BULL. AUSTRAL. MATH. SOC. Vol. 65 (2002) [177-182]

INTERPOLATING SEQUENCE ON CERTAIN BANACH SPACES OF ANALYTIC FUNCTIONS

B. YOUSEFI

Let G be a finitely connected domain and let X be a reflexive Banach space of functions analytic on G which admits the multiplication operator M_z as a polynomially bounded operator. We give some conditions that a sequence in G has an interpolating subsequence for X.

INTRODUCTION

Let X be a separable reflexive Banach space whose elements are analytic functions on a complex domain Ω . It is convenient and helpful to introduce the notation $\langle x, x^* \rangle$ to stand for $x^*(x)$, for $x \in X$ and $x^* \in X^*$. Assume $1 \in X$ and the operator M_z of multiplication by z maps X into itself and for each λ in Ω , the functional $e(\lambda) : X \to C$, the evaluation at λ given by $e(\lambda)(f) = \langle f, e(\lambda) \rangle = f(\lambda)$, is bounded.

For the algebra B(X) of all bounded operators on a Banach space X, the weak operator topology is the one in which a net A_{α} converges to A if $A_{\alpha}x \to Ax$ weakly, $x \in X$.

A complex valued function φ on Ω for which $\varphi f \in X$ for every $f \in X$ is called a multiplier of X and the collection of all these multipliers is denoted by M(X). Because M_z is a bounded operator on X, the adjoint $M_z^* : X^* \to X^*$ satisfies $M_z^* e(\lambda) = \lambda e(\lambda)$. In general each multiplier φ of X determines a multiplication operator M_{φ} defined by $M_{\varphi}f = \varphi f, f \in X$. Also $M_{\varphi}^* e(\lambda) = \varphi(\lambda) e(\lambda)$ ([8]). It is well-known that each multiplier is a bounded analytic function. Indeed $|\varphi(\lambda)| \leq ||M_{\varphi}||$ for each λ in Ω . Also $M_{\varphi}1 = \varphi \in X$. But $X \subset H(\Omega)$, thus φ is a bounded analytic function. We say that M(X) is rotation invariant if whenever $h \in M(X)$, then $h_{\theta} \in M(X)$ where $h_{\theta}(z) = h(e^{-i\theta}z)$. Also we call that M_z is polynomially bounded in the sense that there is a constant C > 0 such that $||M_p|| \leq C ||p||_{\infty}$ for every polynomial p, where $||p||_{\infty}$ is the supremum norm of p on Ω . By $H(\overline{\Omega})$ we mean the set of all functions that are analytic in some fixed open set Gcontaining $\overline{\Omega}$, with $f_k \to f$ uniformly on compact subsets of G.

Received 11thApril, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

MAIN RESULTS

First we give the Rosenthal-Dor Theorem which we need for the proof of our main theorem.

ROSENTHAL-DOR THEOREM. Suppose X is a Banach space and $\{e_n\}$ is a bounded sequence in X. Then there exists a subsequence $\{e_{n_k}\}_k$ such that either

- (i) the map $\{a_k\}_{k=1}^{\infty} \to \sum_{k=1}^{\infty} a_k e_{n_k}$ is an isomorphism of ℓ^1 into X, or
- (ii) $\lim \varphi(e_{n_k})$ exists for every $\varphi \in X^*$.

PROOF: See [4] and [7].

The pseudo-hyperbolic distance $\rho(z, w)$ between points z, w in the unit disc U is defined by $\rho(z, w) = |(w - z)/(1 - \overline{w}z)|$. Given any two pairs of points in U of equal pseudo-hyperbolic distance apart, there is an analytic automorphism of U mapping the first pair onto the second pair of points ([6]).

From now on we assume that X is a separable Banach space and the operator M_z is bounded on X.

LEMMA 1. Let $w_1, \ldots, w_n \in U$, and $\varepsilon > 0$. Then there exists a function φ analytic on \overline{U} such that $\varphi(w_i) = 1$ for $i = 1, 2, \ldots, n$ and $\varphi(1) = -1$ and $\|\varphi\|_{\infty} \leq 1 + \varepsilon$.

PROOF: Consider the Blaschke product $B(z) = \prod_{j=1}^{n} e^{i\theta_j} (z - w_j)/(1 - \overline{w_j}z)$. Clearly $||B||_{\infty} = 1$ and $B(w_j) = 0$ for j = 1, ..., n. Now by the same method used in the proof of Lemma 9 in [1], consider the pseudo-hyperbolic distance $\rho(w, z)$ between points $w, z \in U$. Choose $\delta > 0$ such that $1/(1 + \delta) = \rho(1/(1 + \varepsilon), -1/(1 + \varepsilon))$. Thus $\rho(0, 1/(1 + \delta)) = \rho(1/(1 + \varepsilon), -1/(1 + \varepsilon))$. So there exists $b \in H(\overline{U})$ such that $||b||_{\infty} = 1, b(0) = 1/(1 + \varepsilon)$ and $b(1/(1 + \delta)) = -1/(1 + \varepsilon)$.

Define $\varphi = (1+\varepsilon)b\circ (B/(1+\delta))$. Clearly φ is analytic on \overline{U} , $\varphi(w_k) = (1+\varepsilon)b(0) = 1$ for $k = 1, \ldots, n$ and $\varphi(1) = (1+\varepsilon)b(1/(1+\delta)) = -1$. Because b is analytic on \overline{U} and $\|b\|_{\infty} = 1$, we conclude that φ is analytic on \overline{U} and $\|\varphi\|_{\infty} \leq 1+\varepsilon$.

We now make the following.

DEFINITION 2: An open connected subset Ω of the plane is called a Caratheodory region if its boundary equals the boundary of the unbounded component of $C \setminus \overline{\Omega}$.

It is easy to see that Ω is a Caratheodory region if and only if Ω is the interior of the polynomially convex hull of $\overline{\Omega}$. In this case the Farrell-Rubel-Shields Theorem holds [5, Theorem 5.1, p. 151]. Let f be a bounded analytic function on Ω . Then there is a sequence $\{p_n\}$ of polynomials such that $||p_n||_{\Omega} \leq C$ for a constant C and $p_n(z) \rightarrow f(z)$ for all $z \in \Omega$. In the following we suppose that Ω is the unit disc U.

LEMMA 3. Let M_z be polynomially bounded in the sense that for some C > 0, $||M_p|| \leq C ||p||_{\infty}$ for all polynomial p. Then $||M_{\varphi}|| \leq C ||\varphi||_{\infty}$ for all φ in M(X).

PROOF: Since $M(X) \subset H^{\infty}(U)$ and U is a Caratheodory region, there is a sequence $\{p_n\}$ of polynomials such that $\|p_n\|_{\infty} \leq \|\varphi\|_{\infty}$ and $p_n(z) \to \varphi(z)$ for every $z \in U$. For each $\lambda \in U$ we have

$$\langle M_{p_n}f, e(\lambda) \rangle = (p_n f)(\lambda) = p_n(\lambda)f(\lambda) \to \varphi(\lambda)f(\lambda) = \langle M_{\varphi}f, e(\lambda) \rangle$$

Because $X^* = \operatorname{span} \{ e(\lambda) : \lambda \in U \}$, we conclude that $\langle M_{p_n} f, g \rangle \to \langle M_{\varphi} f, g \rangle$ for all f in X and g in X^* . Now

$$|\langle M_{p_n}f,g\rangle| \leq ||M_{p_n}|| ||f|| ||g|| \leq C ||p_n||_{\infty} ||f|| ||g|| \leq C ||\varphi||_{\infty} ||f|| ||g||.$$

Let $n \to \infty$, then $|\langle M_{\varphi}f, g \rangle| \leq C ||\varphi||_{\infty} ||f|| ||g||$ for all f in X and g in X^* . This completes the proof.

DEFINITION 4: A sequence $\{w_n\}$ of points of Ω is said an interpolating sequence for X if there exists a positive weight sequence $\{k_n\}$ so that the sequence $\{f(w_n)k_n\}_{n=1}^{\infty}$ is in ℓ^{∞} for all f in X and conversely every sequence in ℓ^{∞} can be written in that form.

In the following $e(\lambda)$ is the functional of evaluation at λ .

THEOREM 5. Let U be the open unit disc for which each point is a bounded point evaluation for a reflexive Banach space X of functions analytic on U which contains the constant functions and admits M_z to be polynomially bounded. Also assume that M(X)is rotation invariant and $H(\overline{U}) \subset M(X)$. If $\{w_n\}$ is a sequence in U such that $w_n \to \partial U$, then some subsequences of $\{w_n\}$ is interpolating for X.

PROOF: Put $e_n = (e(w_n))/||e(w_n)||$ for all $n \in \mathbb{N}$. Then $\{e_n\}_n$ is a bounded sequence in X^* . Use the Rosenthal-Dor Theorem for the Banach space X^* and let $\{e_{n_k}\}$ be the subsequence of $\{e_n\}_n$ promised by the Rosenthal-Dor Theorem, and suppose that case (i) of the Theorem holds. Let T denotes the isomorphism from ℓ^1 into X^* given by case (i) of the Rosenthal-Dor Theorem. Because X is reflexive and T is one to one with closed range, the dual T^* maps X onto ℓ^{∞} . Now let $a = \{a_n\} \in \ell^{\infty}$. Since T^* is onto, there exists $f \in X$ such that $T^*f = a$. Recall that $T^*f = f \circ T$. So $f \circ T = a$. Apply both sides of the equation $f \circ T = a$ to the vector in ℓ^1 that is 0 except for a 1 in the kth coordinates, getting $f(e_{n_k}) = a_k$ for every k. Thus

$$a_k = \langle e_{n_k}, f \rangle = \langle f, e_{n_k} \rangle = \left\langle f, \frac{e(w_{n_k})}{\|e(w_{n_k})\|} \right\rangle = \frac{f(w_{n_k})}{\|e(w_{n_k})\|}$$

for all k. On the other hand for all f in X,

$$\left|\frac{f(w_{n_k})}{\left\|e(w_{n_k})\right\|}\right| = \left|\left\langle f, \frac{e(w_{n_k})}{\left\|e(w_{n_k})\right\|}\right\rangle\right| \leq \|f\|$$

Thus indeed $\{w_{n_k}\}_k$ is interpolating for X if we can prove that case (ii) of the Rosenthal-Dor Theorem never holds. For this let $\{\varepsilon_k\}_k$ be a sequence of positive numbers such that $\prod_{k=1}^{\infty} (1 + \varepsilon_k) < \infty$. Similar to the proof of [1, Proposition 4, p. 416], by using Lemma 1 we can choose inductively an increasing sequence $n_1 < n_2 < \cdots$ of positive integers and a sequence $\varphi_1, \varphi_2, \ldots$ of functions analytic on \overline{U} such that

$$(\varphi_1 \cdots \varphi_{k-1})(w_{n_k}) \approx (-1)^{k-1},$$

$$\varphi_k(w_{n_1}) = \cdots = \varphi_k(w_{n_k}) = 1,$$

$$\varphi_k(1) = -1,$$

$$\|\varphi_k\|_{\infty} \leq 1 + \varepsilon_k.$$

By Lemma 3, $||M_{\varphi}|| \leq C ||\varphi||_{\infty}$ for all $\varphi \in M(X)$, thus we get

$$\|M_{\varphi_1\varphi_2\ldots\varphi_k}\| \leq C \,\|\varphi_1\varphi_2\ldots\varphi_k\|_{\infty} \leq C \prod_{i=1}^k \|\varphi_i\|_{\infty} \leq C \prod_{i=1}^k (1+\varepsilon_i).$$

Hence the sequence $\{M_{\phi_1\phi_2\dots\phi_k}\}_k$ is norm bounded. Since X is reflexive, the unit ball of X is weakly compact. Therefore the unit ball of B(X) is compact in the weak operator topology. We may assume, by passing to a subsequence if necessary, that $M_{\varphi_1\varphi_2\dots\varphi_k} \to A$ in the weak operator topology, for some operator A. Thus $M^*_{\varphi_1\varphi_2\dots\varphi_k}e(\lambda) \to A^*e(\lambda)$ in the weak star topology. On the otherhand $M^*_{\varphi_1\varphi_2\dots\varphi_k}e(\lambda) = (\varphi_1\varphi_2\dots\varphi_k)(\lambda)e(\lambda)$, so there exists a function φ such that $A^*e(\lambda) = \varphi(\lambda)e(\lambda)$ and thus $A^* = M^*_{\varphi}$. Hence $A = M_{\varphi}$ on X which implies that $\varphi \in M(X)$ and if $\{w_n\}$ is a sequence in U such that $|w_n| \to 1$, then φ satisfies $\varphi(w_{n_k}) = (-1)^k$ and $\lim_k \varphi(w_{n_k})$ does not exist. Now for suitable choices of $\theta_k, e^{-i\theta_k}w^k_{n_k}$ is a positive real number for all k. Now consider the sequence $\{a_k\}_k$ of positive real number. Define $h = \varphi \psi$. Since $\varphi \in M(X)$, the function h is in X and we have:

$$h(e_{n_k}) = \langle h, e_{n_k} \rangle = \langle \varphi \psi, e_{n_k} \rangle = \frac{\varphi(w_{n_k})\psi(w_{n_k})}{\|e(w_{n_k})\|} = (-1)^k \frac{\psi(w_{n_k})}{\|e(w_{n_k})\|}.$$

But

$$0 \leq \frac{\psi(w_{n_k})}{\|e(w_{n_k})\|} = \frac{\langle \psi, e(w_{n_k}) \rangle}{\|e(w_{n_k})\|} \leq \|\psi\|,$$

for all k. So $\lim_{k} h(e'_{n_k})$ does not exist. This completes the proof.

COROLLARY 6. Let $w_n \to \partial U$. Then there exists a function h in $H^{\infty}(U)$ such that $\lim h(w_n)$ does not exist.

PROOF: Let ϕ, ψ, h are defined as in the proof of the above theorem. Note that we could choose ψ being in M(X). But M(X) is an algebra, thus $h = \phi \psi \in M(X)$. Since $\lim h(w_{h_k})$ does not exist, the proof is complete.

0

[4]

COROLLARY 7. Let $X \subset H(\Omega)$ when Ω is one of the sets $\{z : |z| > r\}$ or $\{z : |z| < r\}$. If $\{w_n\}$ is a sequence in Ω such that $w_n \to \partial\Omega$, then under the assumptions of the theorem there exists $h \in H^{\infty}(\Omega)$ such that $\lim h(w_n)$ does not exist.

PROOF: Since Ω is the conformal image of the open unit disc U, by the above corollary it is clear.

Consider the circular domain $G = U \setminus K_1 \cup \ldots \cup K_N$ where $K_i = \overline{D_i} = \{z : |z - z_i| \leq r_i\}$ are disjoint closed subdiscs of the open unit disc U. Put $G_i = (\mathbb{C} \cup \{\infty\}) \setminus K_i$ for $i = 1, 2, \ldots, N$. Then by the Cauchy integral formula it is proved that

(1)
$$H^{\infty}(G) = H^{\infty}(G_0) + H^{\infty}_0(G_1) + \dots + H^{\infty}_0(G_N)$$

where $G_0 = U, H_0^{\infty}(G_i) = H^{\infty}(G_i) \cap H_0(G_i)$ and $H_0(G_i)$ is the space of all analytic functions on G_i that vanish at infinity ([2, 3]).

The above Theorem can be extended for the case of circular domain instead of the open unit disc.

COROLLARY 8. Theorem (5) is also true for any circular domain G, if in addition we suppose that $M(X) = H^{\infty}(G)$.

PROOF: By the same way as the Theorem we can prove that if case (i) of the Rosenthal-Dor Theorem is satisfied, then there exists some subsequence of $\{w_n\}$ that is interpolating for X. So it is sufficient to prove that case (ii) of the Theorem does not hold. Let $w_n \to \partial(G_i)$ for some $i = 0, 1, \ldots, N$. By the above corollary there is $h \in H^{\infty}(G_i)$ such that $\lim_{n} h(w_n)$ does not exist. By the decomposition (1), $H^{\infty}(G_0)$ and $H_0^{\infty}(G_i)$ are subsets of $H^{\infty}(G)$. So $h \in H^{\infty}(G) \subset M(X) \subset X$ and this completes the proof.

References

- S. Axler, 'Interpolation by multipliers of the Dirichlet space', Quart. J. Math. Oxford 43 (1992), 409-419.
- K.C. Chan, 'On the Dirichlet space for finitely connected regions', Trans. Amer. Math. Soc. 319 (1990), 711-728.
- [3] K.C. Chan and A.L. Shields, 'Zero sets, interpolating sequences, and cyclic vectors for Dirichlet spaces', Michigan Math. J. 39 (1992), 289-307.
- [4] L.E. Dor, 'On sequences spanning a complex ℓ¹ space', Proc. Amer. Math. Soc. 47 (1975), 515-516.
- [5] T. Gamelin, Uniform algebras (Chelsea, New York, 1984).
- J.B. Garnett, Bounded analytic functions, Pure and Applied Maths. 96 (Academic Press, New York, 1981).
- [7] H.P. Rosenthal, 'A characterization of Banach spaces containing ℓ¹', Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
- [8] K. Seddighi, K. Hedayatiyan and B. Yousefi, 'Operators acting on certain Banach spaces of analytic functions', *Internat. J. Math. Math. Sci.* 18 (1995), 107-110.

Deparement of Mathematics Shiraz University Shiraz 71454 Iran e-mail: yousefi@math.susc.ac.ir

182