function of the rate of
glucose utilization (oxidation and storage). This last factor
is largely dependent on insulin secretion. Insulin controls
the rate of free fatty acid oxidation via its effect on
lipogenesis and lipolysis and, therefore, the rate of glucose
oxidation (Randleet al. 1964; Ferraniniet al. 1983). Thus,
the satiety power of a food is likely to be dependent on the
absolute and relative amounts of the three macronutrients

via their effects on the insulin profile throughout the inter-
meal interval.

Results of a number of studies are consistent with this
view, although some authors only recorded metabolic data
while others provided only food intake measurements. The
effects of meals with various carbohydrate and fat contents
on the postprandial profile of plasma concentrations of
substrates and insulin have been studied, for example by
Collier & O’Dea (1983), Collieret al. (1984) and Cunning-
ham & Read (1989). In other studies, metabolite oxidation
(Flatt et al. 1985; Surinaet al. 1993) or RQ (Gomezet al.
1972; Griffithset al.1994) have been monitored along with
the postprandial plasma variables. Careful examination of
the results obtained in these two sets of studies, show their
complete agreement with the general considerations men-
tioned previously. Less carbohydrate and more fat in the meal
favours lipid oxidation. Fat added to a non-fat meal is partly
oxidized and can spare some carbohydrate, while fat added
to a fat-containing meal is likely to have a minimal addi-
tional effect on the carbohydrate saving.

The satiety effect of such manipulations (Rollset al.
1991; Cottonet al. 1994, 1996), evaluated either by hunger
ratings or by measurement of intake in a subsequent meal,
confirms that fat has a satiety effect in as much as it saves
glucose, i.e. to the extent that insulin concentration does
not inhibit lipid oxidation. In a study by Himayaet al.
(1997) food intake data, together with metabolic and hor-
monal data, were collected: they revealed that when 40 g fat
(1588 kJ) was added to a high-carbohydrate meal (2139 kJ)
satiety duration was prolonged by approximately 38 min.
The difference in the latency of the dinner request is
explained by a 10 g glucose saving which corresponds
with a 4–5 g fat oxidation. As shown by the free fatty acid
profile, this increase in fat oxidation occurred in the last part
of the intermeal interval when insulin levels were low.

In the study by Melansonet al. (1999a) no data are pro-
vided on insulin levels but the duration of glucose responses
is most probably related to the induced insulin secretion. As
pointed out by the authors, this is strongly suggested by the
negative correlation between blood glucose responses and
sweetness perception.

How are the rate of absorption, the rate of glucose
disposal and the decline in blood glucose related? Stricker
& McCann (1985) reported that, in the rat, after an initial
bolus, gastric loads of concentrated glucose solutions
emptied at a relatively constant rate (126–188 J/min)
approximately equal to the BMR. The gastric emptying
rate of normal-sized chow meals offered to rats after a
minimal food deprivation was also found to be approxi-
mately 188 J/min and constant for most of the emptying
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period (Newman & Booth, 1981) with, however, a slowing
near the end. Two other important results were also high-
lighted by this study. First, it was shown that absorption rate
equalled the just preceding gastric emptying rate, suggesting
that the final slowing leads to a fall in metabolite absorption.
Second, a circadian variation in gastric emptying was noted.
The faster gastric emptying at night coincides with (and is
not caused by) higher food intake and a higher metabolic
rate. Reviewing arguments from the literature data on the
relationship between these three factors, Newman & Booth
(1981) concluded that gastric emptying is not driven by food
intake but that rapid gastric emptying and insulin hyper-
responsiveness are primary causal factors for the frequent
meals and net storage at night in the rat.

In man it has also been shown that ordinary meals of
normal size are emptied in a similar manner: a brief initial
rapid phase, a long period of constant rate and a final
slowing (Malagelada, 1977). Recent results (Carbonnel
et al. 1994) have shown that two isoenergetic normal
liquid–solid meals differing in volume and density emptied
at a stable and identical rate of about 8374 J/min, approxi-
mately equal to BMR.

The main feature is that at rest and during the major
part of emptying, stomach emptying rate seems to corres-
pond roughly to the metabolic rate but slows down near the
end of emptying.

Interestingly, McHugh & Moran (1985) found that
delivery of energy directly to the intestines decreased food
intake and slowed gastric emptying. In contrast, in rats
(Stricker & McCann, 1985) as well as in man (Schvarcz
et al. 1993), insulin produced a marked increase in gastric
emptying. Gastric emptying rate was studied in patients
with type I diabetes mellitus submitted to an insulin–
glucose clamp. Insulin-induced hypoglycaemia signifi-
cantly increased the emptying rate compared with euglycae-
mia. By contrast, a glucagon infusion was shown to induce a
marked slowing in gastric emptying (Jonderkoet al.1989).

Certainly gastric emptying is not driven by food intake
and there are arguments, some of which have already been
mentioned, suggesting that gastric emptying is controlled by
nutrient disposal. A specific role of glucose availability is
strongly suggested by the study of the effect of the insulin–
glucose clamp, and supported by the results obtained in
diabetic rats. Thus, the stomach could be seen as a reservoir
from which nutrients are first, during a short phase, pushed
but then pulled out as a function of glucose disposal, with a
final slowing which could cause the preprandial fall in blood
glucose levels. Further studies similar to the ingenious one
from Melansonet al. (1999a) will be required to substanti-
ate the role of glucose disposal in ‘the short term articulation
of energy intake with energy needs’. A continuous follow-
up of other variables such as respiratory gas exchanges, but
also free fatty acid levels and particularly insulin on account
of its key role, seems absolutely necessary.
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