
BULL. AUSTRAL. MATH. SOC. 20H20, 20C15, 20G40

VOL. 62 (2000) [335-345]

MINIMALLY IRREDUCIBLE GROUPS OF PRIME DEGREE

F. DALLA VOLTA AND L. D I MARTINO

We determine the irreducible subgroups G of GL(r, C), where r is prime and all
proper subgroups of G axe reducible.

1. INTRODUCTION

A linear group is said to be minimally irreducible if it is irreducible, and all its

proper subgroups are reducible. It was shown by Platonov (see [10]) that a minimally

irreducible subgroup of GL(n, C) is necessarily finite. A certain number of papers on

minimally irreducible groups have appeared over the years, mostly by Russian authors and

mostly focused on soluble groups. In this paper, we determine the minimally irreducible

subgroups G of GL(n, C), when the degree n is a prime. The case when G is a soluble

group was dealt with by D.A. Suprunenko in the early 1970's (see Section 2). In dealing

with the non-soluble case, we rely heavily on recent papers on linear groups of prime

degree by Dixon and Zalesskii [3, 4]. The analysis is reduced, exploiting the minimality

assumption, to quasi-simple groups (Section 3), and even to simple ones if G is primitive

(see 3.3). Interesting occurrences are the monomial representations of PSL(n, q) of degree

r = (qn - l)/{q - 1), and the Weil representations of the unitary groups PSU(n,q) of

degree r = (qn + l)/(q + 1). The final result is summarised in Theorem 1, at the end of

Section 3.

2. T H E SOLUBLE CASE

The soluble minimally irreducible groups of prime degree have been determined and

explicitly described up to conjugacy by Suprunenko (see [14, 15]). The key result leading

to their classification is the following lemma, of which we provide a proof, for the reader's

convenience.

LEMMA 1 . Let G be a minimally irreducible subgroup of GL(r,C), r a prime,

and assume that G is a soluble group. Then G is a (non-Abelian) group all of whose

subgroups are Abelian.
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PROOF:" Let N be a maximal normal subgroup of G. As N is reducible, by Clifford's

theorem the irreducible constituents of N all have degree 1. Hence N is Abelian and

\G : N\ = r. (In fact, iV = Sj x • • • x St x ?, , where each Si is an (Abelian) Sylow

9i-subgroup of G, qi ^ r, and Pi has index r in a Sylow r-subgroup of G.) Now, let H be

any proper subgroup of G not contained in N. Then Ht~\N is a normal Abelian subgroup

of H of index r. By Ito's theorem, any irreducible representation of H has degree 1 or r.

As H is a reducible subgroup of G, it follows that H is Abelian. D

The groups satisfying the conditions stated in the Lemma are known as Miller-

Moreno groups. They have been classified by Redei in 1947 (see [11]). In principle,

those admitting a minimally irreducible representation of prime degree can be read off

from there. However, Suprunenko's analysis in the quoted papers is direct, and does not

exploit nor quote [11]. For our purposes in this paper it will be enough to record the

following facts:

PROPOSITION 1 . [14, 15] Let G be a minimally irreducible soluble subgroup

of GL(r,C), r a prime. Then either

(1) G is an r-group; or

(2) G is the semidirect product of an elementary Abelian u-group of order ul by a cyclic

r-group, where I is the least integer such that r \ ul — 1. In particular, G is a monomial

group.

3. T H E NON-SOLUBLE CASE

3.1. REDUCTION TO THE QUASI-SIMPLE CASE The following Proposition drastically

reduces the analysis of minimally irreducible non-soluble linear groups of prime degree.

PROPOSITION 2 . Let G be a minimally irreducible subgroup ofGL(r,C), r a

prime, and assume that G is non-soluble. Then G is quasi-simple.

P R O O F : Let TV be a maximal normal subgroup of G. By Clifford's theorem, either

N has a single homogeneous component on V(r, C), in which case N is scalar and we are

done, or N splits into r distinct irreducible constituents of degree 1, and these describe

all the irreducible iV-submodules of V(r,C). Suppose the latter occurs. Then, we claim

that there exists x € G - N such that (JV, x) is irreducible, and therefore (iV, x) = G.

Indeed, as G acts transitively on the irreducible constituents of N (alternatively: by

Ito's theorem, as in the present instance N is Abelian), r divides \G : iV|. Thus, we may

choose x 6 G — N such that x acts as a cycle of length r on the constituents of iV, and

as such, does not preserve any partial sum of these constituents. It follows that {N, x)

acts irreducibly on V{r, C), whence {N,x} = G. Since xr eJV, \G : N\ = r, and we

may proceed exactly as in the soluble case, concluding that all proper subgroups of G

are Abelian. In particular, G must be soluble, a contradiction. D
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At this stage, we distinguish two cases: (1) G acts imprimitively on V[r, C), that is

G is a group of monomial matrices; (2) G acts primitively on V(r, C).

3.2. T H E MONOMIAL CASE In order to deal with this case, we need to recall the list of

2-transitive simple permutation groups of prime degree r (a well-known consequence of

the classification of finite simple groups). These are: the alternating groups A,, r ^ 5,

in their natural action; the projective special linear groups PSL{n,q), n > 1, with

r = (qn — l)/(q — 1) (acting on the points of the projective space PG(n — 1, q); the group

PSL(2,11), with r = 11; the Mathieu group Mn, with p — 11; the Mathieu group Af23,

with r - 23.

Then the following result gives the desired answer. Though it is essentially embodied

in [4], it is convenient for our purposes to give here a detailed proof.

PROPOSITION 3 . Let G be a quasi-simple finite subgroup of GL(r,C), r a

prime, and assume that G acts monomially and irreducibly on V(r, C). Then G is one of

the following:

(a) A5, r = 5;

(b) PSL(n, q), with n ^ 2, q > 2, and r = (qn - \)/{q - 1);

(c) PSL(3,2), r = 7;

(d) Mn,r = 11.

PROOF: By assumption G is monomial: in other words G is conjugate to a subgroup

of the semidirect product M — [Dr]Sr, where Sr denotes the subgroup of GL(r, C) con-

sisting of the permutation matrices, and Dr denotes the subgroup of GL(r, C) consisting

of the diagonal matrices of finite order. Moreover, since G is quasi-simple, G C SL{r, C),

and Z(G) is the trivial group or has order r. Let 7 be the restriction to G of the natural

epimorphism M -> Sr, and set H = j(G). Clearly, ker(-y) = DT D G - Z{G). It is

shown in [4, Lemma 3.1] that G splits over ker(j), provided r > 2 (which is our case,

since G is supposed to be quasi-simple). Therefore ker(i) = 1, and G ~ H is simple.

Now, by a classical theorem of Burnside, H is a 2-transitive permutation group of degree

r. Hence G is isomorphic to one of the groups listed above. The alternating groups

Ar, r > 5, are immediately ruled out. Indeed, a point-stabiliser in A,, is isomorphic to

A,._i, which is itself simple. Therefore the only monomial representation of degree r of

Ar is the natural permutation representation, which is obviously reducible. (In fact, it

can be easily shown that Ar has no irreducible representation of degree r whatsoever.)

On the other hand, A4 has two non-trivial linear representations, which induce one and

the same monomial irreducible representation of A5 of degree 5. M23 is also ruled out,

since it has no irreducible representation of degree 23. PSL(2,11) does have a unique

irreducible representation of degree 11. However this representation is not monomial, as

the only subgroup of PSL{2,11) of index 11 is isomorphic to A5. As for Mn, it has a
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unique irreducible representation of degree 11, which is indeed monomial, induced from a

non-trivial linear representation of M10. Thus, we are left with the case G = PSL(n,q).

Here the candidates are the representations induced from the non-trivial linear represen-

tations of the stabiliser Pi of a point of PG(n - 1, q). Since |Pi : P[\ = q - 1, if q > 2

the required representations do exist, and are known to be irreducible (for example, see

[18, Proposition 1.9]). If q - 2, \PX : P{\ - 1, unless n = 3, in which case \PX : P[\ = 2.

The group PSL(3,2) does have a unique irreducible representation of degree 7, which is

monomial. D

REMARKS.

1. Note that the point-stabilisers are the only subgroups of index (qn — l)/(g — 1) of

PSL(n,q). Indeed: (i) any such subgroup is maximal and contains a Sylow p-subgroup

(<7 — pa); (ii) any subgroup of a simple Chevalley group satisfying (a) must contain a Borel

subgroup, hence is parabolic; whence our contention, by order comparison. Also, note

that r = (qn - l)/(q — 1) can be a prime only if n is a prime, q =pn , and (n, q - 1) — 1.

2. The representation of degree 5 of A5 is minimally irreducible, and also appears

in (b), for n = 2, q — 4.

3. The representation of degree 7 of PSL(3,2) is also minimally irreducible, since

the only subgroup of order divisible by 7 is [C7] C3.

4. Let a denote the aforementioned representation of degree 11 of M n . Then a

is minimally irreducible. For, assume the contrary. Since a maximal subgroup H of

Mn having order divisible by 11 is necessarily isomorphic to PSL(2,11), it follows that

ffL.,,.,.. must be irreducible and monomial. This cannot occur, as observed in the

proof of the Proposition above.

Next, we prove:

PROPOSITI ON 4 . Let XP be one of the monomial irreducible representations of

the group G = PSL(n,q) of degree r = (qn — l)/{q - 1). Then XP(G) is minimally

irreducible.

P R O O F : Suppose the contrary. Then there is a proper subgroup K of G such that

Xp(A') is irreducible. Clearly XP(K) is monomial, and without loss of generality, we may

assume that XP(K) is minimally irreducible. It follows that either K is soluble, or K

is quasi-simple. In the latter case, K must be one of the groups listed in Proposition 3

above. K = F5L(3,2), r = 7 cannot occur, since it would force n = 3, q — 2, whence

K = G. r = 11 is incompatible with the condition r — (qn - l)/{q - 1), and this

rules out K = Mu. Thus we are left with the possibility of an irreducible embedding

K = PSL{m,t) < PSL(n,q), where r = {tm - l)/(t - 1) = (qn - \)/{q - 1). We
proceed to show that this cannot occur. First, we note that, since the embedding is

proper, the condition (*) (tm - !)/(* - 1) = (qn - l)/(q - 1) forces (t,q) = 1. Thus, the
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embedding can be interpreted as an irreducible projective representation of the group

PSL(m, t) in cross-characteristic, and therefore by [9] we obtain the bound n ^ tm~l - 1 .

From (*) we get t ( t m " 2 + • • • + i + 1) = q{qn~2 + • • • + q + 1), or in other words

t • (i™-1 - l)/(t - 1) = q • (g"-1 - l)/(q - 1). Whence q • (g""1 - \)/{q - 1) ^ t • n/(t -1).

This in turn implies q{t - \)/t • [{qn~l - \)/{q - 1)] ^ n. Since q(t - \)/t ^ 1, it follows

{qn~l — l ) / (? — 1) ^ n, a contradiction unless n = 2. But the latter cannot be, since it

would imply K - PSL(2,2) or PSX(2,3), which is not the case.

Now assume that K is soluble. We know that either K is an r-group, or K ~ [Eui]Crs

(u a prime and I the least integer such that ul = 1 (r)). Since r — (qn — l)/(q -1) divides

|G| at the first power, the former case cannot occur, and in the latter case s = 1. Denote

by K and (x), respectively, the pre-images of K and Cr in SL(n,q). Then x is a so-

called 'Singer-cycle', acting fixed-point freely on V(n,q). In particular, (x) is a maximal

irreducible and primitive cyclic subgroup of SL(n, q). Now it follows from the knowledge

of maximal irreducible soluble subgroups of SL(n,q) (for example, see [13, p.162], taking

into account the condition (n, q - 1) = 1), that K must be contained in the normaliser

of (x). But this would force K to be Abelian, a contradiction. D

3.3. T H E PRIMITIVE CASE In the primitive case, we obtain from the start a further
reduction, namely:

PROPOSITION 5 . If G is a primitive minimally irreducible quasi-simple sub-

group of GL(r, C), then G is a simple group.

P R O O F : AS already observed, the assumption that G is quasi-simple implies that

G is a subgroup of SL(r, C) and Z(G) is the trivial group or has order r. Let 1 ^ R

be an r-Sylow subgroup of G. We claim that R is necessarily Abelian. Indeed, by our

assumptions, R is reducible, and hence decomposes into r irreducible constituents of

degree 1. But this obviously implies that R is Abelian, as claimed. Now, we may appeal

to [1, Theorem 4A], where it is proved that G splits over Z{G). This is a contradiction,

since G is perfect. D

The above reduction allows us to make direct use of the list of groups appearing in

[3, Theorem 1.2]. Namely, we may exploit the following:

RESULT. [9, 3] Let G be a finite primitive simple subgroup of SL(r, C). Then one

of the following cases occur:

(1) G~K+ur^7.

(2) G ~ PSL(2, q), with r and q = p° satisfying one of the following conditions:

(i) r=p = O H ,

(ii) r = (q + l ) /2, q = p2* ^ 5 for some odd prime p and k ^ 0,

(iii) r = (q - l ) /2, q a prime or q = 3° for some odd prime a,
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(iv) r = q — 1, q = 2° for some odd prime o.

(3) G ^ PSp(2n, q), with r, n and q = p" satisfying one of the following conditions:

(i) r = (qn + l)/2, where n > 1 is a power of 2, and q = p2 for some odd prime

p and k ^ 0,

(ii) r = (3n - l)/2, where q = 3 and n is an odd prime.

(4) G ~ PSU(n,q), r = {qn + l)/(q + 1), n an odd prime.

(5) G~PSp(6 ,2 ) , r = 7.

(6) G ~ M12) r = 11.

(7) G ~ Co2, Co3 or M24, r = 23.

In order to finish off, we shall carry out a case by case analysis, determining which

of the groups and representations listed above are minimally irreducible, and which are

not.

1. The alternating groups

The alternating group A5 has two irreducible representations of degree 3, which

are not minimally irreducible, as their restrictions to A4 are irreducible (A5 also has a

unique irreducible representation of degree 5, and this is monomial, as noted above).

The alternating group Ag has two irreducible representations of degre 5, which are not

minimally irreducible, as their restrictions to A5 are irreducible. The group A7 has

no irreducible representations of prime degree. The general case is dealt with by the

following:

PROPOSITION 6 . For all n > 7, tie alternating group An is not minimally

irreducible of prime degree r.

PROOF: It is known that if n > 7 then An has an irreducible representation of prime

degree r if and only if n = r + 1 (for example, see [3]). Such representation is unique,

and appears as the non-trivial constituent x of the natural permutation representation

ip of Ar+i. Without loss of generality, we may view Ar+i as acting on the r + 1 points

of the projective line PG(l , r) . Clearly, the projective group PSL(2,r) is a subgroup of

Ar+i, and ^\pSL,2r.) = 1 + x|pSL(2r) realises the 2-transitive action of PSL(2,r) on the

points of PG(l,r) . Hence x|pSL(2r) is irreducible, and we are done. D

2. G~PSL{2,q)

Let ip denote a complex irreducible representation of G of degree r.

(j)r=p = q.

Assume that tp is not minimally irreducible. Then there exists a maximal subgroup

H of G, such that p divides \H\ and ip\n is irreducible. The list of maximal subgroups of

PSL(2, p) (for example, see [7]) gives us as candidates for H only the p-Sylow normalisers.
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These have order p(p - l)/d, where d = (2,p - 1), and by Ito's theorem r = p should

divide (p - l ) /d , a contradiction.

(ii) r = (q + l ) / 2 .

Assume that ip is not minimally irreducible, and argue as in (i). Scrutiny of the list

of maximal subgroups rules out all candidates for H, thus giving a contradiction, except

for q = 5, r = 3 and q — 9, r = 5.

(iii) r = (q - l ) / 2 .

Look at ip\H, where H is the normaliser of a Sylow p-subgroup P of G. The subgroup

P is elementary Abelian of order q, and |if| = q(q — l ) /2 = gr. Again by Ito's theorem,

an irreducible representation of if has either degree 1 or degree r. Thus ip\H is irreducible,

for otherwise it would split into r constituents of degree 1, and therefore H would be

Abelian, which is not the case whenever q > 3. We conclude that ip is not minimally

irreducible.

(iv) r = 2s - 1, q = 2s.

Same argument as in (iii). tp is not minimally irreducible.

3. The symplectic groups

The representations of PSp(2n, q) in question are the so-called Weil representations,

with the constraints on n and q arising from the assumption that r must be a prime.

Namely, G = Sp(2n,q), q odd, has exactly two irreducible representations f, f* of de-

gree x = (qn - l ) /2 , and exactly two irreducible representations n, v* of degree x + 1 =

(<j" + l ) /2 over the complex field. These are commonly referred to as the Weil representa-

tions of the symplectic group, and have been studied by several authors. Their construc-

tion, as well as the description of some basic properties, can be found in [17, 6, 12, 5],

while their uniqueness has been proved in [16]. In particular, by [9] f and £* are the

unique irreducible complex representations of G of minimal degree > 1. It is also known

(see [16, Lemma 2.6], that the central involution -I lies in the kernel of £ (£*) if and

only if n is even, or n is odd and q ^ 1 (mod 4), whereas —I lies in the kernel of 77

(r]*) if and only if n is even, or n is odd and q = 1 (mod 4). Thus, under these restric-

tions on n and q, they actually provide representations of the group G = PSp(2n, q).

For our purposes it is also useful to recall the following (for example, see [6]): for any

g e Sp(2n, q), denoting by c(g) the dimension of the subspace of V(2n, q) fixed pointwise

by g, |(f + r))(g)\ = qc(9\ Moreover, if g has order coprime to q, (f + 77)(<?)(£ + 77)(5) is

a rational integer. Similarly for the conjugate representation £* + r\'.

PROPOSITION 7 . The irreducible Weil representations of PSp{2n,q) are not

minimally irreducible.

P R O O F : It is well-known that there are standard embeddings Sp(2m, qr) <-> 5p(2n, q),

n = mr, r > 1 (for example, see [7, p.228]). As for the representations £, £*, it was no-
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ticed in [12] that £ and £* are still irreducible when restricted to Sp(2m,qr) [this is

simply because the minimal degree of a non-linear irreducible representation is the same

for the two groups, namely (qmr — l ) /2]. Thus we are left to deal with the case (3), (i):

without loss of generality, the relevant representation may be chosen to be r\. Let us

consider in particular the embedding SL(2,qn) ~ Sp{2,qn) <-> Sp(2n,q). The subgroup

H = SL(2, qn) has elements h of order qn +1, which, viewed as elements of Sp(2n, q) cor-

respond to 'Singer cycles' acting fixed-point freely on V(2n, q). Thus | ( f+ ?7)(/i)| = 1 (*)•

Now assume that r/\H is reducible: then, by the minimality of £\H (£|*H), r]\H — 1H +£ |«

(or CH), whence ((i + r])(h) = £(/i) + 1 +£{h) (or £*(h)). Since h can be chosen such that

= £*(/i) = 1 (for example, see [2, Section 38], it follows (£ + »7)(/i) = 3, contradicting

4. The unitary groups.

As in the symplectic case, these representations of PSU(n,q) are usually called

Weil representations. Namely, SU(n,q) has q irreducible representations Q (1 ^ i ^ q)

of degree (qn — (—l)n)/(q + 1). They arise from the symplectic ones via the standard

embedding U(n,q) <—> Sp(2n, q). For their construction, see for example, [12, 5], and

especially [16, Section 4]. Finally observe that, since n is an odd prime, and r is a prime,

necessarily (n, q+ 1) = 1. Hence under our assumptions SU(n,q) ~ PSU(n,q).

PROPOSITION 8 . Let G = PSU{n,q), and denote by ip an irreducible Weil

representation ofG of prime degree r = (qn + \)/{q + 1), where n an odd prime. Then tp

is minimally irreducible, except for n = q = 3.

P R O O F : Suppose the contrary. Then <J>\M is irreducible for some maximal subgroup

M of G (in particular, r must divide |M|). We show that this cannot occur unless

n = q = 3, using 'brute force', namely we check out all possible cases, relying on the

knowledge of maximal subgroups of G (see [8], to which we refer for the description of

the so-called 'Aschbacher classes', the 'exceptional' class S and all other details).

(1) M belongs to one of the 'Aschbacher classes' C{ (1 ^ i ^ 7), as described in [8].

As n is a prime, the classes C4 and Cj are ruled out from the very start.

Suppose that M belongs to the class Ci, that is M is either a parabolic or the

stabiliser of a non-degenerate subspace. Looking at the orders of the groups involved, we

observe that, if s is any prime divisor of \M\, then either s = p, or s \ (q' ± 1) for some

i < n. However, r = (qn + l)/(q + 1) does not divide q1 ± 1 if i < n. Thus we are left

with the classes C2, C3, C5 and C6. In the first case, M is imprimitive on V = V(n,q2).

Thus, since n is a prime, M is monomial, and again this possibility is ruled out, as

r does not divide (q + I )"" 1 • n\. The class C3 (groups over field extensions) contains

subgroups of order divisible by r. These are precisely the r-locals of type [Cr] Cn, and

are obviously reducible. In class C5 (subfield stabilisers), we only have to worry about
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subgroups of type U(n,qo), q = eft. But these cannot be irreducible, since this would

force (qn + l)/(q +1) = (<# + l)/(<?o +1) - As for C6 (normalisers of s-groups of symplectic

type, n = sm), the assumption on n forces n = s and M of type n2 • Sp(2,n). But then

r does not divide \M\ (except for n = 3, q — 2), and this case is equally ruled out.

(2) M belongs to the class 5 . Thus M is an almost simple group, acting projectively

and absolutely irreducible on V — V(n, q2). Note that, under our assumptions, denoting

by 5 the simple socle of M, 0|S is still irreducible. We observe the following:

(i) 5 cannot be a classical group over a field of characteristic p (as above, by order

reasons: r — (qn + l)/(q + 1) does not divide ql ± 1 if i < n).

(ii) Suppose that S is a classical group over a field of characteristic coprime to p . Then,

by Proposition 3 and [3], only the following cases may occur:

(a) 5 = PSL(2,t), and either 0(1) =t ,t prime > 11, or 0(1) = (t ± l ) / 2 , or

0(1) = t - 1;

(b) 5 = PSL(m, t), and 0(1) = (tm - \)/{t - 1);

(c) S = PSp(2m, t), where t is odd, and 0(1) = (tm ± l)/2;

(d) 5 = PSU(m,t), where m is an odd prime, and 0(1) = (tm + l)/(t + 1);

(e) S = PSp(6,2), 0 (1) -7 ;

(f) PSL(3,2), 0(1) = 7.

Each such S, under our assumptions, admits an absolutely irreducible projective

representation on V. Thus, it must satisfy the lower bounds given in [9] (reproduced

with a few amendments in [8, p.188, Table 5.3.A]) for the representations of groups of

Lie type in cross-characteristic. Direct computation in cases (a) to (e) shows that this

cannot occur, except for case (a) when n = q = 3. The latter case is a true exception,

since the representation of PSU(3,3) of degree 7 admits an irreducible restriction to

PSL(2J) (this also covers case (f)).

(iii) Suppose 5 is alternating. Then, noting that r ^ 7, it follows from Proposition 3
and [3] that the only possible occurrence is Ar+i. But \PSU(n,q)\ < lAr+il, and
we are done.

(iv) S cannot be a sporadic group. Indeed, again by Proposition 3 and [3], the

only sporadic groups admitting a minimally irreducible representation of prime

degree are the Mathieu groups Mu,Mi2, M24 and the Conway groups Co2,Co3,

and the degree is either 11 or 23. This is incompatible with the condition

r = fan + l)/(</+l). Q

(5) G~PSp(6 ,2 ) , r = 7

PSp(6,2) has subgroups isomorphic to the symmetric group Sg. Since the minimal

degree of a non-linear complex representation of Sg is 7, it follows that the representation

https://doi.org/10.1017/S0004972700018815 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018815


344 F. Dalla Volta and L. Di Martino [10]

of PSp(6,2) in question is not minimally irreducible.

(6), (7) The sporadic groups

Mn in degree 11 is not minimally irreducible, as the restriction to subgroups iso-

morphic to PSL{2,11) remains irreducible. Likewise, Mu in degree 23 has an irreducible

restriction to PSL(2,23). The groups Co2 and Co3 in degree 23 are both minimally ir-

reducible, as the only maximal subgroups of order divisible by 23 are isomorphic to M23,

and the latter group does not have irreducible representations of degree 23.

We summarise our main results in the following

THEOREM 1 . A non-soluble subgroup G ofGL(r, C), where r is a prime, is min-

imally irreducible if and only if one of the following cases occurs:

(i) G~PSL{2,p),r=p>n;

(ii) G ~ PSL(2, q), q^5,9,r=(q + l)/2;

(iii) G ~ PSL(n, q),n>2,q>2,r = (qn - l)/(q - 1);

(iv) G ~ PSU(n, q), (n, q) ? (3,3), r = fa» + l)/(g + 1);

(v) G ~ A5, r = 5;

(vi) G~PSL(3,2), r = 7;

(vii) G ~ A f n , r = 11;

(viii) G ~ Co2, Co3 , r = 23.

In cases (iii), (v), (vi) and (vii) G is monomial, whereas in all the other cases G is a

primitive subgroup ofGL(r,C).
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