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STRESS VARIATIONS WITH ICE FLOW OVER 
UNDULATIONS 

By W. F . B UDD 

(Antarctic Division, D epartment of Supply, M elbourne, Victoria, Australia) 

ABSTRACT. The a na lysis of steady-sta te Aow over bedrock perturbations of Budd ( 1970[a] ) is ex tended 
to evalua te the stress vari a tions associa ted with the Aow. In pa rti cul a r the four separate terms of the fund a
menta l one-dimensional (longitudinal) stres equation (Budd, 1968) a re exa mined to show explicitly how 
the longitudina l stress gradient C, the base stress T, the sUlface slope stress s, and the integra ted second deri va
tive of the shear stress T , all vary over a g iven wave. 

T he result shows a n error of a facto r of 2 in some earli er studies relating longitudin a l stress va ria tions to 
the slope. This error resulted from the erroneous assumption tha t the basa l stress rem a ins consta nt a t its 
regional value. In fact the basa l stress va ries over the undula tions in a simil a r way to the longitudina l 
stress g radient, a nd trus is the same as the surface slope stre s for long waves, bu t for short waves ( == 4< or 
less ) requires the addition of the fourth term T, which then becomes dominan t. 

RESUME. Variat ions des efforts auec l'ecolllemen/ de la glace SlI Y des olldlllatiolls. L'a na lyse de I'ecoul ement 
perma nent sur les irregularites du lit rocheux d e Budd ( 1970 [a]) es t e tendue pour es timer les va ria tions 
de I'effo rt associees a I'ecoulement. En parti culi e r, les q ua tre termes separes d e I'equa tion fondamentale 
(Budd, 1968) des efforts selon une seul e dimension (longitudina l e) sont exa mines pour monu'er explicitement 
comment le g radient C de I'effo rt longitudina l, I'effo rt a la base T , I'e ffort a la surface S et la deri vee seconde 
integree d e I'effo rt d e cisa illement T va rient tous sui va nt un rythme ondul atoire donne. 

L e resu lta t montre une erreur d ' un fac teur 2 d a ns quelq ues travaux a nteri eurs rela ta nt la va ri a tion 
longitudinale des efforts selon la pente. Cette en 'eur resultait de I'hypothese erronee que I'effort a la base 
res ta it constant a sa va leur moyenne pour le secteur considere. En realite, I'e ffort a la base va rie a vec les 
ondulations d e la meme ma niere q ue le gradient de I'effort longitudinal et il en es t de meme pour I' effort a 
la surface da ns le case d e longues ondulations, alors que d a ns le case d es counes ond ulations (a peu pres 
4.( ou moins) il fa ut ajouter le qua tri eme terme T qui devient predomina nt. 

Z USA MMEN FASSUNG . Spallll llllgsschwalZkllllgen bei Eisjlllss iiber welleliformige Ullebenheilell. Die Analyse d es 
ste tigen F liessens liber Sti:i rungen im Felsbett von Budd ( 1970 [a] ) wird zur Bestimmung d er mit dem 
Fliessen verbundenen Spa nnungssehwa nkungen erweitert. I m einzelnen werden die vier lIn a bha ngigen 
Gr6ssen der eindimensiona len (Iongitudina len ) Spa nnungsglciehung (Budd, 1968) untersucht , urn explizit 
zu zeigen, wie der longitudina le Spa nnung gradien t C, die Spann llng a m G rund T , di e Spa nnung 
infolge OberAachenneigung s und das J ntegra l der zweiten Ableitung d er Seherspa nnung T li ber einer 
gegebenen W elle variieren. 

Das Ergebnis weist cinen Fehler mit dem Fa ktor 2 in einigen frliheren U ntersuchungen nach, die 
longitudina le Spa nnllngsunterschiede a uf die Neigung zurlickflihren . Dieser Fehler geht auf die irrige 
Anna hme zurli ck, d ass die Spannung a m G rllnde ihren i:i rtli chen Wert konsta nt beibeha ll. T a tsaehlich 
a nden sie sich liber Undulationen a hnlich wie der longitudinale Spa nnungsgradient ; diese r ist d erselbe 
wie die Spa nnung infolge Oberflachenneigung flir la nge Well en, flir kurze '''' ell en ( ==4.( oder weniger ) 
hingegen ist di e Addition der vierten Gri:isse T nOlwendig, d ie da nn liberwiegt. 

I . I NTRO DUCTIO N 

I. I. Background 
The equi librium equations for an ice mass concern stress gradients at a point. The integral 

of these equations through the ice thi ckness prov ides the fundam enta l equation for the mean 
stres of a column along a fl ow line in terms of the boundary dimensions. Through the intro
duction of a fl ow law this fundamental "one-dimensional " stre s equation provides the 
mechanism for stud ying the motion of the ice along the fl ow line. The resulting velocities 
and strain-rates, together with the continui ty equa tion a llow the history of cha nge of the 
icc mass to be calculated as a one-dimensiona l problem. In addition there a re many other 
uses of this equation . R obin ( 196 7) showed tha t surface lope varia tions a long a line of fl ow 
in Greenland could be interpreted in terms of varying longitudina l stress g radients. Budd 
(1968) showed that surface slope devia tion a long a fl ow line of the Wilkes ice cap were 
proportiona l to the mea ured surface strain-ra te g radien ts, and thereby calculated effective 
flow-la,, ' parameters of the ice. Coli ins ( 1968) anal ysed the deri vation of the expression for 
the longitudinal stress deviator to inves ti gate the conditions under whi ch R obin 's results 
appl y. :\ye (1969[b] ) showed tha t a simpler form of the equa tion could be del-ived with 
respect to a variable longitudinal axis parallel to the surface for each poinl. Nye examin ed 
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the hypotheses of Robin and Budd that the surface slope vari ed with longitudinal stress or 
strain-rate gradients and posed the question : why should the basal stress of the ice remain at 
its regional value while the longitudinal stress gradient varies with local slope deviations? 
The following analysis provides an answer to this ques tion. 

The results of two previous papers by the author (Budd, 1970[a] , [b] ) are combined to 
show how the various stress components are distributed in a simple model of Aow over undula
tions. As before we res trict our study to two dimensions. 

1 .2. The longitudinal stress equation 
It was shown by Budd (1970[bJ ) that for an arbitrary homogeneous medium for whi ch 

the quasi-static equilibrium stress equations under gravity hold viz.: 

oox OTxz 
Tx+---az = pgx, ( I) 

00. OTxz az+ax = pgz, (2) 

where p is the density of the medium and pgx and pgz are gravitational weight components 
in the x and z directions for any orthogonal axes system ; that the following general integral 
equation holds 

where z,(x) and z. (x) are any smooth, single-valued , distinct boundary curves in the medium, 

Z = Z,- z. (4) 
and T XZ ) and T XZ2 are the (x, z) shear-stress components at these boundaries. 

This equation may be used to study the m otion of an ice mass a long its longitudinal profile 
by choosing z , for the upper boundary, z. for the bed , and the axi x in the general longitudina l 
direction (cr. Fig. I) . It was also shown that for small slopes and stress gradients, a good 
fi rst-order approximation was the equation of Budd (1968) 

/ 
Z,(.) 

H RIZONTAL 

I 
x ~ .... 

a; 

ICE 

1:". 

Fig. I. Coordinate ~vstem a/ld boundaries for longitudinaL stress equation. 
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where (6) 
t , 

is the mean stress deviator through the column, IX is the surface slope, T b is the basal shear 
u-ess (parallel to the bed), and x is taken generally along the glacier and it is not very im

portant whether it is a long the surface or bed provided the inclinations are mall. 
Equations (3) and (5) in effect represent the total longitudinal stresses on a column from 

the surface to the bed. Similarl y to Nye (I 969 [b] ) we shall examine the four individual 
terms of Eq uation (5). 

f i ) G = oZa' x/ox is the stress-deviator gradient term and represen ts the net longitudinal tress 
on the column of the ice up- and down-stream. It determines whether the column will 
extend or compress in the line of motion. 

(ii) s = pgZIX is the down-slope stres and repre ents the down-slope component of the 
gravitational stress on a uniform slab resting on an inclined plane of slope IX. 

(iii ) Tb is the basal stress, or fri ction , term which, for the uniform slab on the inclined plane, 
would balance the slope term. 

(iv) T = J J o;::z d z d z may be termed the variational stress since it represents the resistan ce 

of the medium to a varying stress gradient in the line of motion. It is usuall y associated 
with curved particle paths. For slowly varying stresses or long waves it becomes negligib le 
(irrespective of the magnitude o[ TXZ ) but for short-wave Ructuations it becomes very 
importan t. Budd (1968) indicated that for variations of wavelength about four times 
the ice thi ckness or shorter this term should be considered. 

W e note here that Equations (3) a nd (5) , having been deri ved directly from the equi
librium equations, app ly whatever the Row law. 

1. 3. Ice flow over sinusoidal bedrock perturbations 
Budd (1970[a] ) considered the motion o[ a medium of uniform thi ckness Z dO\m a 

uniform slope ii on which small harmonic perturbations 

b = b, cos w x ( 7 ) 

\\'ere superimposed , cr. Figure 2. The method used was to consider the perturbations to 
the Row down a uniform slope caused by the bedrock undul ations. The model chosen was 
one in which most of the horizonta l shear occurred near the bed 0 that for the perlurbations 
the velocity in the upper region could be taken a a pproximately uniform . Al 0 for this 
section of the medium a constan t viscosity was taken so that the longi tudinal strain perturba
tion were proportional to the longitudinal stress d eviator. 

This m odel is a simpler and more re trictive medium than the general medium for \\'hich 
Equations (3) and (5) [or stresses apply. 

W e adopt the ame simple model here as used in Budd ( 1970[ a] ) (cr. Fig. 2) and the same 
axe system and boundary conditions, viz . 
( I *) Upper boundary. Th e verti cal stress [or the perturbed upper surface is taken as 

az)s = - pg(h, cos wx h2 sin wx) 
= - pgh (8) 

\\'here h is the height above the unperturbed urfaee z = Z. The ign ha been cho en negat ive 
here (as opposed to positive in Budd 1970[a] ) to keep tensile tresses po itive. 
\2*) Lower boundary. The vertica l velocity at the lower boundary Vb is taken as 
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qp 
Vb = V{3 = V

dz 
(9) 

(3*) Steady-state condition. For the upper boundary the steady-state surface condition for 
the vertical velocity at the surface (vz) leads to 

dh 
Vz = Vex = V dx = V(exl cos wx+ ex, in wx) ( 10) 

where exI and ex, are to be determined. 
The stress function to be found to fit these boundary conditions is taken as 

<p = (AIe-wz+ A2ewZ) cos wx+(A3e-wz+ A4ewz) sin wx. ( 11 ) 

The previous paper used a viscous flow law defined by: 

ou ov 
'271 ax = - '271 az = H ux-uz) 

(where 71 is the effective mean viscosity parameter) to determine the Ai of Equation (I I) 
which satisfy the boundary conditions Equations (8), (9) and (10), for the purpose of obtaining 
the surface profile, i.e. <x, and ex2 in terms of the bed profile, b = b, cos wx, the ice thi ckness ,(, 
the velocity Vand the mean viscosity parameter 71. 

HORIZONTAL 

Fig . 2. Flow down uniform slope with sinusoidal pertllrbations. 

I -4- Aim of the present paper 
The aims of the present analysis can now be given specificall y: 

( I) First we wish to derive a general result for the stresses in the longitudina l stress 
eq uation. The individual components of stress foll ow from the stress fun ction ( I I) and the 
surface slope from the stress boundary condition ( I *). H ence the individual terms of 
Equation (5) can be calculated and the relations between them obtained. This will be quite 
general and independent of the flow law or the state of balance. 

('2 ) Using in addition the further conditions of (i) uniform velocity and flow parameter 
and (ii) the steady-state continuity, i.e. boundary conditions ('2*) and (3*), a solution for this 
special case can be obtained which a llows the magnitudes of the various terms to be assessed. 

(3) Finally the condition of steady state can be relaxed to show that the motion is inde
pendent of the state of balance provided the surface variations are small. 
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2. GENERAL STRESS EQUATION 

W e begin by simply evaluating the tress components from the stress function in term of 
the constants Ai whi ch in general are determined by additional boundary condi tion (e.g. 2 * 

and 3*) . 
W e note that without loss of generali ty we may cho e A3 = A4 , i .e. make the cos wX 

component of the base shear stt"ess perturbation TXZ zero when z = 0 and x = o. This is 
m erely specifying the zero of the x axis with respect to rp, and in addition makes th is context 
compatible with the next section and the steady-state Aow over undulations ofBudd ( I 970[ a] ) . 

T he stress fun ction is then 

<p = (A ,e- wz + A2ewz) sin wX 2A3 cosh wZ sin wX (13) 

T he stress components follow directly from the definition of the stress function cr. Budd 
( 1970[a]). 

Ux = w2(A ,e- wz+ A2ewZ) sin wX + 2wzA 3 cosh wz cos wX (14) 

= - Uz (15) 

= H ux - uz) , (16) 
-Txz = w2 ( -A,e-wz+ A2ewz) cos wX - 2w2A3 sinh wz cos wX. ( 17) 

T he next step is to determine the terms G and T as integrals through the ice thickness. 
For Equation (5) the limits of the integration were the irregular upper and lower boundaries, 
and the equation is not exact. 

Equation (3) is exact a nd we note that although z ,(x) and Z2 (X) may in general be irregular 
functions of x, they are a rbi trary, and this generality a llows an important simplification to 
be made here. In this case we choose the limits to be the straight-line means of the surface 
and the bed of Figure 2 , viz. z = 0 and z = ,,(. They could of course be ta ken at any other 
two levels in the medium, e.g. cf. F igure 4. 

Now Equation (3) becomes 
0 0< 

J 
3(ux- uz) cux) J J 22TXZ ex d z = pgx"( + ,,( Tx z - Tzzl o+ TXZ) Z+ ex2 dz d z. 

Z Z Z 
Also we note that for the unperturbed Aow this equation becomes simply (cr. Budd 1970[a] ) 

TxZ)Z=- pgx"( (19) 
all other terms being zero. 

Furthermore from Equation (8) for the surface 

GUx ) d!! 
,,(a; Z = pg,,( dx 

= pg,,(rx 

where rx is the perturbation slope difference from the mean. 
Equation ( 18) now become , for the perturbations, noting that with the constant limits 

o and ,,( we can simply interchange the differentiation and integra tion , 

where 

o 

I J ux-uz a'x = - --- dz Z 2 
Z 

o z 

is the mean longitudinal stre s dev iator through the colum n. 

https://doi.org/10.3189/S0022143000013162 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013162


JOURNAL O F GLA C IOLOGY 

Equation ('21 ) is now the fundamental relation for which we wish to examine the part 
played by its various terms. U sing a similar notation to that introduced in section ( I ·3) " . 
m ay write for brevity 

Thc firs t term is found from Equation ( 16) by performing the integration a nd differentia tion 
VI Z. 

ex 

The term s is found from Equation (20) and ( 15) a 

pgZIX = -w3Z [A ,e-wz + A ,ewZ] cos wX+ w3Z [2 13 cosh wZJ sin wx. (2..J.) 

For the surface T S is found from TXZ of Equation ( 17) by putting z = Z, i .e. 

T XZ) Z = - w2 { - A ,e- wZ+ A ,ewZ} cos wx + w22A 3 inh wZ sin wx. (25 ) 

Similarl y for the base T XZ) O = T X Z when z = 0 

T X Z) O = - w2(- A ,+ A, ) cos wx. (26 ) 
U sing (17) we eva luate T as fo llows : 

z 

~? C-Txz . 
- ':1- = + w4( - A, e-wz+ A ,ewz) cos WX- w4A 32 8mh wz in wX. 

uX' 

I e;:~z d z = + w3(A,e- wz + A,ewz) /:c08 wx - w3 A32 cosh wz l ~in wX 

Z 

Finally 

(27) 

This completes the evaluation of the individual terms of Equation (22 ). To a id the compari on 
of the terms the same brackets have been used for the same expressions in each term. The e 
term are now combined together in Table 1. 

TABLE 1. SEPARATE TER MS OF THE LONGITUD INAL STRESS EQUATI ON 

o 

r 
aa' ", cl 

2 - z: . ox 
z 

+ 7 

o , 

+ f f O'T." cl - cl -
ox' - -

« 

- 2W'{ - A ,e- wz + A,eWZ}cos wx 

+ 2w' (- A, + A , )cos wx 

- w'{ - A, e- wZ+ A,cWZ}coS wx - w'{ - A ,e- wz + A ,eWZ}cos w\" 

+ w' (- A, + A, ) cos wx + w' (- Aj + A ,) cos wx 

+ 2w' 2A3 sinh wZsin wx + w' 2A3 sinh wZ sin wx + w' 2A, sinh wZsin wx 

+ w3Z[A je- wZ+ A,eWZ] cos wr 

- W3Z[2A , cosh wZl sin w \" 

- w3Z[Aj e- wz + A,ewzl cos wx 

+ w3Z [2A 3 cosh wZ] sin wx 
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It may not be surprising that the terms do all combine to satisfy Equation (23) exactly 
since thi s was derived more generally in Budd (1970[b] ) , but it i quite interesting to see 
the various relationships between the terms. The essence of the coefficient 2 of G is that 
each of the terms of G occur twice (in different terms) on the right-hand side. It may be 
surprising to some that G and s in fact have no terms in common. T has a term in common 
with all others. Som e simpl e sub-relations may be written down which are also exact, e.g. 

G = T - Tb, (3 1) 

G = s+ T, (32 ) 
S = Tb - Ts - T. (33) 

The first of these, Equation (3 1), simply expresses the equilibrium of the column in the line 
of motion. ' '''hen TS is small, as we hall see is the case for small slopes (er. next section), 
thi s gives 

The second relation, Equation (32), shows that for small T (a we shall ee is the ca e for 
long waves) G ~ s, (not ts ). 

Already we begin to see the answer [0 Nye's question. The Robin- Budd hypothesis 
may be imply expressed as 

i) 

where 
a nd 

(35) 
the bar represents the large scale regional average along the line of Row ( ~ 20<:'), 

ii) 2G :: s 

,,"here G and s are the variations 111 rhe longitudinal stress gradient and the surface slope 
stress pgZex. 

The above analysis sugge t 

i) 
and 

(ii) or 

TI) :::: -s 

2G :: S - Tb, 

G :: s. 

T his will be more clea rly brought out, in the next ection , ll1 terms of actual magnitudes, 
for the simple model described in se tion 1. 3. 

3. SPECIAL SOLUTION FOR STEADY-STATE FLOW 

3. I. D etamination cif stress terms 
It is an easy matter to determine the value of the constant Ai of the stress function , 

Equat ion ( 13) , and Table!. for the special case of steady-state flow, and uniform velocity ( V ) 
and flow parameter Cry ) through the thickness. 

I t wa shown in Budd ( I97o[a] ) that the continuity equation for the perturbations with 
uniform velocity r' implied 

db 
V- = 

dx 
T"f3 = VI) , (40 ) 

dh 
v- = 

dx 
Vex = Vz, (41 ) 

\,"here Vb and Vz are the 
respectively, cr. Figure 2; 

velocity components perpendicular to x at the base and surface 

and f3 = f3, cos wx 

is the given bedrock slope variation, 
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These together with the flow law 

ou OV 
271 OX = - 271 OX = H ax - az) 

where 1) is assumed uniform through the thickness, are sufficient conditions to determine the 
constants Ai of the stress function and the steady-state surface et in terms of (3, V, and 1), 

using Equation (16), viz . 

H ax- az) = w' (A le- wz+ A ,ewZ) sin wX+ w' (A3e- wz+ A4ewz) cos wX (44) 

and the stress boundary condition at the surface Equation (8) : 

az)z = - pgh. 

The steady-state surface was d etermined by Budd ( I97o[a] ) . A similar algebraic process 
is required to determine expli citly the value of the Ai. This is given in the Appendix . H ere 
we require only the specific terms appearing in the stress terms of Table 1. There are only 
five different terms and the required expressions are also deri ved in the Appendix, viz. 

hI ClI 
w'{ - A,e- wZ+ A ,ewZ} = pg - = pgZ--, 

X wZX 

sinh wZ 
w' ( - AI + A z) = - pgZ ets wZ = - 271 V(3 IW , 

hz "'z 
w' 2A J sinh w,( = - pg - = - pg,( --, 

X wZ X 

w3Z [Al e- wZ+ A,ewZ] = - pgZet" 

w3Z [2A J cosh wZ ] = pgZ"'I , 

where 
pg 

X = 271 Vw" (5 I) 

ets = ("'I ' + et ,') l . 

This directly allows us to construct a Table II corresponding to Table I, showing the precise 
values of each term of the longitudinal stress equation. 

TABLE II . LONGITUDINAL STRESS EQUATION F OR ST EA DY-STATE F LOW 

oZo'x 
2 -

OX 

hI 
- 2pg - cos wx 

X 

sinh wZ 
- 2pgZas ----;;;z-- COS wX 

11 , . 
- 2, 'g - sm wx 

X 

+s 

+ pgZa 

+ pgZaz cos wx 

+ pgZ aI sin wx 

hI 
- pg - COS wx 

X 

", . - pg - sm wx 
X 

- T b 

- T LZ)O 

sinh wZ 
- pg Z a s ----;;;z-- COS wx 

+T 

o z +J J OZTxz cl cl ox. z z 
Z Z 

ItI 
- pg - COS wx 

X 

sinh wZ 
- pg Z a s ----;;;z-- COs wx 

11 , . - pg - slnwx 
X 

- pgZa, COs wx 

- pgZa, sin wx 

https://doi.org/10.3189/S0022143000013162 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013162


TRE SS VARIATION S WITH I C E FLOW O VER UN D U L AT I O N S 

3.2. The longitudinal stress equation 
For typi ca l ice flow condi tions the ratio .p of the surface variations to the bed varia tions 

is mall , cr. Budd ( I9 70[a] ), Budd and Ca rter ( 19 71 ) . 

pg;:? (ewZ_e-wZ) 

tf; = 41/ V (WZ )2 . (53) 

Some conditions may exist (e.g. 'wh ere Z2f11 r' is mall ), for which thi factor is no t la rge 
in w hich case Table II g ives th e comple te te rms. In o ther cases 

pgZa 
-.p- ~ pgZa. 

Thus for small surface val'iations th e term T S may be neglected a nd th e longitudinal stress 
equation may be written as 

2G :::: S- Tb + T 

or sinh wZ ( sinh wZ ) ( Sinh wZ ) 
'2 pgZas wZ = pgZas [+ wZ - pgZas I wZ ' (55) 

I. e. ( 
(WZ )2 ) ( (wZ )2 ) ((WZ )2 ) 

2pgZas 1 + - 3-!- + '" = pgZas 2 + -
3
-!- + · ·· + pgZas - 3-!-+ '" . (56) 

This last equation shows that for long waves (wZ small ) th e longitudinal stress gradien t G, 
th e surface slope stress pgZa, and th e base stress Tb are all approximately equal , and the fourth 
lerm T is negligible . For short waves (wZ large) the fo urth term T becom es large and the 
variations in longitudinal stress gradient G and basal stress T b become greater than the surface 
slope stress variations pgZrx by an equal amount. The magnitude of the expression 

~= ( sinhwZ 
pgZas wZ ) 

_ ( (WZ )2 (wZ )4 ) 
I - I + I + .. . 

3 · 5· 

as a func tion of relative waveleng th (~ = ~~) i shown in Figure 3. 

This indicates that for wavelengths ,\ ~ 4Z or less the term T cannot be neglected , 
nor can the higher-order term in the expressions fo r G and T b. 

3.3. Surface strain-rate variations 
In order to relate the stresses to m easured surface strain-rate we n ote that the longitudinal 

stress d eviator at the surface, or rather for z = Z, is given by : 

, pga, . pga , 
a x)< = -- sin wx--- cos wx 

w w 
(58) 

therefore 
aZa' x)< . 

ex = + pgZa, cos wx+ pgZa , Sill wx (59) 

= pgZ a. 

T his equation is exact and may be used direc tly to assoc iate the surface strain-rate EX with 
the surface slope variations a through 

a'x) z 
Ex)Z = --. 

'21/z 
(60) 
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2 0·5 
__ WZ 
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( J'lnh wZ _ I ) 
/ «JZ 

0 ~---4--~-+----~====~====+=====F==-~ __ -
o 2 4 6 8 10 12 14 

')... / Z --
Fig. 3. Relative magnitude of variational stress, T, to slope stress, pgZa, for dijJerent wavelengths. 
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T his gives for the surface strain-rate va[-iations 

2Z(7] Ex ) Z 7 
2 ex = pg", fX (61 ) 

which differs from the relation of Budd ( 1968) by a factor of 2 since the parameter B u ed 
there is related to the viscosity here, 7] , by 

27J = B. (62 ) 

Secondly the term on the left concern surface values and not ave rage through the column. 
However for small slopes and long wave it is apparent from the above that this also become 
approximately the same as the average through the column. Again Figure 3 indicates the 
magnitude of the error. 

3+ Calculation of sUI/ace slopes from steady -state flow 
For calcula tions of the type made by Robin (1967) where the continuity equat ion for 

average velocity through the column is used to obtain longitudinal strain-rates, Equations 
(54) , (55) , (56) are relevant. Again there i a correction of a factor 2 required to Robin 's 
form ula a nd in add ition for the higher frequencies the term T is required. For example for 
the second halfof the southern line from Camp Century the mean ice thickness is c. J [00 m 
and the predominant mean wavelength c. 3.6 km. Th is gives ).. /Z ~ 3.3. From Figure 3 
this indicates an increase in stress (or decrease in calculated slope deviation) of about 70 00 ' 

Both these features together may explain why R obin 's calculated surface slope variations 
were much larger than the measured surface slope deviations, and thus furth er support hi s 
use of the laboratory flow parameters extrapolated to lower strain-rates. 

3 .5. Variation of longitudinal and base stress with sw/ace slope 
Nye's ques tion can now be answered exp li citl y as follows. The empirical evidence for the 

R obin- Budd hypothesis was one of proportionality, i. e. the longitudinal stre s (or strain-rate) 
variations G are proportional to the surface slope variations s or 

G oc s. 

The hypothesis was to make the assumption that the base stress stays at its regional value 
while the surface slope variations caused variation in the longitudinal stress deviator grad ient , 
I. e. 

In fact we find for small urface variation 

2G ~ S - Tb - T 

a nd in addi tion for long waves where T may be neglected 

2G ~ S - T b 

(65) 

(66) 

(67) 

(68) 

T he factor 2 d ifference between the relations ,"vas absorbed in the case of Budd ( 1968) in 
the calculated flow parameter. In the ca e of Robin ( 1967), higher calculated surface slopes. 
The reason for the presence of the factor of 2 i that the ba e tre does not stay constant at 
its regional value but varies similarly to the urface lope for long wave. For hort waves the 
expressions for both the base stres and average longitudinal stre s gradient through the 
column require the addition of the higher-order term T. 
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4. GENERALIZATIONS AND EXTENSIONS 

4. I. Relaxation of steady -state condition 
If the surface variations are small the surface stresses (for .<: = z ) are also sma ll and so if 

they may be neglected it d oes not matter much whether they are in a steady state or not. 
If the surface stresses are neglected the base stress and longitudinal stress gradient are given by 

sinh w,( 
C ~ Tb = pg,(rxs w,( cos wx. (69 ) 

Using Equation (47) this can be expressed in terms of f31' 7] and Vas 

G ~ Tb = '27] Vf3 .w cos wx. 

This result still applies w hether the surface slop e is in exact balance or not. In this case the 
surface slope variations are irrelevant. Or in other words for small surface variations compared 
to the bed variations the base stress and longitudinal strain-rates are governed by the deform a
tion of the stream-lines of the ice to conform to the bedrock profil e. It 0 h appens that for a 
steady state a particular surface shape is form ed which is simply related to the bed profile 
and the motion, and thereby provides a further m eans of calculating the base stress or longi
tudina l stress variations, directly from the surface. The stress effect and motion of non-steady 
state or transient surface waves was indicated in Budd ( I970 [aJ ) . 

4.'2. Relaxation of uniform viscosity and velocity conditions 
The generalization of the above di scussion to take into account the variation of the Row 

parameter with stress, temperature or crystal type etc . may be studied in the following way. 
The stress solution still applies but the strain-rate solution wi ll be somewhat m odified. W e 
start from the expression for the modified stress deviator and the Row law, viz. 

Hax - az) = w2(A,e-wz+ A,ewz) sin WX + '2A 3 w 2 cosh wZ cos wX (71 ) 

OV 
and 27] 0'<: = -t(ax - az) (7'2 ) 

wh ere 7] is now a function of stress and temperature etc . 
Since the stress analysis carried out in section 2 applies for any two boundaries z, and z" 

parallel to the mean bed and distance ,( apart, we may divide the ice ma s up into a n umber 
of thin layers of thickness ,(1, ,(" ... , cf. Figure 4. 

For the type of model considered here the viscosity and velocity may be expected to vary 
considerab ly with depth but not a ppreciab ly in the longitudinal direction . 

r 

\ 

"7, 
\ V Z. \ 

\ 
\ V 

L1 Z. \ 

\ 

Fig. 4. Treatment oJ variable viscosity and variable velocity with depth . 
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H ence by considering a sequence of increasing vi scosities TJI ' 7] 2 •• • and velocities VI, 
T"2 . .. from the base upwal-ds the boundary conditions 

dbi 
Vb i = Vtf3i = Vi dz (73) 

analogous to Equation (40) may be used where now the bi refer to the stream lines between 
the various layers. In th is way the decrease in amplitude and degree of phase shift o[ the 
waves as \\·el l a the magnitudes of the stre variat ions at various levels may be traced through 
the ice by repetition of the previous analy i using the equence of pecified velocity and 
viscosity variations with depth . If a continuous analytical expre sion i available for TJ and 
TT the strain-rate variation is g iven by 

GV a' x 

dZ '27] 

a nd the veloci ty variations can be found by integration. 
The expre sion [or the damping factor 

pg:::: sinh wZ 
.p c:: 4TJ V (w..(Y 

with 17 and V in the denominator indicate that [or typical profil es o[ velocity and viscosity 
d ecreasing towards the bed the damping there of the high frequency bedrock variations is 
even more greatly enhanced . 

For the long waves which do penetrate to the surface, Equation (74) with TJ in the denomi
nator indicates that it is the high resistance of the upper layers that is most relevan t to the 
urface variations i. e. the appropriate average viscosity is a weighted m ean of the reciprocals 

similar to a harmonic mean , or we may say that the resistances of different layers to the ice 
motion combine somewhat like electrical resistances in series in that the highes t resistances 
a re the most important. 

The results o[ this section indicate that where the greatest shear is taking place near the 
bed then both the high-frequency bedrock variations and the lower viscosity near the bed 
become unimportant in de termining the major stress variations through the ice which are 
primarily governed by the higher and more uniform velocity and viscosity of the upper 
layers. This indicates that the simple analysis of the prev ious sections with uniform velocity 
and viscosity will not be much affected by decreasing velocity and viscosity with dep th 
except [or the high frequency variations near the bed . For the present stud y the base z = 0 

can be chosen at any level and in particular above the high shear layer near the bf' d . 

4.3. Stress variations Oil a flat base 
Suppose instead of undulations superimpo ed on a flat ba e we con ider harmonic vari a

tions of the basal shear stress about its mean value on a flat bed according to Equation (70) . 
In this case the same solution describes the motion that takes place. The stream lines are 
the same as before with undul a ting motion near the base being formed by the varying longi
tudinal stress and strain-rates a sociated with the varying shear stresses. 

It is obvious from Equation (70) that longitudinal stres gradient variations go hand in 
hand with basal stress variations a nd vice ver a. Both are involved with the re ulta nt stead y
state surface slope variations. More complex variations of basal stress can of course be studied 
by m eans of Fourier series or integrals. An interesting case o[ the basal stress varying on a 
flat base is the situation where ice fl ows across a smooth but abrupt transition from grounded 
to floati ng ice. This corresponds to a simple rep function variation of basal stress. These 
positions are often associated with a urface lope variation. I t would be valuable also to 
have measurements of the corresponding longitud inal stra in-rate var iations over such a 
transition. 
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4 -4- Small-scale variations at the base 
So far the study has been concerned with flow over the large-scale undulations which 

have some influence on the surface. As we have seen the small-scale irregularities are quickly 
damped out in the lower layers, and are not relevant to the study of surface variations. Several 
studies of the effects of small-scale irregularities however have been made e.g. Lliboutry 
( lg68), W eertman ( lg64), Nye ( lg6g[a] ), so it is necessary to indicate here the transition 
between large and small irregularities. 

To do this we go back to the velocity distribution through the ice for the uniform flow of 
the unperturbed state, cr. Budd (I 970[ a] ) . H ere the velocity profile is given by 

d V = (pgiil, )n 
dz B 

where we have taken a power law for flow with parameters nand Band B is in general 
dependent on the ice temperature etc., ii is the mean regional slope, and r, = Z-z is the 
distance below the surface. 

Suppose for the moment the simplest case in which n = I and B is constant 

(77) 

Here Vb is an unspecified boundary condition- the sliding velocity of the base. 
Now the perturbations to the basal stress are given by Equation (70) as 

Tb = '2TJ V(3,w cos wx. 

If we average this value along the x axis for a distance large compared with the wavelength 
,\ = '27r /w, we find it has negligible effect on the average basal stress, even though the varia
tions become very high as the frequency w increases (7], V, (3 " assumed constant) . What is 
more relevant to the effect on the motion is the energy dissipation throughout the ice. Con
sider a stress variation near the base given by 

The energy dissipation for constant viscosity is given by 

Now we integrate thi expression throughout the ice over distances large compared with the 
wavelength 

:0 :0 

I I T XZExz dx dz = 7] 3V2(3,2W. 
o 0 

(80) 

For 7] , V, (31, constant this expression increases indefinitely with w. However if we take the 
integral in the vertical, instead of from zero, from some arbitrary small distance, say b, 
(the amplitude of the variations) from the base then the expression for the energy dissipation 
in the majority of the ice is given by 

=tJ 00 

Wb = I J T xzExz dx dz = 7] 3 V2(3/we- wb. 
b 0 

Considering variations in wavelength for constant amplitude this may be written 

Wb = 7] 3 V2b2w3e - wb. 

We notice that this expression tends to zero for very high w. 

(81 ) 

https://doi.org/10.3189/S0022143000013162 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013162


S TRE SS VAR[AT[ON S W I TH ICE FLOW OVER UN D U LAT[ON S 

If we consider a uniform spectrum of bedrock amplitudes we find that the expression 
b3w3e- wb has a maximum for wb = 3/2 or 

indicating that for the ice above z = b the effect of the perturbations starts to decrease for 
A < 47rb /3. 

For the region below this level the energy dissipation still increases with w but become 
increasingly concentrated at the base. In spite of this the average base stress remains constant. 

From Equation (77) we notice that the magnitude of the sliding velocity does not effect 
the basal stress. The energy dissipation at the ba e due to sliding is "Tb Vb. So if this is to 
decrease whi le "Tb remains constant Vb must decrease. Thus the increasing frequency in 
Equation (S[ ) for the dissipation of energy can only go along with a d ecreasing sliding 
velocity Vb so that as w-+o, Vb-+o and W b-+o, with the basal material in contact with the 
bed motionless. In effect the m otion can be described as the laye r below z = b becoming 
sheared off as 1.-+0. Real beds however are much more complex but in two dimensions may 
be approximated by Fourier series or integrals in which case steep edges or fronts in the 
bedrock are features which may be described as having a strong concentration of high
frequency terms. It is here that shearing of the ice may take place. 

However it is at this stage that any simple treatment becomes somewhat academic because 
of the many complications that need to be considered , e.g. 

( r) regelation cf. Lliboutry (1968), Nye (1969[a]) , 
(2) water production and lubrication cf. Weertman ( [962 ), 
(3) effec ts of moraine on the bed and in the ice cf. Lister and others ( 1968), 
(4) enhanced horizontal shear caused by the non-linearity of the flow law and the high 

longitudinal strain-rates near the bed associated with the irregulariti es . 

This latter does not appear to have been dealt with but may be a feature of apparent very 
high flow-law exponents found in borehole shear near the bed , cr. Kamb and Shreve ( [ 966). 

In this paper we have taken a given ice thickness Z, an average surface and bed slope ii, 

and a m ean down-slope velocity V, to calculate the effect of undulations in the bed on the 
motion. This does not gloss over the effect of small-scale irregulari ties bu t finds they are 
only important in so far as their average over the larger cales d etermines the large-scale 
motion including the m ean velocity V, surface slope ii, the ice thi ckness Z, and regional base 
stress Tb = pgZii. Nye ( I 969[ a] ) also found that it is th e average bed spectrum of va ri a tions 
that is relevant to the average base stress and velocity. 

Since the large-scale base stress can be determined from Equa tion (59) for stead y-state 
flow of uniform thickness o r more generall y Equa tion (5) which requires onl y la rge-scal e 
data- ice thickness, surface slope, surface stra in-rates, then i t suggests tha t a theory of sliding 
and basal stress can be developed from a macroscopic poinL of view. 

5. S U MM A RY AND C O NCLUS IO NS 

Harmonic solutions of the stress fun ction provide a relatively simple means of analysing 
sinusoidal stress or strain-ra te variations in a quasi- tatic m oving m edium . Applied to the 
flow of ice over undulations this method enables each term of the longitudinal stress equation 
to be determined and the relations between the tre terms evaluated . As a result, some 
simple expressions are obtained for the relations between these various stress terms. In 
addition to the longitudinal stress equation 

2G = S+ "Ts-Tb+ T , 
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an exact sub-relation for the longitudinal stress gradient term C in terms of the surface slope 
term s = pgZa and the variational stress term T is 

G = s+ T. 

An exact sub-relation between C and the base stress Tb and surface stress T S is 

C = TS-Tb. 

These apply whatever the flow law and whether or not the ice mass is in balance. 

For small surface variations, T S is negligible compared with the other terms giving 

C ~ - Tb. 

For a simple model whose velocity and viscosity are uniform with depth in the upper layers, 
and whose surface is in teady state, the variational stress is given by 

T = pgaZ [ (W~)2+ (W~)4+ ... ] 
3· 5· 

and its variation with wavelength ( ,\ = '271-jW) is shown in Figure 4. For long waves T i 
negligible giving 

bu t for high frequencies it becomes very important and explains the absence of the effect of 
any high-frequency bed variations in the surface. The main effect of high-frequency bed 
variations is to impair basal sliding by energy dissipation until the wavelength becomes so 
small that other effects such as regelation or lubrication becom e important. 

For typical velocity and viscosity profiles which decrease with depth the high-frequency 
bed variations becom e even less important and the ice reacts to the long wave with an 
effective harmonic mean viscosity which places most weight on the upper layers. 

MS. received 26 Nlay 1970 
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APPENDIX 

D ETERMINATI ON OF THE STR ESS FU ' CTION CONSTANTS Ai FOR STEADY- STATE FLOW WITH UN IFORM 

VELOCITY AND V ISCO ITY 

To avoid excessive repetition or back reference yet mainta in satisfactory completene s the following dec imal 
n umbered equations a re taken direc tl y from Budd ( l g70[a], section 4) . 

(4. 1) '" = (A,e- wz+ AzeWz) sin wx + A3(e- wz + A.cWZ) cos wx. 

(4 .5) Hax - az) = wZ (A,c- wz + A ze wz ) sin wx + w' (A ,c- wz + A.c- WZ ) cos wx. 

(2.16) 

(n ) 

(4. 20) 

At :: = Z 

(4 .13) 

(4. 14) 

(4. 15) 

4. 16) 

(4. 1 7) 
(4 . 18) 
(4 · 19) 

d v 
- 2." d .:: = Hax-az). 

- 2."V = - w (-A,c-wz+ Aze wz) sin wX - w(- A3e- wz + A.e wz) cos wx, 

= 2." Vf3, sin wx. 

(Az- A, ) = 
w 

x = 2."V (WZ )z· 

dh 
Vz = Va = V cix. 

It = -'--V{( - A, e- wZ + Azc WZ ) cos wx - A3(e WZ_ e- WZ ) sin wx}, 
2." 

az)s = pgh 

= pgV{(-A,e- WZ + A zeWZ ) COS wx - A3(eWZ - e- Wz) sin wx}. 
2." 

az). = - wz(A,e-wz + A zc WZ ) sin wx - w2A3(CWZ - C- WZ ) cos wx. 

-A,c = - XA,c- wz - XA ,cwz. 

XA 3S = A, c- wz + Azcwz. 
where c = 2 cosh wZ a nd s = 2 sinb wZ. 

(AI ) 
(A2) 

(A4) 

(A5) 

(A6) 

(AS) 

(Ag) 

(AIO) 

(A ll ) 

(AI2) 

(A I3) 

(A I4) 

(AI 5) 
(AI6) 

The a rgument runs as follows. Sta rting from the ha rmonic stress func.tion (A I) the longitudinal stress d eviator 
(A2) is found from the definition of the stress fun ction in terms of the stresses ax and a •. Equation (A3) expresses 
the flow law generally. The verti cal velocity (A4) is found by integration a nd here the assumption of consta nt 
." is introduced. (A5) expresses the basal boundary condition which gives A, in terms of A 2 a nd A3 in terms of 
A4 • Two furth er conditions a re req uired. (Ag) expresses the steady-state surface criterion and here introduces 
an assumption of uniform velocity i.e. the V of (A5) a nd (Ag) is the same. The other condition results from 
the prescribed vertical boundary stress at z = Z, (A I I). H ere to preserve the convention of tensions being 
positive, h must represent the dista nce below z = Z. Equa tion (A 12) makes the stead y-sta te surface correspond 
to the prescribed surface stress distribution . (A 13) makes this a lso agrce with the surface stress d erived from the 
stress function (A I) at z = Z. Fina lly these two are equa ted giving (A 14) a nd (A (5) which together with (A6) 
make a set of three equations in three unknowns A" A2 a nd A3 . 

These equations were not solved explicitly in Budd ( lg70[a]) since only the ratio of the surface to bed velocity 
was being sough t. 

The following results of that work a re noted (with a sign correction ) 

a, 2C 

if, = X'S2 + C2' 
(A'7 ) 

a2 xs 
as 2 

if, = "is = ~. (A IS) 

H ere the obj ect is to determi ne the constants A, explicitly a nd the specific combina tions of them occuring in 
the individual stress terms of Table 1. 

From Equation (A6) A2 = A,- 2."Vf3,. 
w 

Using this to elimina te A2 from (AI4) and (A I5) yields 

2." Vf3, 
XA ,s = A,c-e WZ --. 

w 

(Mo) 
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Eliminating A 3 from these gives 

or 

or using (A7) 

Substituting in (A 19) gives 

us ing (A7) 

JOURNAL OF GLAC10LOGY 

0 = A, ( c+ X2 7)-( 1 + X2 De wZ 2'):fl, 

A, = 2')Vfl, e Wz c+ X2s 
w C2 + X2S1' 

A - 2')Vfl, wZ [ C+ X2S wz ] 
2 - - w-

e C2 + X2s2e - 1 

= 2')VfJ, [X2S (eWZ - s) + c(ew Z- c)] 
w CZ+ X2SZ 

= 2') Vfl, e- wZ X2s - c • 
W X2SZ + C2 

pgfJ, XZs - c 
w'x Xzs z+ cz' 

Substituting A, from (A23) in (A20) yields for A3 

- A3 = ~ [sA, - ewZ 2'):fl r
] 

= K 2') Vfl , e WZ [S(C+ X'S )_ I] 
C w XZS2 + CZ 

= X 2')VfJ , e WZ (s - c) . 
W X2S2+ C2 

Therefore 

A _ 2')Vfl, 2x 
3 - W X2SZ + CZ' 

or using (A7) 
2 

w 3 XZsz + cz 

(A26) 

(A28) 

vVith these va lues of the Ai the va rious com binations required for Table I may now be easily obtained. Using 
(A23) and (A26) 

or using (A7) 

and using (A I7 ) 

Similarly 

or using (A7) 

a nd using (A 1 7) 

_ pga, 
w3 

_ pgfl, 2C 

w3X X2S2 + CZ 
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\" e write a = a , sin wx+ az cos wx 

a nd - h = h, cos wx + h2 sin wx 

where the negative sign is introduced to make h, a nd h2 height above z = <, 
H ence by (Ag) 

and h2 = 
a2 

w 

)Jow the va rious terms of T a ble I can be easil y eva luated. 
From (A35) and (A3S) 

From (A6), (A7) a nd (A 1S) 

From (A2g) a nd (A 17) and (A3S) 

From (A2g ) a nd (A 17) 

w2{ _ A ,e- wZ -;- A
2
e WZ } = pga, 

W)( 

+ pgh" 
)( 

w2 (- A, - A, ) = - 21)V{3,w 

_ pg{3, 

W)( 

_pgas !. 
W 2 

7 sinh wZ 
- pg""as ---;;;Z ' 

w22A J sinh w< = pg{3, 2 5 
W )(25 ' + C' 

_ pga, 

W)( 

_ pgh, 

)( 

pg.({3, 2 C 
W 3 Z (2A 3 cosh w.( ) = - - ---, 

w X2S 2 + C-

= pg.(a,. 

195 

(A36) 

(A37) 

(A3S) 

( 44) 

This comple tes the eva luat ion o r the five different terms req uired ro r Table 1. Eq ua tions (A40), (A44), 
(A47), (A4S) and (A50) now a llow the stress orTable 1 to be expressed simply in te rms of the stead y-sta te surface 
pa ra meters the ice thi ckn ess a nd wavelength or the undula tions, 
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