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A thin three-dimensional material system, such as a thin shell or fluid-fluid interface,
is often modelled as a bidimensional continuous body which at any instant "occupies"
some geometrical surface. The time evolution of such surfaces is usually described in
terms of curvilinear coordinates [2], [4], [6], a procedure which can mask the geometry
involved. An alternative, coordinate-free, approach has been employed [1], [3] which
patently exhibits the fundamental geometric (and algebraic) aspects of the kinematics of
deforming surfaces. The foundations of this approach are presented in Section 2,
following introductory remarks on notation and calculus in Euclidean point spaces, and
hitherto unpublished results are developed in Section 3. Account is taken both of material
and non-material surfaces: in the former case (surface) mass is conserved (this will be true
for thin solid shells) while in the latter context mass exchange with contiguous phases is
possible (as is to be expected in the case of fluid-fluid interfaces). The results are also
pertinent to singular surfaces [2], [6], [7] (such as shock waves) which are not endowed
with intrinsic material attributes but rather with discontinuities of bulk quantities.

1. Notation and preliminaries. Let %, % denote finite-dimensional inner-product
spaces over U. Then Lin(T",, V2) := the space of all linear transformations from T, into °V2

and, when dim Yx = dim T2,

Invlin(r,, V2) := {A e Un{%, T2): A invertible}.

When T2=Vi the foregoing sets are abbreviated to Lin Yx and Invlin °VX, respectively.
The transpose \ T of A e Un(Vu %) is that element of Lin(r2, Vx) defined by

Arv2 . v, = v2 . Av, (1.1)

for any v, e % (i = 1, 2). Further,

Sym+<F,: = {S e Lin V{: S
T = S and S positive-definite},

Sk r , := {W e Lin % :ST = - S } .

The tensor product of a,, b, e Yx is a, <8> bx e LinT, defined by

(a1<8>b1)v1:=(b,.v1)a1. (1.2)
It follows that

(a,«)b1) r = b1(E)a1 and (a, ®b,)(c1(8)d1) = (b, .c,)(a, <8>d,).

If F e Invlin(T"!, V2) then the following polar decompositions hold:

VR = F = RU, (1.3)
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where V, R and U are unique, with V e Sym+ Y2,

R e Orth(r1; Y2) and U e Sym+ Yx.

Intuitive notions concerning "space" are encapsulated and generalised in the concept
of an Euclidean point space (&u

 (F1). Elements of the set %x are termed "points" and of
the finite-dimensional inner-product space Yx over IR "translations" or "displacements".
The displacement necessary to reach point y from point x is denoted by y — x e Yx and the
point reached from x by undergoing a displacement u is denoted by x + u. Clearly, if
z e ? i , veVu then

(z -y ) + (y -x ) = ( z -x ) , (x + u) + v = x +(u +v), x + 0 = x, and x - x = 0.

The foregoing may be formalised, but this is not necessary for our purposes. It is
important only to notice that addition of "points" is meaningless and that no point is
distinguished (as "origin"). In particular, if dim Yx = 1, 2 or 3 then («?,, Yx) is a model for
a line, plane or "physical space", respectively. In what follows, (<£, Y) denotes "physical
space". Any finite-dimensional inner-product space over IR may be regarded as an
Euclidean point space, "coinciding" with its space of translations. The space (£,, Yx) has
the natural metric induced by the norm on Yx: thus | y - x | defines the distance between
points x and y where |v| := (v. v)1/2.

If / : 9 c ( f , , Vi)-»(%, y2) maps an open subset 2 of point space (»„ Yx) into
point space (g2, %), then / is said to be differentiable at x e 3) if there exists an
L e Lin(V,, Y2) such that (h e Yx)

/(x + h) =/(x) + Lh + o(h) as h ^ O . (1.4)

The map L is termed the derivative (or gradient) of / at x and denoted by V/(x). If Vf
exists on 3), so that

then it, too, may be differentiable at x. If so this derivative is denoted by VV/(x) and is an
element of Lin(T1; Lin(Yx, Y2)) and so identifiable as a bilinear mapping from Yx x Yx

into Y2. Such a mapping VV/(x) is symmetric: that is

(VV/(x)u)v = (VV/(x)v)u, (1.5)

for all u, ve Vx.

2. Surfaces.! Intuitively, at each point x of a smooth surface S in three-dimensional
Euclidean space % there is a unique plane, Tx say, which most closely approximates 5 near
x. This is the notion of the tangent plane to 5 at x. The collection &x of all displacements
in Tx is a bidimensional subspace of the three-dimensional space Y of all displacements in
% and is termed the tangent space to S at x. Further, there would appear to be (at least
near x) a bijective correspondence between points y on 5 and the feet px(y) of the
perpendiculars from these points onto Tx. The foregoing may be formalised: a surface 5 in
% is a subset of % endowed with local structure at each x e 5 by a bidimensional subspace
?FX of Y together with a locally-unique map Jtx such that the following conditions hold.

fThe approach used here, specifically axioms S.I—3, is due to Walter Noll.
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Figure 1

5.1. nx: Sf^—> % with Rg(jrx) <= S, where 3\ is an open neighbourhood of the zero
vector 0 in Sx, and jtx is of class C2 with the range of Vjrx(t) (which maps SFX

linearly into Y) bidimensional for each t e Sf°x.
5.2. Jtx(t) = x +1 + a, where a e 3~\ and is of order o(t) as t—» 0.
5.3. If yeRg(jrx) then n~ionx: 3^-^ST^ is a C2 diffeomorphism (possibly after

suitably restricting the domains and codomains of nx, Jiy).
5.4. For some open neighbourhood Nx of x in % we have nx{&^) I") Nx = S D Nx.

REMARKS. 1. Associated with nx is the map ftx: Tx—*S, where T°:= { y e ? : y - x e 5^}
and, for each t e 3\, Ax(x +1) = ^rx(t). Clearly nx maps points in Tx near x into S and is
the inverse of px.

2. From S.2. JTX is injective and, for any y, x e Rg(jrx), we have

«,-'(y)-«,-'(«) = P(x)(y-x), (2.1)

where P(x) e Lin(Y, 3~x) denotes the perpendicular projection of Y upon 9~x.

3. Since S.2. implies ^x(0) = x, so that

f«(t) = ^.(O) + t + o(t) as t-» 0,

it follows that

V*,(0) = l(x), (2.2)

where l(x) 6 Lin(STx, Y) denotes the inclusion of 5 , in T. That is, if t e 3~x then

l(x)t = t. (2.3)
This map is to be distinguished both from the identity 1(x) on 3~x and the identity 1 on Y.
Indeed, since if t e STX and v eY then

t . (l(x))rv = l(x)t. v = t . v = t . P(x)v, (2.4)

it follows that

l(x)7" = P(x). (2.5)

Of course,

P(x)l(x) = 1(x). (2.6)

4. If y e Rg(;rx) and the domains and co-domains of 7iy and KX are suitably restricted
so that n~x°nx is a bijection from 3\ onto Sf°y, then S.3 implies that for every t e SF^

V(n;l°jtx)(t) e Invlin(STx, 5",). (2.7)

5. S.4 ensures that the topology induced on S by its embedding in % coincides with
the weakest topology on 5 for which all maps nx are homeomorphisms. Thus at each of its
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points S is locally homeomorphic to an open subset of a plane (its tangent plane at that
point).

If / : 5—* %' denotes a map defined on S which takes values in an Euclidean point
space %' (in particular, %' could be IR, % or °V) then its surface derivative Vs/is defined
by

Vs/(x):=V(/o<)(0). (2.8)

Clearly V5/(x) 6 Lin(5",, V), where V denotes the space of translations between
points of %'. If t e 3~x is a unit vector then (Vs/(x))t delivers the rate of change of / at x
along any smooth curve on S to which t is tangent at x. Further, if / is defined spatially
and is of class C1 at x then [3, Proposition 3.3] V5/(x) is the restriction to STX of
Vf(x)eLm(V,T').

With VVw»(0), a bilinear mapping from 3~x x STx into V, and either of the two
possible choices of unit normal fields n, can be identified a symmetric linear transforma-
tion Ln(x) on 3~x via (here x,v e3~x are arbitrary)

Ln(x)T.v:=(VV7rx(0)T)v.n(x). (2.9)

It follows [3, Lemma 3.2] that L,,, the curvature tensor at x associated with orientation n,
satisfies

ILn=-Vsn (2.10)

or, equivalently,

U,= -PVsn. (2.11)

If u is a class C1 vector field defined on S and 2 a subset of S, with piece-wise smooth
boundary, which lies in the range of some local map nx, then

u . v = {div5u + 2*:nu.n}. (2.12)
Jan h

Here v denotes the outward unit normal to 32 (a tangential vector at each point),

Kn-l t rL, , (2.13)

the mean curvature, and

divsu:=tr(PVsu) (2.14)

the surface divergence of u. In (2.14) the trace operation tr is taken (at x) in 3~x. Result
(2.12) is the surface divergence theorem, a particularly simple result in the case of
tangential vector fields (for which u . n = 0). The generalisation to class C1 tensor fields T
for which T(x) e Un{3~x, V) is

f Tv=f divsT, (2.15)
Jan h

where for any k e V we have

(div5T).k:=divs(Trk). (2.16)
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3. Kinematics of a surface. Let / : S—» £, where /(5) = 5 and S, S are surfaces.
Suppose / is C2 regular (that is, for each xeS, the map f°ftx is of class C2

with Rg(Vs/(x)) bidimensional) and has a C2 inverse. If /(x) = x, then since
f°ftx = nx°(jtx

l°f°7tx), use of the chain rule and (2.1) yields

It follows that &x = Rg (Vj/(x)). We write

F(x) := Vi/(x), F(x) := V(w,-'»/«

and term F the deformation gradient corresponding to the deformation f. From (3.1)

(3.1)

(3-2)

F(x) = l(x)F(x) and F(x) = P(x)Vi/(x). (3"3)

The polar decomposition theorem (1.3) yields

RU = F(x) = VR, (3.4)

where R e Orth(^i, °TX), U e Sym+ &x and V e Sym+ STX. The Jacobian of / at x, which
expresses the local area magnification factor associated with deformation /, is

/ ,(i) = detU. (3.5)
From (3.2),, (3.3)2, (3.4), and (3.5),

J>(x) = {det[(Vi/(x))7'(V5/(x))]}1/2. (3.6)

A motion for a surface § is a family of deformations of S parametrised by time: that
is, with any instant t in some time interval is associated a C2 regular map f(.,t): §—>%
with S, : = f(S, t) a surface. The corresponding velocity field u(., /) on S, is defined byt

u(x,r) :=/(«,0. where x:=f(x,t). (3.7)

Figure 2

JHere, andjn what follows, a superposed circle will denote differentiation with respect to time holding
fixed a point of 5. Thus in (3.9) below fl(x, t) represents d/dt (n(/(x, t), /)), where x, x are related as in (3.7)2.
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Aspects of the time evolution of surface geometry are contained in the following
result

PROPOSITION.

Vsu = F F 1 (3.8)

and

A = -(Vsu)rn (3.9)

where, at instant t, S := Sc.

Proof. If ftx(nx) denotes the local map defining S(St) near x(x) then (3.7) may be
expressed as a map on §\ (the domain of nx)\ viz.

Differentiating this relation using the chain rule and evaluating at 0 yields (cf. (3.2)2),
with S := S,,

0. (3.11)

On assuming the order of differentiation may be interchanged (for this it suffices, as
usual, that either mixed second derivative exist and be continuous),

Vsf(x, t) = F(x, 0, (3.12)

(cf. (3.2)t) whence, on suppressing arguments,

Vsu = FF-\ (3.13)

From (3.3)i, F(x, /)v e Jx for all v e frx. Thus

F(x, t)\. n(x, 0 = 0

so that on S,

Fr(x,0n(x,0 = 0. (3.14)

Differentiating (3.14) with respect to time, keeping x fixed,

Frn + FTA = 0.

Hence, writing FT for (F~1)7'(= (F7^)"1),

F r F r n = - F r F r n = - F T F r P n = -Pft, (3.15)

on using (3.3)2 and (2.5). However,

Further, since n . n = 1 it follows that

n . n = 0

so that n is a tangential vector field and consequently

Pn = n. (3.17)
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From (3.15), (3.16) and (3.17)

A = -(Vsu)Tn. M (3.18)

It proves useful and instructive to extend F(x, t) to Invlin Y in a simple and natural
way: define F(x, t) e Lin Y by

F ( x , 0 k = F(x,0 = l(x,0F(x,0 and F(i, t)h(x) = n(x, t). (3.19)

Clearly, restriction of F(x, t) to "̂x (with range as codomain) yields F(x, t) so that F(i, t) is
an extension of F(x, t). Further we require that F take n into n and be linear on Y. From
(3.19) it follows that the extended deformation gradient

F(x, t) = l(x, f)F(x, 0P(x) + n(x, t) ® ii(x). (3.20)

Here P(x) denotes the perpendicular projection of Y upon $V Suppressing arguments for
brevity,

. (3.22)

Immediately this yields (recall (2.5))

F7'=lF7'P + n(8)n, (3.23)

where 1(x) denotes the inclusion of ^ in Y. Less obviously,

F- i= lF- 'P + A(g)n = :G, say. (3.24)

To verify (3.24) it is necessary only to compute FG, GF, and observe that

IP + n(8in = l = IP + n<8)n.

Recalling the polar decomposition (3.4), the polar decompositions of F are

RU = F = VR, (3.25)

where

U = lUP + n<8»n, V = IVP + n<8>n and R = IRP + n®n . (3.26)

Of course, here U, V e Sym+ Y and R e Orth Y. The extended velocity gradient

L:=FF- ' . (3.27)

Thus (cf. (3.20), (3.3)2) (3.24))

L = (FP + n(8)n)(iF-1P + n(8)n) so that L = F F ' P + n<8)n. (3.28)

Clearly

n = Ln

and, from (3.8) and (3.9),

L = (Vsu)P-(V5u) rn®n. (3.29)

The stretching and spin tensors, D and W, are defined by

D:=£(L + I/), W:=£(L-I/). (3.30)
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Upon writing R: = IR and noting

a r^ a _ o

F = RU = RU + RU,

(3.28) yields

L = (RU + RU)(U1Rr)P + n <g> n

= RRr + RUU1Rr + n<8)ii. (3.31)
However, since R takes values in Orth V, it follows that RRr takes values in Sk V. From
(3.26)3 this implies that

(RP + A <8> n)(lRr + n <S> n) = RRT + n <g> n

takes values in Sk V. Hence (3.30)12 and (3.31) yield

W = |R(UU ' - U-'U)RT + RRr + n <S> n. (

At this point no physical interpretation has been made concerning the concept of
motion: such interpretation depends upon context. In the event that surface mass is
conserved the surface is described as material [1], [2] and the appropriate velocity field v
is merely the bidimensional analogue of the velocity field associated with a bulk phase.
For singular surfaces [2], [6], [7] the corresponding velocity field is always orthogonal to
the surface and so expressible in the form £/n. In the case of fluid-fluid interfaces the
velocity field u5 is more subtle: at any instant its tangential component is associated with
tangential mass transport [5] while its normal component corresponds to its singular
surface nature (usually bulk mass density is discontinuous at such an interface). Of
course, once the velocity field u on the trajectory of a surface is established the
appropriate interpretation of motion is thereby mandated: S is taken to be an
instantaneous (/0, say) configuration and the motion / relative thereto defined, for each
x e S, to be the solution of the initial-value problem (cf. (3.7))

d
jt{f{\,t)}=f{x,t) = u{f{x,t),t), where f(x,to) = x. (3.33)

The derivation of local forms of balance for surface thermodynamics involves use of
the surface divergence theorem (cf. §2) together with the appropriate Transport Theorem:

'4> + 0div s u} . (3.34)

Here 2, := / (2 , 0. where 2 c S is a subsurface of S with piecewise smooth boundary, and
<p is a function defined on the trajectory of S under the motion prescribed by u.

Proof.
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where Jf denotes the Jacobian of f(-,t) (cf. (3.5,6)). The theorem follows on
differentiating under the integral sign and noting that (cf. (3.5)), on omitting arguments
for brevity,

| V/ (3-35)

and

). (3.36)

The result (3.36) follows from (3.8), (3.3)2, (3.4),, and (2.14) on observing that RTR takes
skew values (R: = IR) since RTR is the identity on the relevant tangent space to 5 and is
accordingly constant in time. Finally, it is instructive to compare the results of different
time derivatives of a given quantity, (j> say, defined on the trajectory of a surface. If #
denotes its time derivative with respect to the motion associated with velocity field u, and
8<j>/8t its time derivative with respect to the motion corresponding to the singular surface
velocity Un (note all possible velocity fields must share this normal component), then

^ = 60/6f + (Vs</))Pu. (3.37)

The proof of this result is non-trivial and is omitted in the interests of brevity.
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