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In the special case of the Maclaurin spheroids, it has been known 
for some time that the m = 2 barlike modes become secularly unstable 
for t s T/lWl ^ 0.1376 where T is the total rotational kinetic energy 
and W is the total gravitational energy of the spheroid. "Secular" here 
means that the instability depends on dissipative processes and grows 
on a long dissipative time scale. In particular, the Dedekind-1ike bar 
mode, which has zero eigenfrequency at t = 0.1376 as viewed in the 
nonrotating frame, is unstable due to gravitational radiation 
(Chandrasekhar 1970). 

These results can be obtained with such relative ease and elegance 
by use of the tensor virial equation (TVE) method (cf Chandrasekhar 
1969) that the method was generalized (Tassoul and Ostriker 1968) and 
applied to more realistic rotating stellar models, first to white 
dwarfs (Ostriker and Tassoul 1969) and then to polytropes (Tassoul and 
Ostriker 1970, Ostriker and Bodenheimer 1973). Durisen (1975) extended 
the mass range covered by Ostriker and Tassoul to find that secular 
instability imposes an upper mass limit on stable rapidly rotating 
white dwarfs of about 2.5 M0 . Remarkably, for all equations of state 
and rotation laws considered by these investigators, the secular 
stability limit was found to occur at t = ty = 0.138 + 0.003. Because 
the TVE method is equivalent to a particular choice of trial eigen-
function in the variational principle of Lynden-Bell and Ostriker 
(1967), this universal result was accepted as reasonably accurate and 
physically significant. Consequently, t = 0.1A has often been cited as 
a secular stability limit in a wide range of applications to rotating 
stars (e.g. Shapiro and Lightman 1976, Endal and Sofia 1978, Larson 
1979). 

Lagrangian perturbation theory for rotating stars has been 
considerably refined in the past four years, and the TVE method has 
been subjected to severe criticism (Friedman and Schutz 1975 a and b, 
Hunter 1977). Particularly, Friedman and Schutz (1978 a and b) have 
shown that the TVE method provides neither a necessary nor sufficient 
condition for secular instability when stars are differentially 
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rotating. They have shown that the Lagrangian displacement €>y im­
plicitly assumed by the TVE method, namely the Maclaurin spheroid bar P 
mode, 

| v = ( r, ir , 0) e2i<P (1) 

in cylindrical coordinates ( r, <p, z) , contains a "trivial" displace­
ment component for differential rotation which invalidates the 
variational principle. A "trivial" displacement is one that violates 
Kelvin's circulation theorem and so reduces to a relabeling of fluid 
elements which does not conserve the canonical energy in the 
variational principle. 

Bardeen, Friedman, Schutz, and Sorkin (1977. hereafter BFSS) have 
suggested use of the following trial eigenfunction free of trivials, 

where A(r ) and B(r ) satisfy 

< A « (1 - A) ^ ^ - + 2 B 

dr (T dr 

dB . _fc . r d A (A + 
dr Jl dr 

13) 

with A = 1 at r = the equatorial radius R and B = 0 at r = 0. The 
quantity cr(r ) is the surface density of the star as viewed along the 
rotation axis. Then 

L , *>* C(S B) dV ̂  0 (k) 
JVolume — B - _B 

prov ides a s u f f i c i e n t c o n d i t i o n f o r secu la r i n s t a b i l i t y o f the 
Dedekind-1ike bar mode. The ope ra to r C is g iven by 

C(x ) » /o (v • V ) 2 x - JQU'V ) ( V - V ) v + ( -S-VP) V-/ox 

where v, f> , P, and P} are the zero-order stellar velocity field, mass 
density, pressure, and adiabatic dlnP/dlnyO and where S$ is the 
Eulerian perturbation in the gravitational potential. BFSS applied 
their criterion to thin disks and obtained a secular stability limit 
to about 10-25% higher than tv. Clement (1979) has found that for 
differentially rotating main sequence stars the BFSS criterion gives 
a tg = 0.10 to 0.11 or 30-^0% lower than ty. 

Because of their central concentration, white dwarfs must be 
differentially rotating to attain large t-values without surpassing 
critical rotation at the equator, and so the secular stability limits 
obtained previously by the TVE method are invalid. We are currently 
applying the BFSS criterion to cold rotating white-dwarf models 
generated by the self-consistent field method (Ostriker and Mark 1968, 
Ostriker and Bodenheimer 1968). As Clement notes, the evaluation of 
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the integral in equation (A) is "straightforward albeit laborious" 
except for the determination of the perturbed potential £ §. We must 
solve Poisson's equation 

V2L$ = 4-rG i/o , (6) 

where Sx> is the Eulerian perturbation in density given by 

S/O = - V - / o j . (7) 

To accomplish this, we parallel the Green's function method of 
Ostriker and Mark by expressing %p as an expansion in even powers 
of the spherical radius and in associated Legendre polynomials with 
m = 2 whose argument is cos 0 where & is polar angle. The 
integration of equations (3), on the other hand, is simple. We find, 
as Clement did, that a shooting integration method from r = 0 can be 
iterated Newton-Raphson style until both boundary conditions are 
satisfied. Our resulting A(r ) and B(r ) are similar in form to his. 

At the time of writing, we have not yet obtained firm values of 
to for white dwarfs, but we can anticipate our results on the basis 
of Clement's work. Roughly speaking, his upper main sequence models 
have both T| s; 4/3 and an effective polytropic index ne « 3. The 
white-dwarf models yielding the highest secularly stable masses in 
Durisen's TVE work have central densities well in excess of 10" gm/cc 
and so, being relativistical1y degenerate, also have F| ~ A/3 and 
ne ~ 3. The degree of differential rotation is similar in both sets 
of models: 9 to 1 in Xl(r ) from center to equator in Clement's 

/3 = 8 case and 7 to 1 for Durisen's n' = 0 case at high masses. 
For his 30 M 0 /3 = 8 model, Clement found tg = 0.10. For white 
dwarfs, this corresponds to a revised upper mass limit of about 2.0 M © 
for secular stability. The secularly stable region in the total mass M • 
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Figure 1. - The (M, J) - plane. 
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total angular momentum J plane is correspondingly smaller as shown in 
figure 1. The t = 0.10 curve is not extended below about one solar 
mass, because low-mass models are nonrelativistically degenerate and 
the analogy to Clement's models does not apply. The t-curves in figure 1 
are based on the n' = 0 angular momentum distribution described by 
Durisen. Also shown in dashes is the boundary of the region where 
uniform rotation is possible (James 196*0. Estimates for the e-folding 
time due to gravitational radiation in the unstable region are not 
much affected by the change in limiting t and are still typically in 
the range 10'*' years (see Durisen's figure l). 

Modes of higher azimuthal order, % -v e ™ with J ml > 2, may 
also prove to be important for secular Itabi1ity. Friedman and Schutz 
(1978b) discovered a generic instability of all rotating stars for 
sufficiently large m-values. The e-folding time scales due to gravita­
tional radiation are >> 10 years except for the lower m-values of 
neutron stars and for m = 2 of white dwarfs (Papaloizou and Pringle 
1978). However, there are other mechanisms that could mimic gravita­
tional radiation but have a much shorter time scale: particularly 
surface stresses and gravitational torques exerted by an external 
medium (red giant envelope, accretion disk) or by a binary companion. 

For instance, suppose the pattern speed co of an unstable mode 
is such that 6J_R » the sound speed cs in an external medium of density 
/>e. The surfaces stresses induced by distortion of the stellar surface 
will then be T / 2 out of phase with the surface displacement. Using the 
surface drag from the solution for supersonic flow past a wavy wall 
(Liepman and Roshko 1957) and using a canonical mode energy of 
-m^ J/oj^.2 J g( 2 jy (see eqUation 16 of Friedman and Schutz 1978b), we 
find a growth time 

r p 1 -5 r (8) 
/° e cs R V 

48 
To get a feel for the order of magnitude here, let T = 10 ergs, 
/Oe = 10"° gm/cc, cs = 10 km/sec, R = 10^ cm, and U) - 10"1 /s. Then 
T n = 3 million years. The consequence of such an instability would be 
loss of angular momentum and rotational energy by the dwarf to the 
surrounding medium on this time scale. 
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