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Abstract
Visual odometry (VO) is a key technology for estimating camera motion from captured images. In this paper, we pro-
pose a novel RGB-D visual odometry by constructing and matching features at the superpixel level that represents
better adaptability in different environments than state-of-the-art solutions. Superpixels are content-sensitive and
perform well in information aggregation. They could thus characterize the complexity of the environment. Firstly,
we designed the superpixel-based feature SegPatch and its corresponding 3D representation MapPatch. By using
the neighboring information, SegPatch robustly represents its distinctiveness in various environments with differ-
ent texture densities. Due to the inclusion of depth measurement, the MapPatch constructs the scene structurally.
Then, the distance between SegPatches is defined to characterize the regional similarity. We use the graph search
method in scale space for searching and matching. As a result, the accuracy and efficiency of matching process are
improved. Additionally, we minimize the reprojection error between the matched SegPatches and estimate camera
poses through all these correspondences. Our proposed VO is evaluated on the TUM dataset both quantitatively
and qualitatively, showing good balance to adapt to the environment under different realistic conditions.

1. Introduction
Visual odometry (VO) enables robots to perceive the surrounding environments and localize themselves
and thus is essential in many industries, such as auto-driving and augmented reality. VO is generally
regarded as a key component of visual-based Simultaneous Localization And Mapping (v-SLAM),
which further incorporates loop closure detection and global optimization modules to alleviate the accu-
mulated drift in a long run [1]. Compared with LiDAR- and GPS-based methods, VO estimates the
trajectories of robots by analyzing the sequences of images captured. Cameras provide abundant tex-
ture information at a lower price of hardware, and the depth value of environments can be measured
efficiently with the availability of RGB-D cameras, especially indoors.

In recent years, significant advancements have been made in real-time methods for SLAM and VO.
Typical systems [2–6] directly operate on pixels and estimate camera poses through the correspon-
dences between pixels. Feature-based methods [2–4] find corresponding feature points and estimate
camera poses by solving PnP problem. Feature points are distinctive in texture-rich environments while
their performances are generally degraded in poorer texture environments. Direct methods [5, 6], using
the actual value of the measurement, are often affected by brightness changes. Deep learning-based
approaches [7, 8] have shown promising results with end-to-end training, but face challenges in gener-
alization and computational efficiency. High-level features like lines [9–11] and planes [12, 13] describe
the environment structurally. Fitted by amounts of points, planes can effectively eliminate the influence
of measurement noise, especially in indoor environments. Indoor environments are mostly constructed
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Figure 1. Pipeline of superpixel-based visual odometry.

by various manufactured objects and structures. Their surfaces are usually planes with limited size, con-
tours, and edges. Planes representing indoor environment thus can be exploited to construct constraints
for robust pose estimation.

In this paper, we design features at the superpixel level. A superpixel is a series of adjacent pixels
with similar characteristics, including similar brightness, similar texture, and low contour energy inside
the region [14]. Superpixels have good properties such as content sensitivity, high information aggrega-
tion, and edge preservation. We design SegPatch as a superpixel-based feature for scene representation
instead of points and planes. SegPatch exploits the regional information of the superpixel to approximate
minor details of the small structures, achieving higher computational efficiency than planes in complex
environments. At the same time, SegPatch removes the spatial redundancy, making it less affected by
measurement noise and more distinctive, thus offsets the lack of feature points in poor texture environ-
ments. As a result, SegPatch could robustly characterize environments with various texture densities.
Correspondingly, MapPatch is designed for mapping. Structural parameters are estimated from depth
measurements and updated with local maps.

We propose a superpixel-based visual odometry to achieve robust and accurate pose estimation
results. Using an RGB-D camera, we decompose the RGB image into superpixels and estimate structural
parameters from the depth image. SegPatches are then constructed and their corresponding MapPatches
are initialized. We propose a novel matching algorithm to establish the correspondences between two
consecutive frames or between frames and the local map. The similarity between SegPatches is measured
by the defined distance. To improve computational efficiency, we propose a novel searching method fol-
lowing the idea of approximate nearest neighbor search using hierarchical navigable small world (HNSW
[15]) in scale space. By constructing constraints derived from the variation in brightness, epipolar geom-
etry, and normal consistency, the camera pose is finally estimated via all matched correspondences. The
local map is established simultaneously. Figure 1 shows the framework of our proposed VO system.
We provide real-world evaluation on the TUM RGB-D [16] dataset to prove the feasibility of using
superpixel-based feature in VO system and show good balance of our proposed VO to adapt different
environments.

In summary, the contributions of this paper are as follows:

1. We design superpixel-based feature named SegPatch. Through the approximation of small struc-
tures and the elimination of redundant information, SegPatch shows good adaptability and
uniqueness in different environments.

2. We propose a novel matching algorithm for SegPatches. The efficient searching strategies and
accurate similarity measurements robustly provide credible correspondences for further use.
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3. We propose a superpixel-based RGB-D visual odometry and evaluate it on TUM indoor datasets,
showing good adaptability in various environments and reaching comparable results with state-
of-the-art solutions to VO systems.

The rest of paper is structured as follows. Section 2 provides background on related work. We first
introduce the superpixel-based feature SegPatch in Section 3, then present the matching algorithm and
pose estimation method in VO framework (Section 4), followed by implementations and experiments in
Section 5. Section 6 concludes this paper.

2. Related works
According to different tracking and mapping method, traditional geometric-based VO can be roughly
divided into feature-based and direct methods [17]. Among them, feature-based approaches are typically
more robust to illumination changes than direct methods. In this paper, our proposed visual odometry
is to construct and match features at superpixel level. As such, our proposed method is relevant to the
existing VO methods reviewed below.

Point-feature-based methods. A number of research works using point-feature-based methods have
been reported, notable examples are ORB-SLAM [2], RGBD-SLAM [18], and DVO [5]. Most of these
methods have been extended to stereo or RGB-D versions such as ORB-SLAM2 [19] and DVO for
RGB-D camera [20]. Point-feature-based methods generally extract and match features with strong sig-
nificance and minimize geometry reprojection error. The availability of robust feature detectors and
descriptors enables feature-based methods to construct correspondences even under large movement
between frames [21]. Therefore, point-feature-based methods often have robust performances in rich
texture scenes that involve varying illuminations, occlusions, and large viewpoint changes. However, the
heavy dependence on textures impairs the robustness in poor texture environments due to the shortage
of reliable feature points.

Plane and Surfel-based methods. To solve the problems of point features, planes are exploited
to refine the performance in a few systems. Earlier works like [22] added planes into the extended
Kalman filter state vectors. However, the growing size of the dense covariance matrix will lead to
a huge computational cost, so these methods are only applicable to some small scenes. In ref. [23],
a fast plane extraction and matching method for indoor mapping is proposed, and a minimal repre-
sentation for infinite planes was introduced in ref. [24]. CPA-SLAM [25] modeled the environment
with a global plane and used the planes for tracking and global graph optimization. Then, KDP-
SLAM [26] proposed a keyframe-based approach based on dense plane extraction and matching using
a projective plane association algorithm. Besides, the authors of [27, 28] used points and planes
together and tried to optimize them for higher accuracy and efficiency. Structural properties indoors,
such as Manhattan World Assumption, were exploited to construct relationships between planes and
points [29].

Compared to extracting planes from point clouds above, surfels [30] as finite planar elements often
provide more accurate surface representation, better surface fitting, and more efficient computation.
DPPTAM [31] modeled the environment with 3D points in high-gradient areas and 3D piecewise planes
in low-gradient areas for dense scene reconstruction. Probabilistic Surfel Map [32] was proposed to
maintain a globally consistent map with both photometric and geometric uncertainties encoded. Then,
UcoSLAM [33] combined the points and squared planar markers as features alleviated the relocalization
problem in repetitive environments. In SP-SLAM [34], feature points and surfels were also optimized
together to eliminate the effect of different texture densities on systems. MSC-VO [1] introduced struc-
tural constraints combined with estimated Manhattan axes and the reprojection errors, allowing the
method to work for a wider variety of scenarios. Surfels were initialized directly from sparse planes by
extracting superpixels to utilize the structural information indoors in ManhattanSLAM [35].

Learning-based methods. The great progress of deep learning stimulates the learning-based VO
by predicting the relative poses between images with supervised [36] or unsupervised learning [37].
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DeepVO [36] employed an RNN to predict camera pose end-to-end from input image sequence,
and UndeepVO [37] concurrently trained a pose net and a depth net to form CNN-based VO sys-
tems. DVSO [38] proposed a virtual stereo term that incorporates the depth estimation from a
semi-supervised network into a direct VO pipeline. D2VO [7] presented a novel deep learning and
direct method-based monocular visual odometry, and D3VO [8] exploited deep networks on three
levels – deep depth, pose, and uncertainty estimation. However, although learning-based VO has
advantages in feature extraction and robustness, it also suffers from high computational demands and
generalization.

In this article, we propose a new VO method in which SegPatch is used as superpixel-based feature.
SegPatch compensates for the shortcomings of points and surfels in representing various environments.
Moreover, our superpixel-based method also holds potential use of learning-based methods, given its
ability to extract informative and compact feature descriptors from images. A detailed explanation of
superpixel-based VO is given in the following sections.

3. Concepts and model formulation
This section explains fundamental concepts that are necessary to follow the remainder of the latter. Our
method is the first VO system using the superpixel-based features. Thus we design the superpixel-based
feature SegPatch as basis.

3.1. Superpixel
Superpixels are sub-regions of the over-segmented image with similar information, which is sensi-
tive to the variance of texture density. By SLIC [39] algorithm, superpixels are initialized into regular
grids. Then, the pixels are clustered locally. In order to keep the central intensity gradient fluctuat-
ing within a specific range, we set upper and lower limits for merging and splitting. Iterations are
repeated until every pixel is classified stably. An image I is finally decomposed into M superpixels
I = {Si, i = 1, . . . , M}, where ∀Si, Sj ∈ I, i �= j, Si

⋂
Sj = ∅. For a region� ∈ I, the higher texture density

in�, the more superpixels generated, and vice versa. Thus, the distribution of superpixels with different
sizes reflects the complexity of the environment. Due to the intra-region similarity and inter-region dis-
similarity, superpixels only maintain the major information of sub-regions, ensuring their effectiveness
in various environments.

3.2. SegPatch and MapPatch
Because of the irregular and non-stable shape, the superpixel is insufficient to provide a robust image
descriptor. We propose SegPatch as the superpixel-based features, extended from SuperPatch [40]. A
SegPatch Si is centered at the superpixel Si and is combined with its neighboring superpixels {Si′ } such
that Si = {Si′ |‖ci − ci′ ‖2 ≤R}, where ci is the spatial barycenter and R is the parameter based on scale
factor and superpixel granularity. We use R to control the number of neighboring superpixels, in order
that every SegPatch has the similar size topologically.

The SegPatch is then constructed as a dual descriptor Si = {FSi , XSi}, including inner-feature FSi and
the inter-features XSi . Inner-feature FSi = {pi, ci, ri, si} contains the information of the central superpixel,
where pi = (ui, vi)T is the coordinates of the barycenter, ci = (li, ai, bi) is mean color in LAB color space,
πr2

i represents size of the central superpixel, and si the scalar. Inter-features XSi = {XSi′ }i′=1,2,...m describe
the relationship between the center superpixel and the neighboring superpixels. For every neighbor-
ing element, XSi′ = (ui − ui′ , vi − vi′ ) is a vector pointing to the center superpixel, where (ui′ , vi′) is the
barycenter of the neighboring superpixel. Let I(Si) be the mean intensity of the superpixel, the gradient
of the SegPatch
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Figure 2. SegPatch construction. Superpixels are generated into different sizes in different texture
regions. The SegPatch is constructed on the neighborhood with a topological radius R. The SegPatch
is described by a dual descriptor, including inner- and inter-information of the center superpixel. The
arrow shows the direction of the SegPatch.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gx =
∑
Si′ ∈Si

(I(Si′) − I(Si)) · (ui′ − ui)

gy =
∑
Si′ ∈Si

(I(Si′) − I(Si)) · (vi′ − vi)
(1)

is a holistic character to describe the direction of change in a small region.
In 3D space, we further construct the MapPatch for scene reconstruction. MapPatch is described as

�M = [{Pi}M, nM, RM], maintaining the index of the corresponding SegPatches at the same time. {Pi}M is
the set of control points in the world coordinate, where Pi is initialized from the barycenter of SegPatch
Si, that is Pi = K−1pi. SVD method is used to initialize the normal nM from the depth data. The radius
RM = 2r ∗ z/(fx + fy) is also initialized so that the projection of the MapPatch can cover the corresponding
superpixel in the observed frame. When a MapPatch is observed from different perspectives, the number
of its control points increases, and the normal nM is fine-tuned by minimizing a fitting error defined as

EnM =
∑

i

Lδ(nM · (Pi − P̄M) + b) (2)

where P̄ is the mean of the control points Pi and b estimates the bias. R2
M is always the minimal size from

P̄ to cover all the corresponding superpixels in different frames.
The SegPatch construction is indicated in Figure 2. The definitions of SegPatch and MapPatch fully

exploit the sensitivity to the texture density of superpixels. SegPatch could adaptively adjust its size
in areas with different texture densities, ensuring its robustness in various environments. In the poor
texture region, SegPatch contains a larger region. The saliency of SegPatch is greatly improved by
removing the image redundancy. By using structure parameters, MapPatch models the environment
structurally. In areas with rich textures, superpixels degenerate towards individual pixels. SegPatch, as
a superpixel-based feature, assures uniqueness and robustness due to the inclusion of local information.
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The Image Pyramid HNSW Algorithm Searching and Matching

(a) (b) (c)

Figure 3. Instead of extracting superpixels in different sizes, the use of Gaussian down-sampling can
better reflect the distance of observation. (a) Shows the image pyramid constructed for superpixel seg-
mentation. We introduce the idea of HNSW algorithm (b) for fast searching and matching through the
image pyramid. (c) Shows the process of the proposed matching algorithm. Different from the original
HNSW algorithm, the corresponding node in the next layer is not the best-matching node in this layer,
but a new node split from it in the scale space.

Drawing from the small SegPatch, the accuracy of MapPatch does not suffer from the approxima-
tion. In contrast, the accuracy of the reconstruction is guaranteed due to the fine-grained structure of
the fragments. Additionally, as a regional feature, SegPatch is also not sensitive to image noise and
motion blur.

3.3. Scale space and image pyramid
SegPatch needs to be constructed at different scales because searching for correspondences requires
comparing images seen at different scales. The image pyramid often represents the scale space. The
images are repeatedly smoothed with a Gaussian filter and then sub-sampled to achieve a higher
level of pyramid. The down-sampling procedure reflects the variation of the observed distance. We
extract the superpixels at each layer of the pyramid and distribute them to the superpixels at the next
higher layers. Superpixels at the same level distributing to the same superpixel are brother nodes
of each other and are children of the one distributed. Thus the pyramid is a fully connected hier-
archical graph in the form of a multiple-tree. The construction of the image pyramid is shown in
Figure 3a.

After constructing an image pyramid and extracting superpixels for multiple images of different
scenes and views, we find that the number of superpixels decreases exponentially from low to high
layers, and the sizes of superpixels segmented in the same scale follow the same exponential distribu-
tion. The spatial distribution of the number of superpixels between layers is also uniform. The pyramid
could thus tell rich texture regions from poor texture regions.

4. Superpixel-Based visual odometry
The structure of the proposed superpixel-based visual odometry is shown in Figure 1. The system
starts with RGB-D image preprocessing, in which images are segmented into superpixels, SegPatches
are constructed in scale space and MapPatches are initialized. Searching and matching procedure pro-
vides correspondences between two consecutive frames or between frames and the local map. Finally,
the camera pose is estimated by minimizing reprojection errors between SegPatch measurements and
observations. The local map is also updated in separate thread. This section describes the key methods
of the proposed VO in detail.
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4.1. SegPatch comparing, searching and matching
For two SegPatches, the number of elements and geometry are generally different, so it is difficult to
compare directly. To measure the similarity between two SegPatches SA

i and SB
j in different images IA

and IB, the distance is defined as follows.

D
(
SA

i , SB
j

) =
∑

SA
i′

∑
SB

j′
ω

(
SA

i′ , SB
j′
)

d
(
Fi′ , Fj′

)
∑

SA
i′

∑
SB

j′
ω

(
SA

i′ , SB
j′
) (3)

where d is the Euclidean distance between the inner features. Let weight ω represents the relative
overlapping area of neighboring superpixels SA

i′ and SB
j′ , following Gaussian distribution symmetrically

ω
(
SA

i′ , SB
j′
) = exp

(−xT
i′ j′xi′ j′/σ

2
1

)
�

(
SA

i′
)
�

(
SB

j′
)

(4)

where xi′ j′ = (XSi′ − XSj′ )/sisj is the relative distance between pi′ and pj′ , � (SA
i′ ) weights the influence

of SA
i′ according to its distance to SA

i as ω(SA
i′ ) = exp

(−|XSi′ |2/(siσ2)2
)
. � (SB

i′ ) is as the same. si, sj are
scale coefficients, and σ1, σ2 are two control parameters depending on the superpixel segmentation.
Depending on the superpixel deposition scale, σ1 = 1

2

√
N/M for an image with N pixels decomposed

into M superpixels is set as half of the average distance between superpixel barycenters. Depending on
the SegPatch size, σ2 = √

2R is set to weight the contribution of closest superpixels.
The matching task in VO consists of matching between two consecutive frames (2d-2d), as well as

matching between frames and the local map (2d-3d). PatchMatch (PM) [41] is a classical method to com-
pute pixel-based patch correspondences between two images. As an extension of PM, SuperPatchMatch
(SPM) [40] provides correspondences of irregular structures from superpixel decompositions. These
two methods share one key point that good correspondences can be propagated to the adjacent
patches within an image. However, it takes a long time in the propagation step to find the optimal
solution.

Instead of processing images in scan order in PM and SPM, our proposed matching algorithm exploits
the graph search method for fast-searching candidates. We propose a new modification of the HNSW
algorithm [15] and demonstrate it to be applicable. HNSW is an approximate K-nearest neighbor search
method based on navigable small-world graphs with controllable hierarchy. The image pyramid satisfies
the four requirements of the implementation of the HNSW algorithm: (1) The construction of the image
pyramid is a hierarchical graph; (2) The number of upward nodes (superpixels) decreases following
the exponential decay; (3) The highest projection layer of a node is obtained by the exponential decay
probability function based on its position and size; (4) The node could be found in all layers from the
highest layer down. Furthermore, due to the assumption that the image sequences are consecutive and
the motion is not so fast, we set a trust region for optimal selection. A candidate located in the trust
region is with higher probability to be the best match. The search process is performed layer-by-layer
from coarse to fine in both scale and position. The HNSW and our proposed method are shown in
Figure 3.

The following steps are then performed to find and improve the correspondences between frames.
For the sake of clarity, we assume the N-layer image pyramid with the top I0, the current best match of
a SegPatch SA

i ∈ IA in IB
k , is donated asMB

k (i), storing the distance and the index of their corresponding
SegPatch. First of all, for every SegPatch SA

i ∈ IA, we delineate a trust region in IB
0 according to the posi-

tion and size of SA
i . Matching candidates are selected from the trust region. After similarity measurement

and comparison, the best matchMB
0 (i) is determined. Then, the children ofMB

0 (i) are obtained to be the
candidates of the next layer. Several other SegPatches in the trust region are also selected randomly to
escape from possible local minimum. Repeat the process until the bottom of the pyramid. Instead of
updating the most corresponding SegPatch when traversal processes, obtaining the best match in every
layer individually assures the scale stability. Generally, due to the small motion between two consecutive
frames, there will not be much change of scales between two corresponding SegPatch. But sometimes,
most SegPatches scale up or down when the camera moves forwards or backends. Similarly with the
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Figure 4. Projection relationships between SegPatch and MapPatch. When a MapPatch is projected
onto the image, there may be a small deviation from the correct corresponding SegPatch. Thus, the trust
region is set smaller to find the best match.

feature points, the consistency of variation for the intensity orientation is checked, and the incompatible
matches will be removed in the end.

The 2d-3d matching is used for constructing a stronger connection with the local map. It is a guided
match because 2d-3d matching is performed when there is already an estimated or predicted camera
pose. Following the principle of geometry, the MapPatch is reprojected onto the current image. As
shown in Figure 4, the projected position and size of the MapPatch may not coincide with the optimal
SegPatch exactly, but near. Compared to 2d-2d matching, a smaller trust region is required here to find the
nearest SegPatch. Matching candidates are also selected through an image pyramid, where the similarity
between the latest corresponding SegPatch and the ones within the trust region is measured. Benefiting
from the motion priors, the correspondences are constructed with high probability.

The proposed matching algorithm is well applicable to different cases. It is worth noting that our
distance calculation method does not focus on the difference in size and shape between the central super-
pixels, but rather on the similarity in the properties and geometry inside the SegPatch. As a result, the
accuracy of the similarity measure is not affected by the observed deformation from multi-view, motion
blur, and variance of texture density. The graph search method based on image pyramid reduces the
computational complexity. In summary, our proposed matching algorithm accurately provides robust
correspondences with a small computational load. Figure 5 shows part of the matches in different
intensity density, illustrating the robustness of our method.

4.2. Pose estimation
The camera pose is finally estimated through all these correspondences. Relative motion estimation is
ideally performed by maximizing the overlapping area between the matched superpixels in two images.

ξ ∗ = max
ξ

∑
SA∈ SA
SB∈ SB

Tξ (SA)
⋂

SB

Tξ (SA)
⋃

SB

(5)
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Figure 5. Matches in different cases.

However, due to the irregular shape of the superpixels, this computation requires the expensive count
of overlapping pixels, which cancels the computational advantages of the superpixel representation. For
this reason, we simplify the problem to find a suboptimal solution.

Considering two intersecting circles with the same radius R◦ on the plane, their Intersection over
Union (IoU) is a nonlinear function of radius R◦ and center distance d◦:

φIOU(R◦, d◦) =
arccos

(
d◦

2R◦

)
R2

◦ − d◦
2

√
R2

◦ − (
d◦
2

)2

(
π − arccos

(
d◦

2R◦

))
R2

◦ + d◦
2

√
R2

◦ − (
d◦
2

)2
, d◦ ∈ [0, 2R◦)

Let k = d◦
2R◦ , φIOU(R◦, d◦) could be written as

φIOU(R◦, d◦) = φIOU(k) = arccos (k) − k
√

1 − k2

π − arccos (k) + k
√

1 − k2
, k ∈ [0, 1)

To simplify the computation, φIOU(k) could be further approximated as a quadric function of d◦

φIOU_appro(d◦) = (1 − k)2 =
(

2R◦ − d◦
2R◦

)2

, d◦ ∈ [0, 2R◦)

Numerical results show that our proposed approximation scheme is efficient. More generally, if there
are two circles with different radius R◦1 and R◦2, the IoU is approximated as

φIOU−appro(d◦) =
(

R◦1 + R◦2 − d◦
2 ∗ max (R◦1, R◦2)

)2

+ c, d◦ ∈ [|R◦1 − R◦2|, R◦1 + R◦2)

As shown in Figure 6, numerical experiments show that when the radii of two circles are similar, the
accuracy of the approximation is within an acceptable range for the following use. Given that there is
generally no significant scale variation between consecutive images, corresponding SegPatches tend to
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(a) (b) (c) (d)

Figure 6. Fitting function for IoU of two intersecting circles on the plane. In the second row, we show
the comparison between our proposed fitting function and the original IoU curve. φ(x) shows the true
IoU of the intersecting circles andψ(x) is the fitting function. The x-axis represents d/min (R1, R2), with
R1/R2 = 1, 1.05, 1.1, 1.2 for example. The third row represents the error histogram of the fitting function.
Experiments show that the maximum errors of the fitting functions are 0.0438, 0.0182, 0.0114, 0.0222,
the mean errors are 0.0192, 0.0107, 0.0114, 0.0062, the variance of errors are 1.9073e-4, 3.2020e-5,
1.0026e-5, 2.3721e-5 respectively. The numerical experiment demonstrated that the quadric function
ψ(x) could represent the IoU approximately well when two circles are of similar size.

have similar sizes. Thus, fitting a complex nonlinear function by a simple quadric function is feasible to
obtain a suboptimal IoU solution. The Equation (5) is simplified as

ξ ∗ = arg max
ξ

∑
SA∈ SA
SB∈ SB

(
r1 + r2 − ‖Tξ (xA) − xB‖2

2 max (r1, r2)

)2

⇒ arg max
ξ

∑
SA∈ SA
SB∈ SB

(
r1 + r2

2 max (r1, r2)
− ‖Tξ (xA) − xB‖2

2 max (r1, r2)

)2

⇒ arg min
ξ

∑
SA∈ SA
SB∈ SB

(‖Tξ (xA) − xB‖2

2 max (r1, r2)

)2

⇒ arg min
ξ

∑
SA∈ SA
SB∈ SB

μAB‖Tξ (xA) − xB‖2
2

(6)

whereμAB = 1/(2 max (r1, r2))2 is the weight parameter depending on the size of matched SegPatch pair.
Thus, the problem is degraded approximately by minimizing the relative distance of superpixel coordi-
nates. The weighted least square problem could be solved by Gauss-Newton or Levenberg-Marquardt
algorithms.
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4.3. Local mapping
The local map is updated simultaneously to provide the optimal reconstruction in the surroundings
of the camera pose. Newly observed MapPatches are added. A MapPatch is initialized by one frame,
but could be observed by others. Therefore, it is reprojected onto the other active frames, and 2d-3d
correspondences are searched as detailed above. MapPatch observed from multi-view are fused. By
gathering the information from SegPatches in different frames, MapPatch maintains the key information
of control points, normal and size. As the camera moves, invisible MapPatches are removed. The local
mapping is also in charge of culling redundant frames. Only frames active in the current sliding window
and their corresponding MapPatches with high quality are preserved in the local map. The global map is
then generated by fusing and optimizing the local map. The proposed superpixel-based visual odometry
is processed with continuous pose estimation and mapping.

5. Experiments
We evaluate the accuracy and efficiency of the matching algorithm on several sequences from the
publicly available TUM RGB-D dataset [16] and evaluate the localization performance against state-
of-the-art techniques. Our method is practicable in these real-world image sequences under different
realistic conditions like image noise, motion blur, poor focus, dynamic lighting, and other difficulties.
The proposed method was implemented with C++ code on a standard Linux computer with four cores
at 2.50 GHz and 8 GB of RAM.

5.1. Matching accuracy and efficiency
For each image in a sequence, we construct a 4-layer image pyramid with a scale factor β = 2. After
superpixel segmentation, SegPatch is generated from every superpixel with effective depth and convex
polygon.

We evaluate the matching accuracy by the absolute distance between the centers of two matched
superpixels and their average overlap in two successive images. The degree of overlap could be approx-
imately quantified as the relative distance γ = ‖c1−c2‖2

r1
, where πr2

1 is the size of central superpixel and c1

is the ideal location of the SegPatch, c2 is barycenter of the matched SegPatch. We counted more than
16 thousand groups of 2d-2d matched superpixels in images randomly selected in different sequences.
Figure 7 shows the displacement for every matched superpixel. Most matched SegPatches are off-
set by 10 pixels from the ground truth, 2.5 superpixels at superpixel level, shown in Figure 7a and
Figure 7b, respectively. The average displacement distribution is shown in Figure 7c, demonstrating
regional accuracy.

In Figure 8, we show the average relative distance with respect to the size of the trust region. Figure 8a
is the direct statistical distribution for all superpixels, and Figure 8b is the relationship by Gaussian
fitting. It illustrates that a balanced trust region size provides higher matching accuracy. In the areas with
poor texture, a large trust region will avoid the matching algorithm falling into local optimum, while in
the areas with rich texture, a small trust region will protect the accuracy of the algorithm from influence
of noise. Therefore, setting the size of the trust region according to the size and scale of SegPatch helps
to provide accurate correspondences efficiently.

As for computational efficiency, our approach incorporates superpixels as the fundamental process-
ing units for input images, involving an additional step of superpixel segmentation. Considering size of
the image to be MN and the number of features extracted is K, we examine two aspects: feature extraction
and matching to analyze the computational complexity. On the one hand, for computational efficiency of
feature extraction, we compare the time complexity of our utilized superpixel segmentation and SegPatch
extraction method with traditional feature-based methods. Point-feature-based SLAM methods, such as
ORB-SLAM [2], exhibit a time complexity of O(MN) for feature extraction. Plane-based feature extrac-
tion methods using AHC [42] or ICP [43] algorithms have higher time complexities, such as O((MN)2)
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Figure 8. Influence of radius r for relative displacement (a) in the proposed SegPatch matching algo-
rithms. The average displacement (b) between each superpixel and one of its closest matches in the
successive images.

and O((MN)3), respectively, for plane extraction. The complexity of plane-based method will rise fur-
ther in high-texture regions. Our utilized superpixel segmentation and SegPatch extraction have a time
complexity of O(MN + K), so no higher complexity is introduced in the feature extraction process. On
the other hand, for computational efficiency of matching process, we compare the time complexity of
our proposed 2d-2d matching algorithm with SPM [40]. SPM utilizes the assumption that when a patch
in IA corresponds to a patch in IB, the adjacent patches in IA should also match adjacent patches in IB.
All SuperPatches are processed according to a scan order to search and propagate through patch-based
approximate nearest neighbor (ANN). The time complexity of SPM is O(K2). Due to the uncertainty
of random assignment initialization and random search, it takes time to propagate and improve the per-
formance. The running time grows exponentially with the number of iterations. In our algorithm, we
build a trust region and search the image pyramid top-down, exploiting the consistency and continuity
of the shifts in a single image. It does reduce the search time for matching and increases efficiency.
Thus the computational time is reduced to O(K lg K). Therefore, considering the aforementioned
aspects, the overall time complexity of our algorithm is given by O(MN + K + K lg K), indicating its
superior efficiency in terms of computation time.
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Table I. Computational cost and accuracy for matching process.

Time Cost(s/frame) Accuracy(%)
SPM(Matlab) 5968.1 91.7
SPM(C++) 1055.7 80.7
ours 1.0408 93.3

Table II. RGB-D odometry benchmark ATE RMSE (m).

ORB- SP- DVO- PP- Elastic D2VO DeepVO- SAVO
SLAM SLAM SLAM SLAM Fusion Adapt

Sequence ours [19] [34] [5] [28] [44] [7] [45] [46]
fr1/desk 0.025 0.016 0.051 0.021 0.026 - 0.186 - -
fr1/room 0.064 0.047 - 0.043 - 0.068 0.285 - –
fr2/desk 0.039 0.009 0.042 0.035 0.025 0.071 - 0.158 0.402
fr3/str_notex_far 0.039 0.142 0.029 0.105 0.089 0.027 - 0.104 0.216
fr3/str_notex_near 0.024 0.033 0.0305 0.012 0.024 0.113 - 0.207 0.204
Average (rich texture) 0.042 0.024 0.047 0.033 0.0255 0.053 0.236 0.158 0.402
Average (poor texture) 0.032 0.0875 0.0298 0.0585 0.0565 0.070 - 0.156 0.21
Average (All) 0.0384 0.0409 0.0401 0.0498 0.041 0.0598 0.236 0.156 0.274

Here, we exclusively concentrate on the comparison of runtime efficiency for methods at superpixel
level. The computational cost and the accuracy comparison results with SPM are shown in Table I, where
the accuracy is measured by the percentage of matched features within 2.5 equal-size superpixels com-
pared to the ground truth. Computational time and accuracy are given for each frame in a single thread,
with the same initial region size and ruler used for superpixel extraction. SPM results are obtained with
k = 20 ANN and R = 50 neighboring pixels. We show the result of the open-source Matlab version
and rewrite it in C++ format for fair comparison. In our method, the matching candidates are selected
from the image pyramid within the trust region. And in practice, we do not perform matching on every
superpixel in the image. To efficiently triangulate and obtain MapPatches after obtaining correspon-
dences, only SegPatches with valid depth measurements are operated. Multithreaded implementations
have also been used to shorten computation time (around 0.02s in practice) to ensure real-time
operation of the system. Experiments show that our proposed matching algorithm is efficient and
accurate.

5.2. Pose estimation accuracy
We choose some representative sequences from the public TUM-RGBD datasets to evaluate our system.
fr1/desk, fr1/room, fr2/desk represent the indoor environment with rich texture intensity, while
fr3/str_notex_far and fr3/str_notex_near represent poor texture scenes indoors. We follow
the same evaluation protocol as in ref. [16] by computing the maximum drift (deviation from ground-
truth pose) across the whole sequence in translation and rotation (represented in quaternion) of camera
motion for all trajectories. We compared the estimated camera pose with ground-truth trajectories by
computing relative trajectory root-mean-square errors (RMSE) and absolute trajectory (AT) RMSE in
various challenging scenes. After projecting the local MapPatches onto the current frame by the estima-
tion from 2d-2d matching results, the pose estimation could limit the relative translation error to around
2.16 cm and rotation error below 1.05 degrees. For most sequences, we achieve comparable results with
most mainstream VO algorithms, meaning that our method can maintain correct camera trajectories in
challenging scenes. Table II shows the results. It is worth noting that although our method may not be
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Figure 9. Compared with other typical VO systems, our visual odometry achieves a balanced effect in
environments with different texture density.

the best under one condition of single texture density, it shows good balance to adapt to the environment
shown in Figure 9. Additional work, such as global bundle adjustment and loop closure, is left for future
work to become more competitive.

6. Conclusion
We have presented a novel attempt at superpixel-based visual odometry for motion estimation. The
design of the superpixel-based feature SegPatch is essential to scene representation. The searching and
matching algorithm could construct reliable correspondences of SegPatch in high efficiency. The pro-
posed visual odometry operates robustly under various conditions such as different texture densities,
image noise, and motion blur. We have provided an evaluation of the quality of matching and pose esti-
mation on a variety of real-world datasets to show how our method works and demonstrate the utility of
SLAM.
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