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A BANACH SPACE IN WHICH A BALL IS CONTAINED 
IN THE RANGE OF SOME COUNTABLY ADDITIVE MEASURE 

IS SUPERREFLEXIVE 

BY 

YENENG SUN 

ABSTRACT. A nonstandard proof of the fact that a Banach space in 
which a ball is contained in the range of a countably additive measure is 
superreflexive is given. The proof is an application of a general method 
in which we first transfer certain standard objects to the nonstandard hull 
of a Banach space and then, using the quite well developed theory of 
nonstandard hulls, derive results about the objects in the original Banach 
space. It also provides us with an example of the applications of the theory 
of nonstandard hull valued measures. 

1. Introduction. The range of a vector measure has displayed many intriguing 
connections with the geometry of subsets of Banach spaces. In [7] Kaczmarz and 
Steinhaus presented Banach's elegant proof of the fact that the unit ball of I2 is the 
range of a countably additive vector measure. More generally Bregtagnolle, Dacunha-
Castelle and Krivine (1966) and Rosenthal (1973) showed that the unit ball of Lp[0,1] 
and P for 2 ^ p < oo is the range of a countably additive vector measure. But if 
1 < p < 2 the unit ball of Z/[0,1] and of lp is not the range of a countably additive 
vector measure (see [2]). Based on these facts, it is natural to ask what conclusions 
we can draw about X if the unit ball of it is the range of a countably additive vector 
measure. Let Q, be a nonempty set, Z a a-algebra of subsets of Q, X a Banach space 
and v a countably additive X-valued measure on (£2, X). Bartle, Dunford and Schwartz 
showed that vÇL) is relatively weakly compact (see [3]). Thus if v(L) is the unit ball 
of X or more generally contains a ball in X, then X is reflexive. In[2] v(L) is proved 
to have the Banach-Saks property, i.e. every sequence in v(L) has a subsequence 
whose arithmetic means converge in norm. Hence if a ball is contained in v(L), then 
X has the Banach-Saks property. In this note a stronger result is proved along that 
line: if (v(L))° ^ 0, then the Banach space X is superreflexive. Note that if X is 
superreflexive then X has the Banach-Saks property and therefore is reflexive (see 
[15]). Nonstandard analysis is applied to the proof. We will see that the nonstandard 
proof is quite elementary and natural and it also shows how the nonstandard hull 
valued measures are used to study standard Banach space valued measures. Basic 
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definitions can be found in [3] and [5]. 

2. The Proof. 

DEFINITION 1. LetX and Y be Banach spaces. We say that Y is finitely representable 

in X, if for every e > 0 and for every finite-dimensional subspace F C Y there exists 

a linear transformation T from F into X satisfying 

(I - e)\\y\\ é \\Ty\\ Û (I +e)\\y\\ for M y G F. 

DEFINITION 2. A Banach space X is said to be superreflexive if Y finitely repre

sentable in X implies that Y is reflexive. 

It is a well known fact that a Banach space is reflexive if and only if every separable 

subspace of it is reflexive (see [6]). Thus X is superreflexive if and only if every 

separable Banach space finitely representable in X is reflexive. The following lemma, 

which can be found in ([3], P. 28), is central to the proof. 

LEMMA 3. Let Si be an algebra of subsets of Q. Any one of the following three 

statements about a bounded vector measure F from (Q,Si) to a Banach space X 

implies the others. 

(1) There exists à finitely additive nonnegative real-valued measure fi on Si such 

that F is ^-continuous (p is called a control measure of F). 

(2) F is strongly additive. 

(3) F (SA.) is a relatively weakly compact subset ofX. 

Now we adopt the usual framework of nonstandard analysis from [5]. The non

standard model we consider will be Hi-saturated. Let v be the X-valued measure as in 

the introduction and assume (i/(X))° ^ 0- Let p be a control measure of v on (£2, X). 

We transfer everything to the nonstandard universe; V and */x are a finitely additive 

internal *Z-valued measure and positive measure on (*£2,* X) respectively. Let X be 

the nonstandardhull of X. The following lemma is a simplified version of a result of 

Henson and Moore (see section 3 of [4]). 

LEMMA 4. IfX is reflexive, then X is superreflexive. 

PROOF.Let Y be any separable Banach space finitely representable in X. There is an 

increasing family {Yn : n = 1,2, . . .} of finite dimensional subspaces of Y such that 

the dimension of Yn is n and U«eN Yn is dense in Y. For each n there exists a linear 

transformation Tn from Yn into X such that 

(1 - l/#i)||y|| é \\Tny\\ £ (1 + l/n)\\y\\ for all y G Yn. 

Consider the star transformations {*rn}„e*N and {*Yn}ne*u of {Tn} and {Yn}. Pick 

UJ e *Noo. Let 

CYu,r={\y]eY:ye % } . 
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Define 7^ : CY»)*—* X by f^dy]) — fT^y)". It is clear that 7^ is an isometry of 
(*r jMntoX. Since |J w€N F„ is naturally contained in (T^)". The extension to Y of 
the restriction of 7^ to U/Z<EN ^« gives the isometry of Y into X. So F is reflexive. 
Therefore X is superreflexive. • 

PROOF OF THE MAIN RESULT. For each A G *L, define 

z>(A) - (V(A)r and V(A) = (V(v4))°. 

Then z> is a finitely additive X-valued measure and °/x a finitely additive nonnegative 
real-valued measure respectively. For any given e, there exists 8 such that 

( Vfl G !)[/*(*) < « — ||i/(£)|| < 6/2]. 

Hence (VS G *!)[>(£) < S -* ||V(£)|| < e/2] is true in the nonstandard model 
by the Transfer Principle. Thus for any A € *Z,°/x(A) < 6 —> */xW < <$ —» 
||V(A)|| < e/2 -> ||j>(A)|| = (||V(A)||)° < e. So i> is °^-continuous. By Lemma 
3 £(*£) = (*(i/(Z))) " is relatively weakly compact. But z/(X) contains a ball in X. 
Therefore X is reflexive. By Lemma 4 X is superreflexive. D 

3. Remarks. 
1. According to a correspondence with Professor Joseph Diestel, the main result 

of this note can be proved in the standard framework of functional analysis. He 
presented the author a proof which is based on the following deep result of Rosenthal 
(see [12]). If 1 ^ p < 2, then every subspaces of LP either contains a complemented 
isomorph of lp, or imbeds in (is linearly homeomorphic to a subspace of) LP for some 
p < pf < co. Thus every reflexive subspace of L1 imbeds in LP for some 1 < p < co 
since Pelczynski has shown that infinite dimensional complemented subspaces of ll 

are isomorphic to Z1 (see [3], p. 114). Here we give the key points of his proof. Let 
fi and v be the measures as in Section 2. Define operator Tv from L°°(p) to X by 
Tug = JQg dv for all g G L°°(/x). Then 7V is surjective. Consider the dual operator 
T* from X* (dual space of X) to L°°(/i)*. It is clear that T* is injective. Since X* is 
reflexive, T* is an isomorphism of X* onto a reflexive subspace of L°°(/x)*. We can 
prove that T*(X*) is a subset of LJ(/i). Then by Rosenthal's result we can get the 
superreflexivity of X*. Then X is superreflexive. 

2. By comparing the two proofs, we see that the nonstandard proof is elementary. 
On the contrary, the other proof needs the main structural result of the paper [12] 
which is 30 pages long. 

3. If we assume that v is strongly additive and the closed convex hull of i/(L) 
contains a ball in X, X is still superreflexive. 

4. In [8], [11], [13] and [14], nonstandard vector measure theory is studied; and 
some applications are given. The techniques used there may have some further appli
cations to a study of vector measures. 
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5. The author is indebted to the anonymous referee for his suggestions. He pointed 
out that the ball of a Banach space is contained in the range of some vector measure 
if and only if the Banach space is a quotient of LP for some (2 ^ p ^ oo) . Here is 
the proof. 

We know that the unit ball of any LP (2 ^ p ^ oo) is the range of a vector measure. 
It follows easily that 

(1) The unit ball of any quotient of LP {2 S p ^ oo) is contained in the range of a 
vector measure. 

(2) Any Banach space whose ball is contained in the range of a vector measure is 
actually a quotient of Lp for some (2 ^ p ^ oo). 

STEP 1. As Diestel remarked the hypothesis implies thatX is the quotient of L°°(p) 
for some /i. Moreover this quotient Tv : L°°(/i) —» X is weak* to weak continuous. 
Hence X is reflexive and T*(X*) is a reflexive closed subspace of (L°°)*, hence su-
.perreflexive by the mentioned result of Rosenthal and T*(X*) embeds in Lq' for some 
1 < c( < oo. It follows that X has a nontrivial cotype p' ^ 2. 

STEP 2. (i) If p' — 2 then Tv is a 2-summing operator in view of a well known 
extension of a theorem of Grothendiek. See [Pisier, Theorem 4.1]. (ii) If p' > 2 then, 
Tv is pf + e-summing (for any e > 0) in view of a result of Maurey [9]. 

STEP 3. In both cases, one can conclude by a classical result of Pietsch stating 
that the /^-summing (2 ^ p < oo) operator Tv : L°° —> X factors through Z/ [Pisier, 
Corollary 1.5]. Hence X is a quotient of LP. 
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