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In consequence, however, of two of these solutions being given
in 2 ways each, the actual solutions got are only 22, or 8 in addition
to the corner solutions. There are thus 24 solutions for the 9-board
which cannot be got from solutions for the 8-board. This method
of treating the question therefore does not lead us to a law.

A study of the diagrams suggests several interesting propositions
for investigation; for instance, in no one of the solutions we have
got for the 6-, 7-, 8-, and 9-boards, is there an arrangement of 4 men
such as we have them in the 4-board solution ; and I am inclined to
think it is impossible there should be, but I have not succeeded in
proving it. Similarly, I am inclined to think it is impossible there
should be an arrangement of 4 men on the outside columns and
rows of a board, as shown in Fig. 52 ; but this also I have not
succeeded in proving. ^

On the equations of Vortex motion, with, special reference
to the use of polar co-ordinates.

By C. CHKEE, M.A., King's College, Cambridge.

In several previous communications* to the Society, I have con-
sidered the equations of vortex motion in two dimensions in a com-
pressible fluid. In the present communication I propose to consider
certain forms of the hydro-dynamical equations of a more general
kind. In certain cases the fluid will be supposed to be rotating,
prior to the introduction of the vortex motion, with uniform angular
velocity about a fixed axis.

Using the same notation as in my previous papers, and supposing
the axes of x and y rotating with uniform angular velocity to about
the axis of z, which is supposed fixed, we can easily prove by the
method of my paper " On vortex motion in a rotating Fluid " f that
the equations of three dimensional motion are the following—

8M O , 1 dp ,,.
_ -2uv-a>2x = - — -f + x (1),
ot p dx

1 + 2 ^ - A ^ - I ^ + Y (2),
ot p dy

S^=-L± + Z (3).
St p dz v '

* Proceedings, vol. V., p. 52; vol. VI., p. 59; vol. VII., p. 29.
t Proceedings, vol. VII., p. 29.
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The component velocities w and v are velocities relative to the
moving axes. It will also be remembered that

0 d d d d / A\

8t dt dx dy dz

denotes differentiation following the fluid ; while — denotes variation
at

at a point fixed relative to the moving axes.
The equation of continuity is simply

1 8p du dv dw _„ /5\

7¥+&+^+&"
The form of this equation is, it will be noticed, the same whether

to exist or not.
Employing the usual notation for the components of the apparent*

vorticity—
Idw dv\ . tR\

M } 0 1 ' (6)>
we easily deduce from the preceding equations in the case when the
components X, Y, Z of the. external forces vanish or are derivable
from a potential, the following equations f for the variation of the
vorticity—

in the left-hand side of (9) we have introduced — which is of

course zero. The components £, 17 are of course absolute as well as
apparent vorticity components along the instantaneous directions
of the corresponding axes. These equations will remain unaltered
when we transfer the origin to any point fixed relative to the original
rotating axes, the new axes of x and y being supposed to rotate with
the same angular velocity <a as the original. In proof of this it is
sufficient to remark that the co-ordinates of any point, whether fixed
or moving, referred to the new axes will differ from those referred to

* See Proceedings, vol. VII., p. 32.
+ Lamb's Motion of Fluids, Note D.
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the old only by constant quantities independent of the time, and so
all velocity and vorticity components are unaffected by the change.

The components of velocity and vorticity must satisfy (7), (8),
(9) and in addition the ordinary boundary conditions and the equa-
tion), (5), of continuity. This last equation requires inter alia that
two contiguous elements of fluid the one inside and the other outside
a vortex filament have the same component of velocity along the
normal to the surface of the filament.

As the fluid is supposed frictionless it is not necessary, unless it
be involved in the equations (7) - (9), for the component velocities
in elements just inside and just outside the surface of a vortex fila-
ment to be identical in any direction which lies in the tangent plane
to the surface of the filament.

Suppose now that when ia is zero the components of velocity and
vorticity in the fluid constituting a vortex ring, whose centre is in
the axis of z and whose plane is parallel to xy, are given by

u=vcos@ v = vs,in9 w = wo\ , ,„ ,
£= -0sin6» 7? = flcos0 f=0 / ' " ^ '>

where 0 = Uin~^(y/x), and v, w0 and 0 are independent of 0.

These components will thus satisfy (7), (8), (9) and other neces-
sary conditions when o> is zero. When, however, <o ceases to be zero
the equations (7), (8), and (9) are no longer satisfied by (10). These
equations may, however, be all satisfied by adding to the components
(10) the additional terms

v=-(arcos.9 MJ=-0 ~\ , , , , .

where ii =
The additional terms in the velocity components add nothing to

the components £ and rj of vorticity, and they are consistent with
£=-0,

To prove our statement we must substitute in (7), (8), and (9)
the system of velocities and vorticities obtained by combining (10)
and (11). Doing so and remembering that (9) is satisfied by the
values (10) when w^O, we find that it is still identically satisfied,
and that (7) and (8) respectively lead to

. ,,80 r\ /i 80 Osin0 So O d, n • m /,n\
-sin0 —_Qcos0 —+ ^ l = __(vcos6l + o)rsm0) ... (12),

oj ot p ot r (W
SO r. . n 80 OcOS0 00 O d / . n f~ It n\
— -J2sin0-- " = -(i'Sin0 - wrcos0) ... (13).
U 8t p &t r dd '
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Multiplying (12) by cos0, and (13) by sinO, then adding and
dividing out by 12 we simply get

= - (U.

St
This signifies that the fluid in the vortex ring moves relative to

the rotating axes with angular velocity - o> about the axis of the
ring, which is exactly the motion indicated by (11).

Again subtracting (12) multiplied by sin0 from (13) multiplied
by cos0, we get

8f i_ Q 8p _Slv

which is precisely the same relation as when to is zero.
The additional terms (11) in the velocity of the fluid possessed of

vorticity have their resultant in the tangent plane at every point on
the surface of the vortex ring, and so their existence in no way
affects the equality of the velocity components inside and outside
the ring in the direction of the normal to the surface.

This indicates that a circular vortex ring may exist in a rotating
fluid with its plane perpendicular to the axis of rotation, provided it
have, in addition to the motion existing in a similar ring in a non-
rotating fluid, a uniform angular velocity about the axis of the ring
which is equal in magnitude but opposite in direction to that of the
undisturbed rotating fluid. As in the case of a non-rotating fluid,
there may be an infinite plane boundary at right angles to the axis
of rotation, the necessary conditions being satisfied by the existence
of an image on the remote side of the plane.

If, for instance, we imagine the state of matters in the earth's
atiflosphere in latitude A. the same as in fluid limited by an infinite
plane coincident with the tangent plane to the earth's surface, the
fluid rotating with angular velocity cosinA about an axis answering
to the vertical at the point considered; then a vortex ring whose
plane was horizontal would have an angular motion <osinA. in azimuth
from east to west through south. In other words, a diameter of the
ring connecting two definite material cross sections would appear to
an observer at the point to rotate about the vertical in precisely the
same way and at the same rate as the plane of vibration of a Fou-
cault's pendulum.

Hitherto I have said nothing as to the motion in the fluid sur-
rounding the vortex ring. When we consider this point a difficulty
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appears which I do not see my way to answer satifactorily. It
seems well worthy of notice.

The equations (7), (8), and (9) apply at every point in the fluid,
and so must be satisfied by the fluid surrounding the vortex ring we
have just considered. Now the velocity components due to the
action of a vortex ring in the surrounding fluid satisfy the conditions
of irrotational motion, but they depend both in magnitude and direc-
tion on the distance from the instantaneous position of the plane of

the ring, Thus —, — and — do not vanish in the fluid surround-
ed dz dz

ing the ring, and so in accordance with (7), (8) and (9) unless £ + co
vanish everywhere, the whole of the fluid surrounding a vortex
ring will take up some form of vorticity of a complicated char-
acter. «•

Theoretically as — , etc., do not absolutely vanish, however dis-
dz

tant the point considered from the vortex ring may be, in order to
avoid setting up vorticity possessed of components £, rj we require
some species of motion set up whereby ( = - u all through the fluid.
This would require either the motion of the rotating fluid entirely
to stop, or in addition to the rotation o> about the original axis a
rotation - w about some parallel axis. The two rotations would give
a uniform translational velocity the same at every point occupied by
the fluid.

In practice when we consider that every fluid is possessed of

viscosity, and that the terms — etc., due to the action of an ordinary

vortex ring become insensible at a small distance from the vortex,
the conclusion we seem led to is that the vortex ring itself and the
immediately adjacent fluid will possess, relative to the moving axes,
a rotation about the axis of the ring in the direction opposite to that
in which the undisturbed fluid rotates. Throughout the ring itself,
if its vorticity be great, this angular velocity may approach indefi-
nitely near - w, but it will gradually diminish in the external fluid
as the distance from the ring increases and altogether vanish at dis-
tances where the direct action of the ring becomes insensible.

The previous remarks also indicate that any variation in any
velocity component with the distance from a fixed plane perpendicu-
lar to the axis of rotation, whatever may be the exciting cause,
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necessitates the existence of some form or other of apparent vortex
motion.

For certain purposes it is desirable to employ polar co-ordinates
in the hydrodynamical equations. Such equations are obtained by
Basset in his Treatise on Hydrodynamics.* His proof, however, is
not of a very elementary character, and I think the following method
shows more clearly the meaning to be attached to the symbols
employed. For some of the results I shall refer the reader to a
previous paper in the Proceedings, f

As in the paper referred to, the element of volume has three of
its edges 8r, r89 and rsindScj) intersecting in P, the point whose co-
ordinates referred to a fixed point 0, and the ordinary polar system
are r, 6, 0. The first of those three line elements and the tangents
to the other two at P form a system of orthogonal axes called the
fundamental axes at P. If, as in the paper referred to, the corner
of the element of volume opposite to P be termed S', the co-ordinates
of S' are r + 8r, 8 + 86, 0 + 80.

Also neglecting squares of the small quantities 86, 8<f>, the cosines
of the angles between the fundamental axes at S' and those at P
are given by the following scheme, reproduced from my previous
paper,—

atS '

I 1
86

sinO8<f>

-86
1

- sin#<5<£
- cos,68cf>

1

Let us first suppose that the axes are fixed, so as to avoid dealing
with too many difficulties at once.

Let the velocity of a given element of fluid at the time t at the
point P have the components u, v, w along the fundamental axes at
P. After a short interval T let this element be at S', so that

8r = UT, 88 = —T, 50 = T.

r rsinf?
Then the velocity components at time t + T along the fundamental

axes at S' are

Ul~U liT ~drV dd dd> '

> Vol. II., Art. 470. t Vol. III., p. 109.
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Thus, referring to the above scheme, the components of the velocity
of the element at time t + T, along the fundamental axes at P are

M, - vfid - WjSmdSif), etc.

But the change per unit time in the component of the velocity in
any given direction equals the accelerating force per unit mass in
that direction. If then U, V, W be the components of the external
forces per unit mass at the point P, proceeding to the limit when T
vanishes, we easily deduce for the equations of motion—

t>t r p dr

Sv iiv w" n

.-- + —-—co!6l= -
U r r prdd

Sv iiv w" n 1 dp ~T , . » ,
+ —-—co!6l= - ' +V. . . ... (lo),

dd V '
+ - + c o t 0 = _ J _ + W ... (16)5

ot r r prsindd<j>

where 8 _ d d v d w d ,._,
Ji;~~dl Ud7- Vd6 rsind cty '" ( '

signifies as usual differentiation following the fluid.
These equations agree with Basset's, except that he has u instead

of w in the last term on the left-hand side of (16). I believe, how-
ever, that the above is the correct equation.

By employing the method of flux it is very easily proved that the
equation of continuity is

1 3D 1 d(ur2) 1 d i . /), 1 dw a , ,Q .
L. + \ L + (vs,u\6) + .. =0 ... (18)-

p ?>t r1 dr rsinfl dd rsin.0 d(f>
Let us next suppose that the entire system of fluid and axes is

rotating with uniform angular velocity <o about the fixed axis 6 = 0.
Let u', v, w' denote the component velocities at time t at the

point P (r, 6, </>) relative to the fundamental axes there, which are
supposed fixed relative to the rotating axes ; and let u, v, w be the
absolute velocities in the direction of lines fixed in space with which
the fundamental axes at P coincide at the time t. Then

u = u', v = ii, w-w + (i/rsinfl ... ... (19).

Let R represent the position at time t + T, where T is very small,
of a point rigidly connected with the moving axes which at the time
t coincided with the point P ; then the components of the velocity
at R at time t + T relative to the fundamental axes there, which
move with the fluid, are respectively

https://doi.org/10.1017/S0013091500030534 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500030534


50

, , du , . dv' , dw
u + T, v + — T, w + T ;

dt dt dt
and so the component velocities at R at time t + r relative to fixed
axes, coinciding with the instantaneous position of the fundamental
axes there, are

u' + ̂ 'r, V' + JJLT, W ' + ^ T + wrsin0... (20).
dt dt dt v '

For the last result it must be noticed that referred to axes fixed
in space, coinciding with the position of the axes at 0 at time t, the
r and 0 co-ordinates of R and P are the same. From this and the
consideration that the <p co-ordinate of R relative to the fixed axes
exceeds that of P by IOT, it also follows that the components (20)
are identical with

, du du dv dv dw dw ._..
M + —-T + WT-— V+—-T + UT , M>+ — T + (OT ... (21).

dt dfi dt d<t> dt d<p v '
Thus, comparing (20) and (21) and remembering (19), we find

du' = dn
~dt dt

But from (19)

du' dn du dv' dv dv dw' dw dw
= + 0) = + 0} = _ - t - C l ) .

dt dt d<j>' dt dt d<j>' dt dt d<f>

du _ du' dv _ dv' dw _ dw'
d<f> d<p d<j> d<j> d<f> d<f> '

and therefore
du du du dv dv' <?v' dw die' dw'
_ . = — (I) , = — (J , —_ = — O) .

dt dt d(p dt dt dip dt dt dip

Substituting these values and the values
du du dv dv' dw dw'
dr dr dr dr dr dr
du_dw dv _dv' dw _dw' „
dd=~dl' d0~7Td> W~~dB °W'CO6> '

in the equations (14), (15) and (16) we get after reduction, dropping
the dashes so that in the following equations u, v, w are the velocities
relative to the moving axes,

8u v~ (w + oirsiinOy- 1 dp -,j , 9 0 ,
8t r r f> dr
<3l> UV , . /j.oCOt^ 1 dp , r / 0 0 ,

+ —-(w + wsin6)- = - — J- + V (2o),
8t r r prdo
8w uw Vtccotd -, / • a n\ 1 1 dp
— + + + 2w(Msm6> + vcosO) = :—. J-
8l r r f> rsmvd<p
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In these equations —- has the same form as in (17), and it also
ot

as there signifies differentiation following the fluid. The reader will,
I think, find no great difficulty in this proof if he clearly realise that
du'

in (20) signifies the rate of change with the time of the com-
dt

ponent of the velocity relative to a certain moving axis, at a point
whose co-ordinates are fixed relative to the moving axes; while
— in (21) signifies the rate of change of the component of the velocity,
dt
relative to a certain axis fixed in space, at a point which is absolutely
fixed in space.

As a simple illustration of these formulae, let us apply them to
the case of the earth's atmosphere regarded as surrounding a rotating
sphere of radius R, the acceleration due to whose attraction at dis-
tance r from its centre is gH-/r*.

For the undisturbed condition, when the atmosphere is at rest
relative to the sphere, we have u= v = w = Q. Substituting these
values along with U = - yR"/r4, V = W = 0, we reduce the equations
(22)-(24) to

1 dp ,
- —L = arrsin <
dr

_ (25) •'

d^'h"}
p d<f>

whose solution is, according as p = kp or p = kpy,

(26).

In both results p,, represents the density of the atmosphere at the
surface of the earth at the poles.

These results may of course be obtained in a more elementary
manner by the introduction of the idea of " centrifugal force," as in
Besant's " Hydromechanics."

In a paper* already referred to, I obtained the following cxpres-

* Proceedings, Vol. III. , p. 113. Cf. Basset's Treatise on Hydrodynamics,
Vol. I., Art. 18.
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sions for the components of vorticity at the point (r> 0, <j>) with
respect to the fundamental axes there,

. 1 f d, • o, dv\

du d, A \ ,0->
—(wr)\ y ... (2/

d4> dr ' i f N
,. 1 f d, •. du\t = { (vr) - }
^ 2r \dr ' dO)

When u, v, w are velocities referred to fixed axes, the above are
components of the absolute vorticity, but when the velocities are
relative to moving axes they are components of what I have called
the apparent vorticity.

In order to apply our polar equations to vortex motion we
require to obtain from (22), (23), (24) a series of equations corre-
sponding to (7), (8), (9), when as there the external forces vanish or
are derivable from a potential. The necessary algebraic operations
are somewhat tedious and lengthy, so I shall merely indicate the
method of procedure and give the results. The verification of the
results will present no great difficulty to any one who keeps their
.form in view in grouping his terms, and who does not allow the
length of his intermediate expressions to alarm him.

Replace in every case — by its equivalent in (17) and notice that,
ot

as the external forces have a potential,

dr ' r d8' rsind d<f>'
where F is some function of r, 8, <f>.

,To obtain the first equation multiply (24) by sin#, then differen-
tiate with respect to 8, and from the result subtract (23) after
differentiating it with respect to <f>. Finally multiply up by r/2siaO.

To obtain the second equation multiply (22) by cosec#, then
differentiate with respect to <j>, and from the result subtract the
result obtained by multiplying (24) by r and then differentiating it
with respect to r. Finally divide out by 2r2.

To obtain the third equation multiply (23) by r, then differentiate
with respect to r, and from the result subtract (22) differentiated
with respect to 8. Finally divide out by 2r2sin0.

In each case one of the objects of the preliminary operations is
to eliminate p and the external forces.
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In putting the resulting expressions into the following concise
forms the identity (17), the equation of continuity (18), and the
identities (27) are alone required. We thus finally obtain

p )St\ p ) Udr rdO

sin(? \du d<p
&\ .. .(28),
d<p)

8t\ rp f L dr r 'Id rsindd<)>

-id-
r2sin0 U r V ; d<f>

d + r> d+
d dd

d+ I dM W \
St \ramt)pf L dr r dd rsin(9 etyj \rainW

c o s # — - _ I I 1... ... (30).
dr r d0\ \rsme1 V '

So long as iu is not zero these equations apply to the apparent
not the absolute vorticities.

In the ordinary case when <o is zero and the axes are fixed, the
following very concise form of the equations seems worth recording.
Let J2 denote the resultant vorticity, now absolute, and ds an element
in the direction of the axis of the resultant vorticity at any point in
the fluid, then it is obvious that

fi± + ±A+J—± = nA. (31);
5 dr• r dd rsinfl d<j> ds V "

and so the equations of vortex motion may be written

l ( _ _ \ = O-l(_^_\ ... (30a).

In employing polar co-ordinates it will also be convenient to
possess equations answering to those in Cartesian co-ordinates of
which in Lamb's* notation the type is

u=dP + — - —
dx dy dz

* Trtati»e or. the Motion of Fluids, Art. 129.
5 Vol. 8
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To transfer to polar co-ordinates let as usual

3? + y* + s2 = r2, zjr = cosd, y/.r

Then dr . Q , dd cos#cos<&- dd> sind>
dx dx r dx r&mo

etc.

Using these and taking the resultant along the three fundamental
axes at each point of the components of the velocity in Cartesians,
and denoting now the velocities along the fundamental axes by
u, v, w, we easily find

u = — + -I
dr r

— - sin<£cot0 — "I M
do d<f>JI

d<f>J
± + cos^cote ^ 1 L + -1 ^ L
dd d<ll r d<j>

1 rfP
r dd

w = J _ **
rsin6» d<f>

[
Putting

+ cos^cote ^
dd d<l>

d cos</> d "1 T f ,
L - cos<£

J L
M

d sind d ~_ - - — T .
dr r d<f>A

cotO dN

r d<f>

- +

dr r

d
J

R = sin^(Lcos</> + Msin$) + NcosS -\
S = cos0(Lcos<£ + Msin<̂ >) - Nsinfl V
T = Mcos$ - Lsin^> 3

(32),

the above equations reduce to

t o -

rsin6»\

dfrsin# d<f> r \ dr dd

(33).

If for shortness we represent the element of volume by dV, and
employ the equation of continuity we can replace equation (10) of
Lamb's Art. 129 by

P l

a form applying to polar as well as Cartesian co-ordinates.
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The integration is to be extended to every portion of space
wherein the fluid is varying in density, and rx denotes the distance
of the element dV wherein the density is p from the point where
P is being calculated. This point of course is fixed and its co-ordi-
nates constants so far as the above integration is concerned.

When it is desired to introduce polar co-ordinates explicitly into
the above and subsequent integrals we know that

c/V' = r'hmffdr'dd'd^'
r{ = r2 + r'2 - 2rr'{cos0cos0/ + sin0sin0'cos(<£ - <j>')}.

Lamb in the above-mentioned article also shows that if

^ + ^ + *L-0 (35)
dx dy dz '

throughout the fluid, then L, M, N are like P expressible by in-
tegrals representing potentials. This condition holds if over every
surface bounding the fluid the vorticity either vanishes or has its
axis in the tangent plane to the surface. To represent these in-
tegrals in a form suitable for our present purpose, let 12 represent
the resultant vorticity at any point and (PQ) the angle between
any two directed quantities denoted by P and Q. Then the in-
tegrals are

i

J
J (36).

etc. J
We have now to find the equivalent in polar coordinates of

equations (35) and (36).
Replacing differentiations with respect to x, y, z by differentia-

tions with respect to r, 6, <f>, and having regard to (32) after differ-
entiation, we transform (35) into

JL A(Rr>) + L ^L(Ssin6>) + L ^T = 0 .. (37)
d<f>

This result may also be obtained as follows. Suppose L, M, N
to represent the components in the directions of the Cartesian axes
of a certain vector quantity. Then under the conditions existing in
(35) the vector quantity must satisfy the same condition as the
velocity in an incompressible fluid. But by (32), R, S, T are the
components of this same vector quantity along the fundamental
directions at the point r, 6, <)>. Thus they must satisfy the same
condition as the velocity components in those directions in an in
oompressible fluid. Thus (18) should be satisfied when
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and when these substitutions are made we simply get equation
(37).

We likewise easily find from (32) and (36), noticing that 6 and
<f> are constants so far as the integrations are concerned,

T=irffQ#cos(fl'Orfv
2 J J J
i r f f
2TJ J J

If we denote by K the vector quantity whose components are
L, M, N, or R, S, T, we obtain at once from (38)

(39).

Thus
1 " r r r r nn'~~'nn" ( 4 0 ) .

The meaning of the sextuple integral is that the value of a
certain function for the fluid occupying an element dY at the point
(r, 6, </>) is derived from an integration throughout space, and that
the value of this function is then integrated throughout space.

When the fluid is incompressible and unlimited, being at rest at
infinity, and all the vortices are within a finite distance of the origin,
Lamlj shows in his Art. 135 that a certain expression which is
obviously identical with the right-hand side of (40) is equal to E/p,
where E is the total kinetic energy of the fluid motion.

It may be seen from the same and previous articles that when
the fluid, remaining incompressible, is not unlimited, the right-hand
side of (40) still equals E/p provided over the boundary or boundaries,
S, the axis of the resultant vorticity is in the tangent plane to the
surface, and

\ [X.

I in n C«);
I' m! n'

where (A, fi, v) are the direction cosines of K, (I, m, n) the direction
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cosines of the normal, and (/', //(', ri) the direction cosines of the
resultant velocity q.

Supposing the above conditions satisfied when there exist a series
of vortex filaments of strengths m,, ... mp, mq ... mn forming closed
curves, «„ ... sp, sv ... sn in an incompressible fluid of density p, we
obtain for the energy E of the fluid motion the equation

E = fJSj f«» f f M^lA dspds'p I

[ [
J J

dSpds9

(42)-

In the first summation ds'p is an element of the same vortex
filament as dsp, and rpl, is the distance between them. In the second
summation every pair of the n closed curves must be combined
together, so that ^n(n - 1) integrations are included. In the last
summation K must of course be regarded as a function of the arc KP

of the curve along which the integration is being taken. The value
of K depends on the combined action of the vorticity in the curve
over which the integration is being taken and of the vorticity in
each of the other n - 1 closed curves. Basset gives in his Art. 92
formulae which are equivalent to the first of the two expressions given
above for the energy ; and points out the analogy of the first in-
tegrals to the co-efficients of self-induction and of the second integrals
to the co-efficients of mutual induction of a series of closed electric
currents.

The similarity of the equations of vorticity to those of electro-
dynamics * may, I think, be brought out very clearly by the follow-
ing comparison of (39), (40), and (42) with corresponding electro-
dynamical expressions. We require tirst to notice that according to
the table in Basset's p. 88, the following are analogous quantities in
the two subjects :—

Vorticity $2 and electric curre.nt (8,
K and electromagnetic momentum St.

Suppose with Maxwell in his Electricity, Art. 616, that the
quantity he terms J is zero. Then treating equations (5)f of that

* Cf. Basset's Art. 95.
t Second Edition. In the first edition change /j. into l//ix in these equations and

in Art. 617.
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article precisely as we treated our equations (38), we obtain as the
equation corresponding to (39)

=/* \ ^ M5°!iM) dV' ... (43).

The meaning of the dashes and of dV and r-^ is exactly the same
as in (39). The co-efficient p is unity in the electromagnetic system
and denotes the permeability in the electrostatic. In obtaining the
equations from which (43) is derived Maxwell apparently treats /x
as constant throughout every portion of space wherein currents are
actually flowing.

From (43) we find the following equation answering to (40)

JJJ//̂ ««cos(««)dV= JJJJJj^^l^dVdV.. . (44),
the meaning of the sextuple integral being the same as previously.

Suppose now that the current system consists of currents of
strengths it ... ip, i, ... in traversing closed linear conductors s^ ...
Sj,, »9 ... sn of small cross section, then we may replace

(6 dV by i ds.

We thus transform (44) into

$21

dsp ] (45).

The limits of integration and the meanings to be attached to the
letters are the same as in (42). As /it = 1 on the electromagnetic
system the second side of (45) is, it will be seen, identical with the
expression given in equation (14) of Maxwell's article 634 for the
electrokinetic energy in the field. The first side is also a known
form for the energy, the integrals of the first series being the co-
efficients of self-induction, and those of the second series the co-
efficients of mutual induction of the several circuits. The resem-
blance of (45) and (42) both in their final form and in their mode
of derivation is very close.

I am not aware that any name lias yet been assigned to the
quantity K. It will appear, however, from the previous investiga-
tions that it is a quantity of considerable importance. It might with
considerable fitness, as showing its analogy to the corresponding
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electromagnetic quantity, be termed the vector-potential of vorticity.
This name would also fit in with the mode of derivation from the
vorticity, as the following geometrical interpretation of equations
(38) will show.

We take the mean vorticity of each element of volume and divide
it by the distance of the element from the point at which K is to be
measured. Then starting from some fixed point as origin we draw,
as in forming the polygon of forces, a series of lines representing
these quantities in magnitude and in direction parallel to the corre-
sponding vorticities. The line joining the origin to the end of the
last line so drawn represents K in magnitude and direction.

This is practically the same construction as Maxwell gives for
the corresponding quantity fit in his Art. 617. I fail, however, to
see how he obtains the equation

Hll! dx dy dz

in the same article. I t seems to me clearly wrong unless all the
currents are parallel. Employing our previous notation, I believe
the correct forms of this and of the corresponding hydrodynamical
equation are

)dV' (46),

V' (47).

In each case there exist two other equations determining the
direction of the vector potential.

If in the equations (28a) - (30a) for a non-rotating fluid we make
w, £ and rj vanish, and suppose along the vortex element r, u and v
constants, we get the case of a circular vortex ring whose centre lies
in the line 0 = 0 and whose plane is perpendicular to this line. The
equations show that ^'prsinO must be an absolute constant, and this
may easily be seen to follow from the equation of continuity. Such
a vortex ring, as I shall immediately show, can exist outside a sphere
of which the line 0 = 0 is a diameter. Assuming this I shall first
consider whether such a ring can exist when the fluid is rotating
about the line in which the axis of the ring lies.

As in the similar case in Cartesian co-ordinates, it may easily bo
found that the equations (28) and (29) cannot be satisfied by sup-
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posing w, £, i) to vanish, and u and v to be independent of <f>. Sup-
pose, however, that when w is zero these equations are satisfied by

u = v0 v = v0 w = 0

Then when v> ceases to vanish they will be found satisfied by the
following, which are consistent values,

u = u0 v = v0 w——oyrsm6\ ,,„..
£= - wcos# •7 = wsin^ f={o / "

supposing p to have the same value as when to vanishes.
The method of proof is the same in all three of equations (28) -

(30), so it will be sufficient to exemplify it by treating (28) only.
Substitute the values ^49) in (28), and then noticing that when

o» is zero (49) satisfies the equation, we are left under the necessity
of proving

\ nd sin(9 d

is i?
Substituting for from (18), and then for — from (17), wo

have to prove

a d sin# rf 1 / « \ <or ( d
C°S* Tr ~ — T6 J ( ™ o ) + sin# \d-ff S

Carrying out the differentiations this will be found to be an
ideptity. Similarly it may be shown that (49) satisfies (29) and (30).
In the last case indeed the fact is obvious on inspection. This in-
dicates that so far as the ring itself is concerned the equations may
all be satisfied if the fluid in the ring possess, in addition to the
velocity it would possess in a non-rotating fluid, a rotation with
uniform angular velocity w about the axis in an opposite direction
to that in which the fluid and axes are rotating. Each material
cross section of the ring in fact would move in a plane fixed in
space.

The difficulties that occur in the motion of the fluid surrounding
the ring are precisely the same as in the corresponding case in Car-
tesian co-ordinates. We may, as there, by bringing in the considera-
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tion of the existence of viscosity in all actual fluids, arrive at a
similar conclusion as to the probable character of the phenomena in
nature.

In order to prove that the motion we have just investigated can
apply to the case of a vortex ring when the fluid is bounded inter-
nally by a spherical surface, a diameter of which forms the axis of
rotation and coincides with the axis of the vortex, we still require
to show that all the requisite conditions for a vortex ring in this
position can be satisfied when the fluid and axes are not rotating.
All the data necessary for this already exist.

It has been shown by Mr T. C. Lewis* that if a vortex ring of
strength m exist in an incompressible fluid outside a spherical
boundary of radius a, with its core at a distance f from the centre,
the boundary conditions are satisfied by the velocities deducible from
the true ring and from an image ring of strength - m Jf[f inside the
sphere with its core at a distance/' = a2// from the centre. Corre-
sponding points of the two rings are, it will be noticed, in the same
relative position as an electrified point and its image with respect to
a spherical conductor.

Again it has been shown by Mr W. M. Hicksf that a " source"
of strength mat a distance f>a from the centre O of a spherical
surface of radius a has an image inside the sphere, consisting of a
"source" of strength ma\f at the point Q which is the inverse of the
true source P, and of a line " sink " of strength mja per unit length
extending from Q to 0.

Now by a source of strength m at P we simply mean that there
exists a term - mlr1 in the velocity potential, where rx is the distance
from P. But from (34) if a vortex ring, whose element of cross
section is da- and element of core ds, exist in a compressible fluid it
contributes to P, which there denotes the velocity potential, the
expression

/
U J P

The double integral inside the bracket extends over cr, and the
integration with respect to ds is taken round the core.

Assuming, as usual, that the radius of the cross section is very
small compared to b, the radius of the ring core, we may regard rx as

* Quarterly Journal, Vol. xvi., p. 338, or Basset's Art. 311, Vol. ii.
t Phil. Trans. 1880, Part ii., p, 455, or Basset's Art. 52, Vol. i.
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constant over the cross section and equal to the distance of the
external point from the core. We may then replace the above
expression by

4TTJ I\

w h e r e • _ _ I* f 1 &p' .

J J p' Si l

I have shown on a previous occasion* that when p is uniform
over the cross section, b being very large compared to the radius of
the section, we may take

S(T
<T =

St

Whether p vary or not over the cross section, provided <r be the
same for every point on the core, a ring of this kind is equivalent to
a ring source of uniform strength &jin per unit length of core.

Applying Mr Hicks' result, denoting by a the radius of the
sphere and by / the distance of the ring core from the centre, we find
for the image a ring source at a distance a" If from the centre, whose
strength per unit length of core is

a P <r = / &
f a- 4TT a 4ir'

and a sink spread over the surface of a cone which extends from the
image source to the centre. The strength of the annulus of the sink
by two planes perpendicular to the axis of the cone intercepting unit
length on the generators is everywhere

_ 2irb&_ _ b .

4-rra 2a

the strength of the cone sink per unit of surface would thus
become infinite at its vertex, but that only means that there is a
point sink of finite strength at the centre of the sphere. Combining
the systems of images for the vorticity and for the compressibility,
we clearly possess a solution of the problem whose solubility we had
to establish.

While the preceding investigation as to the image system for the
compressibility possesses the advantage of bringing out more clearly
the physical side of the question than is possible in the analytical
method, it would not in general lead very readily to the actual de-

* Proceedings, Vol. vi., p. 65.
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termination of the fluid velocities. When the angle 2 a of the cone
subtended by the ring at the centre of the sphere is small, we could
obtain approximate values for the velocity at points at a considerable
distance from the ring by regarding it and the image ring as point
sources and the image sink as a line sink.

In general recourse had better be had to the analytical expression
for the velocity potential given below. Using a, b, a, and / in the
same sense as above, we have b =_/sina.

Denoting by Q,,($) the «th zonal harmonic whose pole, 0 = 0,
lies on the diameter of the sphere which is the axis of the ring, I find
for the complete value of the velocity potential at the point (r,6)
referred to the centre of the sphere as origin

P =
where

n + 1 /"-V+1
1" s\ / \/~\ / n\ * I /^f^

or V(51).

The first part of the velocity potential, P,, may be regarded as
answering to the image system. The second part P2 is the velocity
potential due to the ring itself ; and the first or the second value for
it is to be taken according as the point considered is nearer the
centre of the sphere or is more remote than the ring core.

In calculating Pa the method suggested in Thomson & Tait's
Natural Philosophy, Art. 546, may be readily applied. The deter-
mination of P, is based on the vanishing of the normal component
of the fluid velocity over the spherical surface. It presents no
difficulty.

Over the spherical surface the velocity is everywhere of course
along the tangent which lies in the plane through the axis of the
vortex ring. At an angular distance 6 from the axis its magnitude
is

[ 1
T

(52),
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where Qn'(lA = — Qn(f)> denoting cos6 by //., and replacing the nota-
Jfj.

tion Qn(0) by Qn(/*). The surface velocity thus vanishes, as is
obvious from symmetry, where the axis of the ring cuts the spherical
surface.

The expressions for the velocity potential in the form given above
do not converge rapidly unless the distance of the ring from the
centre of the sphere be considerable compared to the radius.

On a problem in permutations.

By R. E. ALLARDICE, M.A.

The problem to be considered may be stated as follows :—How
many necklaces may be formed with p pearls, r rubies, and d
diamonds t*

The peculiarity of this problem is that a general solution cannot
be given in terms of p, r, and d alone. The form of the solution
depends on the nature of the numbers p, r, and d; and it is neces-
sary in solving the problem to consider whether or not these num-
bers have a common measure, and how many of them are odd and
how many even. All possible cases of the problem are not discussed
in this paper ; but enough of them are considerod to illustrate the
variety of forms that the solution may assume.

If we put p + r + d = n, the number of possible arrangements of
the n stones in a line is n\\p\r\d\ Hence the question is, how many
of these arrangements will give the same necklace ; or, conversely,
if we take any one form of the necklace, how many different
arrangements of the stones we can get from it by breaking it at
different parts and stretching it out straight. It is obvious that if
the n stones had been all different, the answer to the second of these
questions would have been 2n ; in other words, with n stones all
different, we may form n!/2n necklaces. The further question then
naturally arises, In what cases, if any, are the In arrangements of
the stones obtained from each form of the necklace all different when
the stones are not all different ? Now these In arrangements com-
prise the n that are obtained by a cyclical interchange of the stones,
one at a time, together with the n that are obtained by exactly re-
versing each of these n arrangements.

* This problem was suggested to me by Professor Chrystal.
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