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Abstract

We study the incentives that agents have to invest in costly protection against cascading

failures in networked systems. Applications include vaccination, computer security, and airport

security. Agents are connected through a network and can fail either intrinsically or as a

result of the failure of a subset of their neighbors. We characterize the equilibrium based

on an agent’s failure probability and derive conditions under which equilibrium strategies

are monotone in degree (i.e. in how connected an agent is on the network). We show that

different kinds of applications (e.g. vaccination, malware, airport/EU security) lead to very

different equilibrium patterns of investments in protection, with important welfare and risk

implications. Our equilibrium concept is flexible enough to allow for comparative statics in

terms of network properties, and we show that it is also robust to the introduction of global

externalities (e.g. price feedback, congestion).
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1 Introduction

Many systems of interconnected components are exposed to the risk of cascading

failures. The latter arises from interdependencies or interlinkage, where the failure of

a single entity (or small set of entities) can result in a cascade of failures jeopardizing

the whole system. This phenomenon occurs in various kinds of systems. Well-

known examples include “black-outs” in power grids, where overload redistribution

following the failure of a single component can result in a cascade of failures that

ripples through the entire grid (e.g. Rosas-Casals et al., 2007; Wang et al., 2010). The

internet and computer networks also exhibit this phenomenon—one manifestation

being the spread of malware (e.g. Lelarge & Bolot, 2008b; Balthrop et al., 2004).

Likewise, human populations are exposed to the spread of contagious diseases.1

1 For different applications, such as cascading risk in financial systems, see, for example, Acemoglu
et al. (2015) and Elliott et al. (2014).
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Studying the incentives to guard against the risk of cascading failures in such

interconnected systems has received attention in recent years. In early 2015, a measles

epidemic spread across the western part of the United States. It was reported that one

of the causes was the unwillingness of parents to vaccinate their children (e.g. The

Economist, 2015a,b; Steenhuysen, 2015). Indeed, some people may want to avoid

the perceived risks of a vaccine’s side effects and free-ride on the “herd immunity”

provided by the vaccination of other people. This raises the following question:

What are the incentives to vaccinate against a contagious disease? The same type of

question can be asked about other systems subject to the risk of cascading failures.

What are the incentives to invest in computer security solutions to protect against

the spread of malware? A recent wave of terror attacks within the European union

also illustrates the fact that the EU is an interconnected system of many countries.

Each member country is thereby exposed to the decisions of other member countries

regarding investments in security and intelligence. Indeed, an attacker entering the

EU area can reach any location within it. Likewise, what incentives do airports have

to invest in security equipment/personnel? How does the structure of interactions

between individuals, computers, airports, or countries affect those incentives?

There are mainly two streams of literature studying such strategic decisions in in-

terconnected systems. One focuses on the role played by the structure through which

agents interact (e.g. a network), while the other focuses on modeling different types

of attacks on the system (e.g. random attacks, targeted attacks, strategic attacks).

In the first stream of literature, early work studying games of “interdependent

security” (e.g. Heal & Kunreuther, 2004; Heal et al., 2006) considered a broad set

of applications ranging from airline security to supply chain management, but did

not yet incorporate a complex network interaction structure. More recent work has

studied heterogeneous interaction structures. For example, Galeotti & Rogers (2013)

consider the problem of a social planner attempting to eradicate an infection from

a population. They consider a simple network consisting of two types of agents

interacting with others within and across their respective social groups. They then

explore the influence of assortativity on the optimal actions of a decision maker.

Other papers, like ours, explore the influence of a networked interaction structure on

the agents’ strategic decisions in more detail. This includes (Lelarge & Bolot, 2008a)

studying the case of strategic immunization and (Cabrales et al., 2014) exploring the

setting of interconnected firms choosing investments in risky projects. More recently,

Cerdeiro et al. (2015) explored the problem of designing the network topology that

provides the proper incentives to the agents.

In the second stream of literature, papers like Dziubiński & Goyal (2017) and

Acemoglu et al. (2016) explore strategic attack models, in which a defender chooses

protection levels, while an attacker chooses the targets in an attempt to maximize

the number of affected agents in the network.

In this paper, we develop a framework to study the incentives that agents have

to invest in protection against cascading failures in networked systems. A set of

interconnected agents can each fail exogenously (fully randomly) or as a result of a

cascade of failures2 (through infected connections). Depending on the application,

2 Similar random failure mechanisms are studied in Lelarge & Bolot (2008b), Goyal & Vigier (2015),
Aspnes et al. (2006), Blume et al. (2013), and Acemoglu et al. (2016).
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failure can mean a human being contracting an infectious disease, a computer

being infected by a virus or an airport/country being exposed to a security event

(e.g. a suspicious luggage or passenger being checked in or being in transit). Each

agent must decide on whether to make a costly investment in protection against

cascading failures. This investment can mean vaccination, investing in computer

security solutions or airport security equipment, to name a few important examples.

Strategic decisions to invest in protection are based on an agent’s intrinsic failure

risk as well as on his belief about his neighbors and their probability of failure. In

a complex networked system, forming such a belief can be challenging. For that

reason, we employ a solution concept that considerably simplifies how agents reason

about the network: Agents do not observe the network, but simply know the number

of connections they have. This is similar to the equilibrium concept used in Galeotti

et al. (2010), Jackson & Yariv (2007), and Leduc et al. (2015). This equilibrium

concept allows us to preserve the heterogeneity of the networked interaction structure

(each agent can have a different degree, i.e. a different number of connections) while

simplifying the computation of an equilibrium. It also conveniently allows for

comparative statics in terms of the network structure (as captured by the degree

distribution), as well as other model parameters. This allows us to measure such

things as the effect of an increase in the level of connectedness on investments in

protection.

We characterize the equilibrium for three broad classes of games: (i) games of total

protection, in which agents invest in protection against both their intrinsic failure

risk and the failure risk of their neighbors; (ii) games of self-protection, in which

agents invest in protection only against their intrinsic failure risk; and (iii) games

of networked-risk protection, in which agents invest in protection only against the

failure risk of their neighbors. The first and third classes define games of strategic

substitutes, in which some agents free-ride on the protection provided by others.

Applications covered by these classes of games include vaccination and standard

computer security solutions (e.g. anti-virus). The second class defines a game of

strategic complements, in which agents pool their investments in protection and

this can result in coordination failures. Applications covered by this class of games

include airport security, border security within the European union, and other types

of computer security solutions (e.g. two-factor authentication (2FA)).

Another of our contributions is to analyze the effect of the network structure

on equilibrium behavior in those three classes of games. For example, in the case

of vaccination, it is the agents who have more neighbors than a certain threshold

who choose to vaccinate and the agents who are less connected who free-ride. The

more connected agents thus bear the burden of vaccination, which can be seen

as a positive outcome. In the case of airport security, on the other hand, it is

agents who have fewer neighbors than a certain threshold who choose to invest in

security equipment/personnel. Since the less connected airports are less likely to act

as hubs that can transmit failures, this can be seen as an inefficient outcome. To

our knowledge, we are the first to explicitly characterize such features, which are

the consequence of network structure and can have important policy and welfare

implications.

Finally, we study the case when the cost of protection is endogenized and allowed

to depend on global demand. For instance, the price of vaccines or computer
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security solutions may increase (e.g. vaccines may be produced in limited supplies)

if demand increases. It is important to understand the impact that this may have on

agents’ behavior as the introduction of such a global externality (e.g. see the global

congestion case in Arribas & Salvador (2014)) may conflict with the cascading

failure process affecting an agent through his local connections. We characterize the

equilibrium after introducing this price feedback and show that the results derived

previously still hold with minor changes.

Acemoglu et al. (2016) and Lelarge & Bolot (2008b) are perhaps the closest work

to ours. The former paper, in a setting similar to ours, shows that under random

and targeted attacks both over- and under-investment (as compared to the socially

optimal level) are possible. Furthermore, the authors show that optimal investment

levels are defined by network centrality measures, whereas our characterization

of equilibrium investment is based on degree centrality. Additionally, we further

explore the role of the network structure in defining agents’ incentives to invest

in protection. In particular, we study comparative statics by varying the degree

distributions of the underlying network. Lelarge & Bolot (2008b) also consider

different types of protection against contagion risk in trees and sparse random

graphs. As compared to their probabilistic approach, the equilibrium concept we

use allows for a characterization of behavior in terms of an agent’s degree. We also

deal with a common (possibly endogenized) cost of investment as opposed to their

randomized costs. Finally, our paper contributes to the rapidly expanding stream of

literature on games on networks.3

The paper is organized as follows: Section 2 introduces the concept of cascading

failures in networked systems. Section 3 develops the game theoretic framework that

allows us to study the problem in a tractable way while imposing a realistic cognitive

burden on agents. Section 4 characterizes the equilibrium for the three broad classes

of games previously mentioned. Implications for risk and welfare are discussed.

Comparative statics results in terms of the network structure (as captured by the

degree distribution) and other model parameters are also presented. An extension

in which the cost of protection is endogenized is also studied. Section 5 concludes

with a critical evaluation of our model and a discussion of possible extensions. For

clarity of exposure, all the proofs are relegated to an appendix.

2 Cascading failures in networks

2.1 Overview

In this section, we will discuss how cascades of failures can propagate through

networks. A cascade of failures is defined as a process involving the subsequent

failures of interconnected components. A failure is a general term that may represent

different kinds of costly events. Let us consider, for example, the spread of a disease

in a human population. Initially, some individuals get infected through exogenous

sources such as livestock, mosquitos or the mutation of a pathogen. These individuals

can then transmit the disease through contacts with other humans. Let us suppose

3 The reader is referred to Jackson & Zenou (2014) for a survey of the existing literature on games on
networks.
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Infected Healthy

2
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Fig. 1. Example of a contagion cascade: individuals labeled 1 and 2 contract the disease from

exogenous sources. From then on, a contagion cascade takes place in discrete steps: all their

neighbors become infected. This then leads to their neighbors’ neighbors to become infected

and so on.

that an individual is sure to catch the disease if one of his neighbors is infected.

Figure 1 illustrates this process. We can see the impact of network structure on

contagion. Some people lying in certain components remain healthy whereas others

are infected by their neighbors. We also see that individuals with a high number of

contacts tend to facilitate contagion. This is a simplified model of contagion. A more

realistic model could, for example, transmit the disease only to randomly selected

neighbors, depending on its virulence.

Now let us imagine that some individuals are vaccinated and therefore are not

susceptible to becoming infected, neither by exogenous sources nor by contacts with

other people. This will have an impact on the cascading process. Indeed, it will

effectively “cut” certain contagion channels, thereby impeding the spread of the

disease. Figure 2 illustrates this. We see that the importance of the network structure

becomes even more striking. In Figure 2(a), immunized individuals have been

selected randomly, whereas in Figure 2(b) individuals with four or more contacts

have been immunized. It is clear that those more connected individuals often act as

hubs through which contagion can spread more easily. When these individuals are

immunized, the effect of impeding the propagation of the disease tends to be much

greater than when the immunized individuals are chosen at random.

In this example, the “failure” of an individual means he becomes infected by

the disease. In other applications, “failure” can mean infection by malware. The

nodes then no longer represent individuals but computers (or local subnetworks

or autonomous systems). Anti-virus software or other sorts of computer security

solutions are means by which the spread of malware can be impeded.

We saw in the simple example of Figure 2 that the configuration of the vac-

cinated nodes was crucial to impeding contagion. An important question is to

study the incentives that an individual may have to become vaccinated. How

does the network structure affect his decision to become vaccinated? What roles

https://doi.org/10.1017/nws.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.1


Strategic investment in protection in networked systems 113
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Infected Healthy, not immunized Healthy, immunized

(a)

(b)

Fig. 2. Examples of contagion cascades in the presence of immunized individuals: individuals

labeled 1 and 2 contract the disease from exogenous sources. The contagion cascade then

propagates. In part (a), a randomly chosen subset of agents were vaccinated against the

disease. In part (b), individuals with at least four contacts were vaccinated against the disease.

other individuals play in influencing that decision through their own vaccination

behavior?

Given the range of applications, we will talk of an investment in protection.

This refers to an investment made by a node in order to protect itself against

the risk of failure. In the next section, we build a model of strategic investment

in protection against cascading failures in networked systems. We will refer to

nodes as agents, since they make decisions regarding this investment in protection.

More generally, we will be interested in how the network structure and the failure

propagation mechanism influence those decisions through the externalities that they

generate.
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2.2 Network

A network, as the one described previously, can be formally defined as follows.

There is a set of nodes (or agents) N = {1, 2, ..., n}. The connections between

them are described by an undirected network that is represented by a symmetrical

adjacency matrix g ∈ {0, 1}n×n, with gij = 1 implying that i and j are connected. i

can thus be affected by the failure of j and vice versa. By convention, we set gii = 0

for all i ∈ N. The network realization g is drawn from the probability measure

P : {0, 1}n×n → [0, 1] over the set of all possible networks with n nodes. We assume

that P is permutation-invariant, i.e. that changing node labels does not change the

measure. Each agent i has a neighborhood Ni(g) = {j|gij = 1}. The degree of agent

i, di(g), is the number of i’s connections, i.e. di(g) = |Ni(g)|.

3 A Bayesian network security game

3.1 Informational environment

We study an informational environment similar to the one presented in Galeotti

et al. (2010). Agents are aware of their proclivity to interact with others, but do not

know who these others will be when taking actions. Formally, this means that an

agent knows only his degree di. For example, a bank may have a good idea of the

number of financial counter-parties it has but not the number of counter-parties the

latter have, let alone the whole topology of the interbank system. In applications to

the spread of contagious diseases, an individual may know the number of people

he interacts with, but not the number of people the latter interact with. Likewise, in

the case of an email network, someone may know the number of contacts he has,

but not the number of contacts his contacts have.

First, since P is permutation invariant (cf. Section 2.2), we can define the degree

distribution of P as the probability a node has degree d in a graph drawn according

to P ; we denote the degree distribution4 by f(d) for d � 1. Note that we are

not interested in modeling agents of degree 0 (since they do not play a game)

and we therefore always assume that f(0) = 0. We assume a countably infinite

set of agents. An agent’s type is his degree d and it is drawn i.i.d. according to

the degree distribution f(d). Likewise, the degree of each of an agent’s neighbors

is drawn i.i.d. according to the density function f̃(d). This is the edge-perspective

degree distribution and can be written as f̃(d) = f(d)d∑
d′�1 f(d′)d′ . This expression follows

from a standard calculation in graph theory (see Jackson (2008) for more details).

f̃(d) is the probability that a neighbor has degree d. It therefore takes into account

the fact that a higher degree node has a higher chance of being connected to any

agent and thus of being his neighbor. Thus, agents reason about the graph structure

in a simple way through the degree distribution.

3.2 Action sets and strategies

In order to protect himself against the risk of failure, we allow an agent i to

make a costly investment in protection. This is a one-shot investment that can be

4 Throughout, we use the term degree distribution to mean degree density. When referring to the
cumulative distribution function (CDF), we will do so explicitly.
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made in anticipation of a cascade of failures, which may take place in the future.

This investment in protection is represented by an action ai, which is part of a

binary action set A = {0, 1}. The latter represents the set of possible investments in

protection against failure: ai = 1 means that the agent invests in protection while

ai = 0 means that the agent remains unprotected. In an application to computer

security, ai can represent an investment in computer security solutions or anti-virus

software. In applications to disease spread, ai can represent vaccination, whereas in

the case of airport security, ai can represent an investment in security personnel or

equipment. We assume throughout that A is the same for all agents. The exact effect

of this action on an agent’s actual failure risk will be formalized later in Definition

5.

Note that all agents have access to the same information about the network (only

its degree distribution f(d)). An agent does not know his position in the network,

only the number of neighbors he has (an agent’s degree is his type). An agent i’s

behavior is thus governed only by his degree di and not by his label i. We can then

define a strategy in the following way.

Definition 1

A strategy μ : N + → [0, 1] is a scalar-valued function that specifies, for every d > 0,

the probability that an agent of degree d invests in protection. We denote by M the

set of all strategies.

Thus, μ(d) is the symmetric mixed strategy played by an agent of degree d. Note

that M = [0, 1]∞, the space of [0, 1]-valued sequences. Throughout, we endow M
with the product topology and [0, 1] with the Euclidean topology.

3.3 Failure probabilities and utility functions

We start with the following definition:

Definition 2

An agent’s intrinsic failure probability is denoted by p ∈ [0, 1].

We thus assume all agents can fail intrinsically with the same probability p.

The interpretation of intrinsic failure depends on the application. In the context of

malware, intrinsic failure means a computer becoming infected as a result of a direct

hacking attack. In the context of the spread of contagious diseases, intrinsic failure

means being infected by a virus through non-human sources, such as contact with

livestock or insects. In the context of airport security, intrinsic failure can mean a

suspicious luggage being checked in at the airport.

We now state a property of this network security game, which addresses how an

agent reasons about the failure probability of his neighbors.

Property 1

Each agent conjectures that each of his neighbors fails with probability T(μ) ∈ [0, 1],

independently across neighbors.

This setting is similar to that of Jackson & Yariv (2007), where each neighbor

adopts a product or an opinion with a certain probability that depends on the

strategy played by the population. Note that the dependence of a neighbor’s failure
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probability T(μ) on the strategy μ played by other agents was made explicit. An

agent’s cascading failure probability can now be defined in terms of T(μ), as seen

in the following definition.

Definition 3

For any d, let the function qd : [0, 1] → [0, 1] denote a degree-d agent’s cascading

failure probability, i.e. qd(T(μ)) is the probability that an agent of degree d will fail

as a result of a cascade of failures, given that his neighbors each fail independently

with probability T(μ). For any d, qd(T(μ)) is strictly increasing and continuous in

T(μ). Moreover, we explicitly set q0(T(μ)) = 0 and thus an agent with no neighbor

cannot fail as a result of a cascade of failures.

The actual expression for qd(T(μ)) depends on the type of cascade we are

considering. We will consider only a situation where {qd}d is an increasing sequence

of functions. That is, when d′ > d, then qd′ (T(μ)) > qd(T(μ)) for any T(μ) ∈ [0, 1].

In other words, the cascading failure risk is higher when an agent has more

connections.5 For convenience, we will sometimes write qd(T(μ)) simply as qd.

Since an agent of degree d either fails intrinsically with probability p or in a

cascade with probability qd, we can define his total probability of failure as follows.

Definition 4 (Total probability of failure)

The total probability of failure of an agent of degree d is

βd = p + (1 − p)qd (1)

Thus, an agent can either fail intrinsically (i.e. by himself) or as a result of the

failures of a subset of his neighbors. Those neighbors who have failed may have

done so intrinsically or as a result of the failure of a subset of their own neighbors.

We study a static setting, in which agents make decisions simultaneously, in

anticipation of a cascade of failures that may happen in the future. Therefore, each

agent is healthy when he chooses an action a ∈ A representing a costly investment

in protection against failure. This is a good decision model for the applications

that we cover. E.g., vaccines are taken by healthy individuals in anticipation of an

epidemic that may spread in the future. Likewise, investments in computer security

solutions are taken for healthy computers or autonomous systems in anticipation

of the spread of malware, which may take place at a later date. Similar long-term

security decisions are taken in other contexts, such as airport security, for example.

We now describe how this action affects an agent’s failure probability.

Definition 5

Let the mapping B : [0, 1]×[0, 1]×A → [0, 1] denote the effective failure probability

of an agent. We assume that B(p, qd, a) is continuous in all arguments, increasing in

p and in qd and that it is decreasing in a.

Thus, B(p, qd, a) is the total failure probability of an agent (defined in Equation

(1)) when he has invested a in protection against failure. Note that this definition

allows this action to operate separately on p and qd, as will be seen in Section 4.

5 The reader is referred to Chapter 4 of Leduc (2014) for the case where qd(T(μ)) is decreasing in d.
This can model a form of diversification of failure risk across neighbors.
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This will become useful as we study different kinds of protection. We can now state

an agent’s expected utility function, which will capture his decision problem.

A degree-d agent’s expected utility function is given by

Ud(a, μ) = −V · B(p, qd(T(μ)), a) − C · a (2)

where C > 0 is the cost of investing in protection, V > 0 is the value that is lost in

the event of failure and B(·, ·, ·) is the effective failure probability (cf. Definition 5).

This utility function captures the tradeoff between the expected loss

V · B(p, qd(T(μ)), a) and the cost6 C of investing in protection. Notice again that an

agent’s expected utility depends on the actions of others only through the cascading

failure probability qd(T(μ)), since they will affect the probability of failure T(μ) of

a randomly picked neighbor. Note also that the expected utility function7 Ud(·, ·)
depends on the agent’s degree d but not on his identity i. Therefore, any two agents

i and j who have the same degree have the same expected utility function. From the

assumptions on B, Ud is continuous in all arguments. An agent is risk-neutral and

will thus maximize this expected utility function by choosing the appropriate action

a. The game thus models security decisions under contagious random attacks in a

network where each agent (node) knows only his own degree and the probability

that a neighbor has a certain degree.

While the cascading failure probability qd can take many functional forms, we

provide several examples which can all be modeled using the particular form

qd(T(μ)) = 1 − (1 − rT(μ))d. This functional form results from a contact process.

Malware or virus spread: Let a computer be infected by a direct hacking attack with

probability p. Assume that malware (i.e. computer viruses) can spread from computer

to computer according to a general contact process: If a neighbor is infected, then

the computer will be infected with probability r. If each neighbor is infected with

probability T(μ) and this infection spreads independently across each edge with

probability r, then qd(T(μ)) = 1 − (1 − rT(μ))d. This contact process can also serve

as a model for the spread of viruses among human populations. In this case, p is the

probability of being infected by non-human sources (e.g. insects, livestock, etc.) and

qd(T(μ)) is the probability of being infected by neighbors (i.e. other persons with

whom the agent interacts). The parameter r models the virulence or infectiousness

of the process: Given that a neighbor is infected, r is the probability8 that he will

infect the agent.

Airport and European union security: The contact process described above can also

be applied to airport or EU security. The exogenous failure (with probability p)

can mean a security event such as the failure to stop a suspicious luggage from

being checked in on a flight or a terrorist entering the European union from outside

6 The cost of investing in protection may represent the price of airport security equipment or computer
security solutions. It may also represent the possible side-effects that may be associated with a vaccine
(e.g. The Economist, 2015a).

7 Note that we could write a degree-d agent’s expected utility function as U(a, μ, d). We write it with d
as a subscript simply because it is a convenient notation.

8 In Figures 1 and 2, r was assumed to be 1 for simplicity of exposure.
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through one of the EU countries with weaker border control. In these scenarios, the

agents represent airports or countries, and the edges linking them represent flights

and connecting routes between countries. The suspicious luggage or terrorist can

then cascade, i.e. travel to one or more other airports/countries, exposing them to

security risks. qd(T(μ)) = 1 − (1 − rT(μ))d can then model the risk of an entity

coming into contact with a security threat coming from a neighboring country or

airport.

In the next two sections, we develop both the optimal response of an agent to the

environment described previously, as well as the consistency check that T(μ) should

satisfy given the strategic choices of the agents.

3.4 Consistency

We will now develop a consistency check that guarantees that a randomly picked

neighbor’s failure probability T(μ) is consistent with the strategy μ played by the

population.

Definition 6

Let the function F : M × [0, 1] → [0, 1] be defined as

F(μ, α) =
∑
d�1

f̃(d)B(p, qd−1(α), μ(d)) (3)

In the above definition,9 F(μ, α) is the failure probability of a randomly picked

neighbor given that agents play strategy μ and this neighbor’s other neighbors fail

with probability α. A fixed point α = F(μ, α) ensures that α is the same across all

agents and consistent with μ. We consider F(μ, α) with the following property:

Property 2

For any μ ∈ M, F(μ, α) has a unique fixed point in α.

Note that Property 2 is not particularly stringent. It is easy to verify in the contact

process models of the examples described in Section 3.3.

We can now formally define T(μ), the failure probability of a randomly picked

neighbor given that strategy μ is played by other agents:

Definition 7

Given F : M × [0, 1] → [0, 1] satisfying Property 2, let T : M → [0, 1] be defined

as follows: For any μ ∈ M,

T(μ) = F(μ,T(μ)) (4)

9 Note that an agent does not internalize the effect of his own failure on others when forming his
belief about the failure risk of a neighbor. Hence, the presence of qd−1(α) on the right-hand side of
Equation (3) instead of qd(α): the cascading failure risk of a given neighbor of degree d is only due
to his d − 1 other neighbors.
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3.5 Optimal response

It is now straightforward to solve for the optimal strategy of an agent of degree

d: An agent invests in protection, does not invest, or is indifferent if Ud(1, μ) is

greater than, less than, or equal to Ud(0, μ), respectively. We thus have the following

definition.

Definition 8

Let Sd(T(μ)) ⊂ [0, 1] denote the set of optimal responses for a degree-d agent given

T(μ); i.e.

Ud(1, μ) > Ud(0, μ) =⇒ Sd(T(μ)) = {1}
Ud(1, μ) < Ud(0, μ) =⇒ Sd(T(μ)) = {0}
Ud(1, μ) = Ud(0, μ) =⇒ Sd(T(μ)) = [0, 1]

We can now let S(T(μ)) ⊂ M denote the set of optimal strategies given T(μ); i.e.

S(T(μ)) =
∏
d�1

Sd(T(μ))

Note that at least one optimal response always exists and is essentially uniquely

defined, except at those degrees where an agent is indifferent.

3.6 Equilibrium

We now formally define the equilibrium concept and state our first proposition.

Definition 9 (Mean-field equilibrium)

A strategy μ∗ constitutes a mean-field equilibrium (MFE), if μ∗ ∈ S(T(μ∗)).

This equilibrium definition ensures that both the optimality and consistency

conditions are satisfied. Also note that to any equilibrium μ∗, there corresponds a

unique equilibrium neighbor failure probability α∗ = T(μ∗).

Proposition 1 (Existence)

Any network security game that satisfies Properties 1 and 2 has an MFE.

An MFE is a symmetric equilibrium with the property that an agent’s neighbors

fail independently with the same probability T(μ∗) under μ∗. An MFE is particularly

easy to compute. In fact, α∗ = T(μ∗) is obtained from a one-dimensional fixed-point

equation resulting from the composition of T and S, i.e. α∗ = T(S(α∗)). μ∗ is then

found from the map S(α∗) (cf. Definition 8). Allowing for correlations between the

failures of neighbors would considerably complicate the analysis.10

4 Characterizing equilibria

In this section, we will study three classes of games in which agents make decisions

to invest in protection. We will start with games of total protection, in which an

agent’s investment decreases his total risk of failure. We will then proceed with games

10 For some work in that direction, see Chapter 3 of Leduc (2014).
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of self-protection, in which an agent’s investment in protection only protects him

against his own intrinsic risk of failure. We will finally study an intermediate case:

A game of networked-risk protection, in which an agent’s investment in protection

only protects him against the risk of failure of his neighbors.

4.1 Games of total protection

In games of total protection, the investment protects both against the intrinsic failure

risk and the cascading failure risk.

Examples of applications covered by this class are the spread of contagious

diseases and the decision to vaccinate or malware and the investment in anti-virus

or computer security solutions. Vaccination, for example, protects against both the

risk of being infected by non-human (intrinsic failure risk) and human sources

(cascading failure risk). It is also the case for standard anti-virus software featuring

a firewall protection. This protects an agent against both direct hacking attacks

(intrinsic failure risk) and malware spread through the Internet/e-mail networks

(cascading failure risk).

We have the following definition.

Definition 10 (Games of total protection)

In a game of total protection, the effective failure probability has the following form:

B(p, qd(T(μ)), a) =
(
p + (1 − p)qd(T(μ))

)
· (1 − ka) (5)

for some k ∈ [0, 1] and

F(μ, α) =
∑
d�1

f̃(d)
(
p + (1 − p)qd−1(α)

)
· (1 − kμ(d)) (6)

In games of total protection, as can be seen in Equation (5), an agent’s investment

in protection decreases his total probability of failure p + (1 − p)qd(T(μ)). The

parameter k governs the effectiveness of the investment in protection. The higher k,

the more an investment in protection reduces the failure probability.

Before stating our first theorem, we introduce the following definition.

Definition 11 (Upper-threshold strategy)

A strategy μ is an upper-threshold strategy, if there exists dU ∈ N +
⋃

{∞}, such that

d < dU =⇒ μ(d) = 0

d > dU =⇒ μ(d) = 1

Thus, under an upper-threshold strategy, agents with degrees above a certain

threshold invest in protection whereas agents with degrees below that threshold do

not invest. Note that the definition above does not place any restriction on the

strategy at the threshold dU itself; we allow randomization at this threshold.

Games of total protection are submodular. In other words, they are of strategic

substitutes: The more other agents invest in protection (the lower T(μ)), the less

an agent has an incentive to invest in protection. A nice property of games of

total protection is that they have a unique equilibrium that is characterized by an

upper-threshold strategy.
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Theorem 1 (Total protection)

In a game of total protection, the equilibrium μ∗ is unique. Moreover, μ∗ is an

upper-threshold equilibrium, i.e. μ∗ is an upper-threshold strategy.

The intuition behind this result is that, higher degree agents are more exposed

to cascading failures than lower degree agents, thus making an investment in total

protection relatively more rewarding. The implications of this theorem are important

as higher degree agents are more likely to act as hubs though which contagion can

spread. This result can thus be seen as a satisfactory outcome since more connected

agents have higher incentives to internalize the risk they impose on the system.

In equilibrium, the total cost of protection is thus born by those who have a

maximal effect on decreasing T(μ). For example, in the case of malware, agents

with a higher level of interaction (higher degree) have a higher incentive to invest in

computer security (i.e. anti-virus software). The same principle applies in the case of

human-born viruses: Individuals who interact more have a higher incentive to get

vaccinated.

Note that in spite of the above, agents tend to under-invest in equilibrium

compared to the socially optimal investment level. This is the result of free-riding

and is in line with classical results of moral hazard in economics and the failure of

agents to take into account negative externalities.

In the next section, we study the second class of games: Games of self-protection.

4.2 Games of self protection

In games of self-protection, the investment protects only against the intrinsic failure

risk.

Examples of applications covered by this class of games include airport security

when luggage/passengers are only scanned at the originating airport. Airports then

otherwise rely on each other’s provision of security for transiting passengers/luggage.

The same principle applies to security within the European union, where travelers

are only inspected at their point of entry. EU countries otherwise rely on each

other’s security for travelers within the EU.

Another important example is 2FA in computer networks. Consider an e-mail

network and a provider such as Gmail. The latter allows its users to use such

a 2FA feature. Users who take advantage of this option are asked to enter a

security code sent to their mobile phone in addition to their password entered

upon authentication. 2FA thus effectively protects against direct hacking attacks (a

user’s personal intrinsic risk). Indeed, access to the account with 2FA can only be

granted conditional on the user having access to the mobile phone linked to this

account. Yet, 2FA does not diminish the user’s exposure to cascading failure risk (i.e.

malware transmitted through the e-mail network): Carelessly opening an infected

e-mail attachment from a friend can fully compromise his account.

We now have the following definition.

Definition 12 (Games of self-protection)

In a game of self-protection, the effective failure probability has the following form:

B(p, qd(T(μ)), a) = p · (1 − ka) + (1 − p · (1 − ka)) · qd(T(μ)) (7)
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for some k ∈ [0, 1] and

F(μ, α) =
∑
d�1

f̃(d)
(
p · (1 − kμ(d)) +

(
1 − p · (1 − kμ(d))

)
· qd−1(α)

)
(8)

In games of self-protection, as can be seen in Equation (7), an agent’s investment

in protection only decreases his intrinsic probability of failure p. It has no effect

on his cascading failure probability qd(T(μ)). Again, the parameter k governs the

effectiveness of the investment in protection corresponding to the action a.

Before stating our second theorem, we introduce the following definition.

Definition 13 (Lower threshold strategy)

A strategy μ is a lower threshold strategy, if there exists dL ∈ N +
⋃

{∞}, such that

d > dL =⇒ μ(d) = 0

d < dL =⇒ μ(d) = 1

Under a lower threshold strategy, agents with degrees below a certain threshold

invest in protection whereas agents with degrees above that threshold do not invest.

Note that the definition above does not place any restriction on the strategy at the

threshold dL itself; we allow randomization at this threshold.

Games of self-protection are supermodular. In other words, they are of strategic

complements: The more other agents invest in protection (the lower T(μ)), the more

an agent has an incentive to invest in protection. Since games of self-protection

are effectively coordination games, there can be multiple equilibria. The next result

shows that any equilibrium can be characterized by a lower threshold strategy. In

other words, the thresholds are reversed when compared to games total protection

(cf. Theorem 1).

Theorem 2 (Self-protection)

In a game of self-protection, any equilibrium μ∗ is a lower threshold equilibrium.

That is, μ∗ is a lower threshold strategy.

Higher cascade risk thus leads to lower incentives to invest in protection. This

is because an agent remains exposed to the failure risk of others irrespectively of

whether he invests in protection. An investment in protection thus has lower returns

as the cascading failure risk increases. An agent’s cascading failure risk increases in

degree, and thus higher degree agents invest less in protection than lower degree

agents. The intuition is that higher degree agents are more exposed to cascading

failure risk than lower degree agents, thus making an investment in their own

self-protection relatively less rewarding.

In the example of airport security, an airport that interacts with a high number

of other airports has smaller incentives to invest in its own security, since it remains

exposed to a high risk of being hit by an event coming from a connecting flight.

This, as before, is assuming that the passengers/luggage are only inspected at their

point of origin and not at points of transit. In the example of 2FA in an e-mail

network, it is the users with a high number of contacts who have lower incentives to

enable this security feature since they remain exposed to infected email attachments

from their many contacts.
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The fact that, in games of self-protection, the incentives are reversed has important

implications. In fact, the more connected (higher degree) agents have a lesser

incentive to invest in protection even though they are more vulnerable and more

dangerous, i.e. they are hubs through which cascading failures can spread. More

central agents thus have lower incentives to internalize the risk they impose on the

system, pointing to an inefficient outcome. Moreover, in equilibrium, the total cost

of protection is born by lower degree agents: those who have the smallest effect on

decreasing T(μ).

4.3 Games of networked-risk protection

In games of networked-risk protection, the investment protects only against the

cascading failure risk. It does not protect against intrinsic failure risk.

Examples of applications include protection against many sexually transmitted

diseases. For instance, the use of condoms protects against the transmission of

HIV/AIDS through sexual partners. Nevertheless, such practices leave agents

exposed to the external risk of being infected through a medical mistake in a

hospital (e.g. with an infected syringe).

We have the following definition.

Definition 14 (Games of networked-risk protection)

In a game of networked-risk protection, the effective failure probability has the

following form:

B(p, qd(T(μ)), a) = p + (1 − p) · qd(T(μ)) · (1 − ka) (9)

for some k ∈ [0, 1] and

F(μ, α) =
∑
d�1

f̃(d)
(
p +

(
1 − p

)
· qd−1(α) · (1 − kμ(d))

)
. (10)

We now show that a game of networked-risk protection is structurally equivalent to

a game of total protection.

Corollary 1

A game of networked-risk protection is structurally equivalent to a game of total

protection. Particularly, an equilibrium strategy μ∗ in any game of networked-risk

protection is unique and is characterized by an upper threshold.

It is easy to see that agents have lesser incentives to invest than in the case of a

game of total protection. Indeed, the marginal utility of investing in the latter case is

always Vpk higher, because an investment also protects against the intrinsic failure

risk. We thus conclude that μ∗
tp 
 μ∗

np, where μ∗
tp and μ∗

np are the investment profiles

in games of total and networked-risk protection, respectively. In other words, if an

agent of some degree invests in the case of networked-risk protection, then he will

necessarily also invest in the case of total protection. In the interest of space, we

skip further in-depth discussion of the results in this section as they mainly replicate

the results of Section 4.1.
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4.4 Welfare, risk, and comparative statics

The next proposition states when the equilibrium expected utility and effective failure

risk of an agent are monotone in degree.

Proposition 2 (Risk and Welfare I )

Let ad ∈ μ∗(d):

• (i) The equilibrium expected utility Ud(ad, μ
∗) is non-increasing in d.

• (ii) In a game of self-protection, the equilibrium effective failure probability

B(p, qd(T(μ∗)), ad) is non-decreasing in d.

Note that there is no analogue to Part (ii) for games of total protection or

networked-risk protection. The equilibrium effective failure probability can be non-

monotone in degree. Indeed, the upper-threshold strategy means that higher degree

agents invest in protection and may thus have a lower effective failure probability

than lower degree agents.

We will now state a welfare result for games of self-protection. These games

are easier to analyze because they are of strategic complements. In games of self-

protection, agents effectively pool their investments in protection and, as said earlier,

there can be multiple equilibria. These equilibria can however be ordered by level

of investment. Suppose there are m possible equilibria. Then, they can be ordered in

the following way:

μ∗
1 � μ∗

2 � ... � μ∗
m

Since Equation (8) is decreasing in μ, it follows that T(μ∗
1) � T(μ∗

2)... � T(μ∗
m).

We then have a second welfare result.

Proposition 3 (Welfare II )

In a game of self-protection, let μ∗
k � μ∗

l be two equilibria ordered by level of

investment. Then, μ∗
l weakly Pareto-dominates μ∗

k .

This result is not trivial. It effectively states that in the high-investment equilibrium,

the decrease in risk resulting from higher investments outweighs the cost of those

investments. This is due to the positive externality stemming from the effect of

pooled investments in protection, which reduce all agents’ failure risk.

We can focus our attention on the minimum-investment equilibrium μ∗ and the

maximum-investment equilibrium μ̄∗. In the former, T(μ∗) is actually maximal since

agents invest least, while in the latter, T(μ̄∗) is actually minimal since agents invest

most. From Proposition 3, agents playing the minimum-investment equilibrium can

be thus considered a coordination failure.

In Figure 3, we illustrate Theorems 1 and 2 on a complex network. We see how

the upper (resp. lower) threshold nature of equilibria in games of total (resp. self)

protection affects the spread of cascading failures differently.

We now state a result comparing the welfare in games of total and self-protection.

Proposition 4 (Welfare III )

Let W (μ) =
∑

d f(d)Ud(μ(d), μ) be the utilitarian welfare under strategy μ. Specif-

ically, we denote by Wtp(·) the utilitarian welfare in a game of total protection

and by Wsp(·) the utilitarian welfare in a game of self-protection, when all other

model parameters are held fixed. Then, Wtp(μ∗) > Wsp(μ̄∗), where μ∗ is the unique
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2

1

2

1

Infected Healthy, not immunized Healthy, immunized

(a)

(b)

Fig. 3. Illustration of Theorems 1 and 2 on a complex network with the cascading process

of Figure 1: possible equilibrium strategies in (a) a game of total protection and (b) a game

of self-protection. In (a), we see that the upper-threshold strategy insulates contagion hubs

whereas in (b) we see that the lower-threshold strategy insulates periphery nodes and leaves

contagion hubs vulnerable.

equilibrium in a game of total protection and μ̄∗ be the maximum-investment

equilibrium in a game of self-protection.

The above proposition states that the unique equilibrium in a game of total

protection welfare-dominates the higher investment equilibrium in a game of self-

protection. This result is mainly due to the fact that the return on investment in a

game of total protection is higher than in a game of self-protection, since it protects

against the total risk of failure (not just the intrinsic risk of failure).
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An advantage of our informational setting is that we can relate equilibrium be-

havior to network properties as captured by the edge-perspective degree distribution

f̃(d). We can then ask questions such as “does a higher level of connectedness11

increase or decrease the incentives to invest in protection?” This is examined in the

next proposition.

Proposition 5 (Shifting Degree Distribution)

Let μ∗ and μ̄∗ be the minimum- and maximum-investment equilibria in a game

of self-protection, when the edge-perspective degree distribution is f̃. Then, a first-

order distributional shift12 f̃′ � f̃ results in μ′∗ � μ∗ and μ̄′∗ � μ̄∗ and thus in

T′(μ′∗) � T(μ∗) and T′(μ̄′∗) � T(μ̄∗).

Thus, in a game of self-protection, a higher level of connectedness leads to

lower incentives to invest in protection: each of the new maximum- and minimum-

investment equilibria are weakly dominated by the corresponding equilibria in the

less connected network. The intuition behind this result is that an agent is more likely

to be connected to a high-degree neighbor (high contagion risk and unprotected).

This increases the agent’s cascading failure risk and therefore lowers the incentive

to invest in self-protection. We note that in equilibrium, the corresponding neighbor

failure probabilities are larger, i.e. T′(μ′∗) � T(μ∗) and T′(μ̄′∗) � T(μ̄∗).

Note that there is no straightforward analogue to Proposition 5 in the case of

total protection or networked-risk protection. In fact, shifting f̃(d) may in this

case increase the probability of having a protected neighbor or an unprotected

one, depending on the extent of the shift in f̃(d) and on the threshold dU in the

upper-threshold strategy. A shift in f̃(d) could thus potentially have non-monotone

effects.

When cascading failures follow a contact process as in the examples of Section

3.3, it is interesting to study the effect of a change in the infectiousness parameter

r on equilibria. The following two propositions illustrate that a change in r has

opposite effects, depending on whether the game is one of self-protection or total

protection.

Proposition 6 (Varying Infectiousness)

Suppose cascading failures follow a contact process with infectiousness parameter r,

as in the examples of Section 3.3. Let μ∗ and μ̄∗ be the minimum- and maximum-

investment equilibria in a game of self-protection and let μ∗ be the unique equilibrium

in a game of total (or networked-risk) protection. Then, an increase r′ > r in

infectiousness results in the following:

(i) μ′∗ � μ∗ and μ̄′∗ � μ̄∗ and thus in T′(μ′∗) � T(μ∗) and T′(μ̄′∗) � T(μ̄∗).

(ii) μ′∗ 
 μ∗ and r′T′(μ′∗) � rT(μ∗).

Part (i) says that in a game of self-protection, when cascading failures follow a

contact process, a higher level of infectiousness creates lower incentives for agents

to invest in protection: The initial increase in T(μ) caused by higher infectiousness

11 Note that by a higher level of connectedness, we mean an edge-perspective degree distribution placing
higher mass on higher-degree nodes. We do not mean the presence of short paths between any two
nodes.

12 Here f̃′ � f̃ means that f̃′ first-order stochastically dominates f̃.

https://doi.org/10.1017/nws.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.1


Strategic investment in protection in networked systems 127

causes an even greater increase in T(μ) as a result of strategic interactions. The

situation is very different in a game of total (or networked-risk) protection, as shown

in Part (ii), where a higher level of infectiousness creates higher incentives for agents

to invest in protection. This investment in protection is however not enough to

counter the increase in rT(μ) caused by a higher level of infectiousness. This is

because agents free-ride on the protection provided by others and thus an increase

in rT(μ) cannot be completely compensated.

The next result examines the effect of an increase in the parameter k, which

governs the extent of the protection resulting from an investment.

Proposition 7 (Varying the quality of protection)

Let μ∗ and μ̄∗ be the minimum- and maximum-investment equilibria in a game

of self-protection and let μ∗ be the unique equilibrium in a game of total (or

networked-risk) protection with parameter k. Then, k′ > k results in the following:

(i) μ′∗ 
 μ∗ and μ̄′∗ 
 μ̄∗, and thus in T′(μ′∗) � T(μ∗) and T′(μ̄′∗) � T(μ̄∗).

(ii) μ′∗ � μ∗, but T′(μ′∗) � T(μ∗).

Thus, in a game of self-protection, an increase in the protection quality results in

a higher investment and a reduction in a neighbor’s probability of failure. Strategic

interactions thus further add to the benefits of an improvement in the protection

technology. On the contrary, in a game of total (or networked-risk) protection, such

an increase in the protection quality results in a lower investment. However, it still

results in a reduction of a neighbor’s probability of failure, which is due entirely to

the increase in protection quality.

4.5 Endogenizing the cost of protection

So far, we have only examined network effects. That is, a utility function depends

on other agents only through the failure probability of one’s neighbors. In reality,

global feedback effects might also influence an agent’s utility. By “global feedback

effects,” we mean effects that impact an agent’s utility in other ways than through

its neighbors on the network. For instance, prices of vaccines, computer security

solutions, or airport security equipment might be affected by demand (i.e. by μ).

Likewise, if protection is provided under the form of insurance,13 the insurance

premium might depend on the overall failure level in the population, which itself

depends on the overall level of investment in protection. Such price feedback effects,

in addition to network effects, are also considered in Jackson & Zenou (2014).

Gagnon & Goyal (2017) also build a model in which agents’ utilities are affected

both by their neighbors on a social network and by effects unrelated to that network.

In this section, we introduce such global feedback effects to the model developed

in the previous sections. We focus on global feedback through the cost of protection,

which can take the form of a price to be paid.

We will introduce the following function, which maps a strategy μ to the

corresponding probability that a randomly picked agent invests in protection.

13 See, for example, Finkle (2015): “Cyber insurance premiums rocket after high-profile attacks”. Oct
12, 2015. Reuters, Boston, MA. The reader may also see Johnson et al. (2011) and Lelarge & Bolot
(2009) for some work on insurance provision.

https://doi.org/10.1017/nws.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.1


128 M. V. Leduc and R. Momot

Definition 15

Let the function G : M → [0, 1] be defined as

G(μ) =
∑
d�1

f(d)μ(d) (11)

Thus, to each strategy μ corresponds a fraction G(μ) of agents who invest in

protection. Furthermore, it is easy to notice that this function G increases in μ.

We will explore a setting in which the cost of protection is influenced by global

demand. Namely, when the cost of protection depends monotonically on total

demand: Cg = C · g(G(μ)), where g(·) is either an increasing or a decreasing

continuous function of the total fraction of people G(μ) willing to invest in protection.

In the following examples, we outline two situations that can be modeled by the

function g(·).

Example 1 (g(·) increasing). This case corresponds to the situation where the product

is scarce or there are global congestion effects. For instance, a vaccine might be

produced in limited quantity and thus, the more people demand it, the harder it

may be to obtain it, which will have an increasing effect on price.

Example 2 (g(·) decreasing). This corresponds to the case of economies of scale. For

instance, a new airport security technology might require significant initial R & D

investments. Producing it in large numbers may thus lead to a lower cost per unit,

which may lower the price.

We will slightly modify a degree-d agent’s expected utility function in order to

introduce the global feedback effect:

Ud(a, μ) = −V · B(p, qd(T(μ)), a) − C · g(G(μ)) · a (12)

Note that the cascading failure probability qd(T(μ)) does not depend explicitly

on the global fraction of agents who invest in protection, as it is solely driven by

network effects, i.e. through an agent’s neighborhood. It is also important to mention

that the introduction of a global externality does not affect the definition of T(μ).

The latter function was defined to be the failure probability of a randomly picked

neighbor, which does not depend explicitly on the total fraction of agents investing

in protection G(μ).

We will now modify the optimality condition in order to ensure that this fraction

G(μ) arises in equilibrium. We can redefine the set of optimal responses as follows:

Definition 16

Let Sd(T(μ),G(μ)) ⊂ [0, 1] denote the set of optimal responses for a degree-d agent

given T(μ) and G(μ); i.e.

Ud(1, μ) > Ud(0, μ) =⇒ Sd(T(μ),G(μ)) = {1}
Ud(1, μ) < Ud(0, μ) =⇒ Sd(T(μ),G(μ)) = {0}
Ud(1, μ) = Ud(0, μ) =⇒ Sd(T(μ),G(μ)) = [0, 1]
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Let S(T(μ),G(μ)) ⊂ M denote the set of optimal strategies given T(μ) and G(μ);

i.e.

S(T(μ),G(μ)) =
∏
d�1

Sd(T(μ),G(μ))

We now only need to slightly modify the equilibrium condition:

Definition 17 (Mean-field equilibrium with endogenized cost of protection)

A strategy μ∗ constitutes an MFE if μ∗ ∈ S(T(μ∗),G(μ∗)).

It turns out that the main results that were stated in the previous sections of the

paper are robust to the introduction of this global externality. We summarize those

more general results in the following proposition.

Proposition 8 (Network security game with endogenized cost of protection)

(i) (Existence): There exists an MFE in the game with endogenized cost or

protection.

(ii) (Threshold Strategies): The threshold characterization of equilibria is robust

to the endogenization of the cost of protection. The equilibrium is of (1)

an upper-threshold nature for a game of total protection and networked-risk

protection; (2) a lower threshold nature for a game of self-protection.

(iii) (Uniqueness): In a game of total protection or of networked-risk protection,

the MFE μ∗ is unique if g(·) is an increasing function.

As before, there can be multiple equilibria for games of self-protection.

5 Conclusion

In this paper, we developed a framework to study the strategic investment in pro-

tection against cascading failures in networked systems. Agents connected through

a network can fail either intrinsically or as a result of a cascade of failures that

may cause their neighbors to fail. We studied three broad classes of games covering

a wide range of applications. We showed that equilibrium strategies are monotone

in degree (i.e. in the number of neighbors an agent has on the network) and that

this monotonicity is reversed depending on whether (i) an investment in protection

insulates an agent against the risk of failure of his neighbors (games of total

protection and games of networked-risk protection) or (ii) only against his own

intrinsic risk of failure (games of self-protection). The first case covers the important

examples of vaccination, anti-virus software as well as protection against sexually

transmitted diseases. Here, it is the more connected agents who have higher incentives

to invest in protection. The second case, on the other hand, covers examples such

as airport/EU security as well as other types of computer security solutions such

as 2FA. Here, it is the less connected agents who have higher incentives to invest in

protection. Our analysis reveals that it is the nature of strategic interactions (strategic

substitutes/complements), combined with a network structure that leads to such

strikingly different equilibrium behavior in each case, with important implications

for the system’s resilience to cascading failures.

Our model is simple and the incomplete information framework that we use

allows for a tractable treatment. The unobservability of the network is a credible

assumption for many applications. In the applications of vaccination or computer
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security, agents typically do not know the topology of the social network or email

network, for example. They merely know the number of connections that they have.

Our equilibrium concept then predicts the behavior of the agents based on their

level of interaction with the population (their degree).

The property that neighbors fail independently imposes a realistic cognitive burden

on agents and allows for a tractable way to express an agent’s expected cascading

failure probability. This property is similar to the local tree-like assumption used in

other models such as Lelarge & Bolot (2008a) and is valid for large or relatively

sparse networks. In spite of its advantages, this property may no longer be realistic

for small or dense networks. However, as long as an agent’s cascading failure

probability is monotone in degree (which may still be approximately the case, even

in some smaller/denser networks), our monotonicity results could hold, at least

approximately.

In the case of airport security or EU security, the topology of the network of

airports or countries can credibly be known and influence the decisions of the agents.

It would be interesting to extend our analysis to the case where agents know the

topology of the network. While it is likely that equilibrium behavior would still be

monotone in the level of interaction of the agents with the rest of the population,

degree centrality may no longer be the appropriate measure. It would be interesting

to see if in this case, one could somehow relate equilibrium behavior to some other

measure of network centrality as in Acemoglu et al. (2016). Such extensions are left

for future work.
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Benjamin, J., Böhme, R., & Grossklags, J. (2011). Security games with market insurance.

Decision and game theory for security. Proceedings of the Second International Conference,

GameSec 2011 (pp. 117–130). Berlin: Springer.

Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., & Tardos, É. (2013). Network formation
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Dziubiński, M., & Goyal, S. (2017). How do you defend a network? Theoretical Economics,

12(1), 331–376.

Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. The

American Economic Review, 104(10), 3115–3153.

Finkle, J. (2015). Cyber insurance premiums rocket after high-profile attacks. Boston, MA:

Reuters.

Gagnon, J., & Goyal, S. (2017). Networks, markets and inequality. The American Economic

Review, 107(1), 1–30.

Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., & Yariv, L. (2010). Network games.

Review of Economic Studies, 77, 218–244.

Galeotti, A., & Rogers, B. W. (2013). Strategic immunization and group structure. American

Economic Journal: Microeconomics, 5(2), 1–32.

Goyal, S., & Vigier, A. (2015). Interaction, protection and epidemics. Journal of Public

Economics, 125, 64–69.

Heal, G., Kearns, M., Kleindorfer, P., & Kunreuther, H. (2006). Interdependent security in

interconnected networks. In Seeds of disaster, roots of response: How private action can

reduce public vulnerability (pp. 258–275). Cambridge University Press.

Heal, G., & Kunreuther, H. (2004). Interdependent security: A general model. National Bureau

of Economic Research (NBER) Working Paper No. 10706. doi:10.3386/w10706.

Jackson, M. O. (2008). Social and economic networks. Princeton, NJ: Princeton University

Press.

Jackson, M. O., & Yariv, L. (2007). Diffusion of behavior and equilibrium properties in

network games. American Economic Review, 97(2), 92–98.

Jackson, M. O., & Zenou, Y. (2014). Games on networks. In P. Young, & S. Zamir (Eds.),

Handbook of game theory, vol. 4. Amsterdam: Elsevier, pp. 91–157.
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Appendix A: Proofs

Proposition 1

Note that we endow [0, 1] with the Euclidean topology.

For any α ∈ [0, 1], define the correspondence Φ by Φ(α) = T(S(α)). Any fixed

point α∗ of Φ, with the corresponding μ∗ ∈ S(α∗) such that T(μ∗) = α∗ constitute

an MFE. We thus need to show that the correspondence Φ has a fixed point. We

employ Kakutani’s fixed point theorem on the composite map Φ(α) = T(S(α)).

Kakutani’s fixed point theorem requires that Φ have a compact domain, which

is trivial since [0, 1] is compact. Further, Φ(α) must be non-empty; again, this is

straightforward, since both S and T have non-empty image.

Next, we show that Φ(α) has a closed graph. We first show that S has a closed

graph, when we endow the set of strategies with the product topology on [0, 1]∞. This

follows easily: If αn → α, and μn → μ, where μn ∈ S(αn) for all n, then μn(d) → μ(d)

for all d. Expressing utility as a function of α, i.e. Ud(a, α) = −V ·B(p, qd(α), a)−C ·a,
we see that Ud(1, α) and Ud(0, α) are continuous, and it follows that μ(d) ∈ Sd(α),

so S has a closed graph. Note also that with the product topology on the space

of strategies, T is continuous: If μn → μ, then T(μn) → T(μ) by the bounded

convergence theorem.

To complete the proof that Φ has a closed graph, suppose that αn → α, and that

α′
n → α′, where α′

n ∈ Φ(αn) for all n. Choose μn ∈ S(αn) such that T(μn) = α′
n for

all n. By Tychonoff’s theorem, [0, 1]∞ is compact in the product topology; so taking

subsequences if necessary, we can assume that μn converges to a limit μ. Since S
has a closed graph, we know μ ∈ S(α). Finally, since T is continuous, we know

that T(μ) = α′. Thus, α′ ∈ Φ(α), as required.

Finally, we show that the image of Φ is convex. Let α1, α2 ∈ Φ(α) , and choose

μ1, μ2 ∈ S(α) such that α1 = T(μ1) and α2 = T(μ2). Since F is continuous in μ and

since T is unique (this follows from Property 2), then T is continuous in μ. Now

since S(α) is convex, it follows that for any δ ∈ (0, 1),

δT(μ1) + (1 − δ)T(μ2) ∈ [ min
μ∈S(α)

T(μ), max
μ∈S(α)

T(μ)]

= Φ(α)

and thus δα1 + (1 − δ)α2 ∈ Φ(α)—as required.
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By Kakutani’s fixed point theorem, Φ possesses a fixed point α∗. Letting μ∗ ∈ S(α∗)

be such that T(μ∗) = α∗, we conclude that μ∗ is an MFE. �

Theorem 1

For convenience, since the expected utility Ud(a, μ) depends on μ only through

α = T(μ), we may write it as a function of α as follows:

Ud(a, α) = −V · B(p, qd(α), a) − C · a ( 13)

Consider the incremental expected utility for an agent of degree d, i.e.

ΔUd(α) = Ud(1, α) − Ud(0, α) ( 14)

= −V · (p + (1 − p)qd(α))(1 − k) − C − (−V · (p + (1 − p)qd(α))

= V ·
(
p + (1 − p)qd(α)

)
k − C

We will first show that any equilibrium is an upper-threshold strategy.

Consider ΔUd(α) as a function of the continuous variable d over the connected

support [1,∞). From Equation ( 14), we can write

ΔUd(α) = V ·
(
p + (1 − p)qd(α)

)
k − C

Since qd(α) is non-decreasing in d, for any α ∈ (0, 1), ΔUd(α) is a non-decreasing

function of d. It follows that the inverse image of (−∞, 0) is ∅ if ΔU1(α) > 0 or an

interval [1, x) where x � 1 otherwise. The integers in such intervals (i.e. ∅
⋂

N + or

[1, x)
⋂

N +) represent the degrees of agents for whom not investing in protection is

a strict best response, i.e. {d : Sd(α) = {0}}. It follows that the degrees of agents

for whom investing in protection is a strict best response (i.e. {d : Sd(α) = {1}}) are

located at the rightmost extremity of the degree support.

Thus, we may write μ(d) = 1, for all d > dU and μ(d) = 0, for all d < dU . This is

valid for any best-responding strategy μ and it is therefore valid for any equilibrium

strategy μ∗.

We now prove equilibrium uniqueness. We prove it in a sequence of steps:

Step 1: For all d � 1, ΔUd(α) is strictly increasing in α ∈ [0, 1]. This follows directly

from Definition 3.

Step 2: For all d � 1, and α′ > α, Sd(α
′) 
 Sd(α).

14 This follows immediately from

Step 1 and the definition of Sd in Definition 8.

Step 3: If μ′, μ are strategies such that μ′(d) � μ(d), then T(μ′) � T(μ). This

follows from the fact that F(μ, α) (cf. Equation (6) in Definition 10) is non-increasing

in μ and that it is also continuous in both μ and α. Thus, the unique fixed point

ᾱ = F(μ, ᾱ) is non-increasing in μ. Therefore, T(μ′) � T(μ).

Step 4: Completing the proof. So now suppose that there are two mean-field

equilibria μ∗ and μ′∗, with T(μ′∗) = α′∗ > α∗ = T(μ∗). By Step 2, since μ∗ ∈ S(α∗)

and μ′∗ ∈ S(α′∗), we have μ′∗(d) � μ∗(d). By Step 3, we have α∗ = T(μ∗) � T(μ′∗) =

α′∗, a contradiction. Thus, the α∗ = T(μ∗) in any MFE must be unique, as required.

It then follows from the threshold nature of the equilibrium strategy μ∗ that to

α∗, there corresponds a unique μ∗ ∈ S(α∗) such that α∗ = T(μ∗). �

14 Here, the set relation A � B means that for all x ∈ A and y ∈ B, x � y.
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Theorem 2

For convenience, we do as in the proof of Theorem 1 and write the expected utility

Ud(a, α) as a function of α.

In a game of self-protection, consider now ΔUd(α) as a function of the continuous

variable d over the connected support [1,∞). From Equations (7) and (2), we can

write

ΔUd(α) = Ud(1, α) − Ud(0, α)

= −V · (p(1 − k) + (1 − p(1 − k))qd(α)) − C + V · (p + (1 − p)qd(α))

= V · (pk − pkqd(α)) − C

Since qd(α) is non-decreasing in d, for any α ∈ (0, 1), ΔUd(α) is a non-increasing

function of d. It follows that the inverse image of (−∞, 0) is an interval [1,∞)

if ΔU1(α) < 0 or an interval (x,∞) where x � 1 otherwise. The integers in such

intervals (i.e. [1,∞)
⋂

N + or (x,∞)
⋂

N +) represent the degrees of agents for whom

not investing in protection is a strict best response, i.e. {d : Sd(α) = {0}}. It follows

that the degrees of agents for whom investing in protection is a strict best response

(i.e. {d : Sd(α) = {1}}) are located at the leftmost extremity of the degree support.

Thus, we may write μ(d) = 1, for all d < dL and μ(d) = 0, for all d > dL. This is

valid for any best-responding strategy μ and it is therefore valid for the equilibrium

strategy μ∗. �

Corollary 1

The result follows from comparing the incremental expected utility of an agent of

degree d in the case of networked-risk protection (see Equation ( 15) below) with the

one in the case of total protection (see Equation ( 14) in the proof of Theorem 1):

ΔUd(α) = V (1 − p)qd(α)k − C ( 15)

By comparing Equation ( 15) Equation to ( 14), it is easy to see that the incremental

utility of investing in protection is Vpk > 0 higher in the case of total protection.

Otherwise, ΔUd(α) is increasing in d and a similar argument as in the proof of

Theorem 1 leads to the conclusion that the equilibrium strategy μ∗ is of an upper-

threshold nature. �

Proposition 2

Part (i):

Note that qd(T(μ∗)) is non-decreasing in d. Thus, for d′ > d, ad′ ∈ μ∗(d′) and

ad ∈ μ∗(d), we have

Ud(ad, μ
∗) � Ud(ad′ , μ∗) � Ud′ (ad′ , μ∗) ( 16)

where the first inequality follows from ad ∈ μ∗(d), while the second inequality follows

from qd(T(μ∗)) being non-decreasing in d. Thus, Ud(ad,T(μ∗)) is non-increasing in

d.

Part (ii):

From Theorem 2, the equilibrium strategy μ∗ is non-increasing in d. From Equation

(7), it thus follows that for ad ∈ μ∗(d), B(p, qd(T(μ∗)), ad) is non-decreasing in d (since

B is non-decreasing in qd(T(μ∗)) and non-increasing in ad). �
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Proposition 3

For convenience, we do as in the proof of Theorem 1 and write the expected utility

Ud(a, α) as a function of α.

Let α∗
l = T(μ∗

l ) and α∗
k = T(μ∗

k). We then have μ∗
l ∈ S(α∗

l ) and μ∗
k ∈ S(α∗

k). Then,

for any d,

Ud(al , α
∗
l ) � Ud(ak, α

∗
l ) � Ud(ak, α

∗
k) ( 17)

where al ∈ μ∗
l (d) and ak ∈ μ∗

k(d).

The first inequality follows from al being a best response to α∗
l (i.e. al ∈ μ∗

l (d)) for

an agent of degree d. The second inequality follows from Ud being decreasing in α∗.

Since Equation ( 17) holds for any d, all agents have expected utility that is

weakly greater in the higher investment equilibrium μ∗
l . We therefore conclude that

μ∗
l weakly Pareto-dominates μ∗

k . �

Proposition 4

First note that the expected utilities in all possible cases are

Utot
d (1, μ∗) = −V

(
p + (1 − p)qd(T(μ∗))

)
(1 − k) − C

Utot
d (0, μ∗) = −V

(
p + (1 − p)qd(T(μ∗))

)

U
s.p.
d (1, μ̄∗) = −V

(
p(1 − k) + (1 − p(1 − k))qd(T(μ̄∗))

)
− C

U
s.p.
d (0, μ̄∗) = −V

(
p + (1 − p)qd(T(μ̄∗))

)

Also, note that the incremental utilities from investing in each class of games are

ΔUtot
d (μ∗) = Utot

d (1, μ∗) − Utot
d (0, μ∗)

= V
(
p + (1 − p)qd(T(μ∗))

)
k − C ( 18)

and that

ΔUs.p.
d (μ̄∗) = Utot

d (1, μ̄∗) − Utot
d (0, μ̄∗)

= V
(
p − pqd(T(μ̄∗))

)
k − C ( 19)

Suppose Vpk > C . Then, from Equation ( 18), we see that in a game of total

protection ΔUtot
d (μ∗) > 0 for all d and thus μ∗(d) = 1 for all d. Thus,

Wtot(μ∗) =
∑
d

f(d)Utot
d (1, μ∗) ( 20)

Also, from Equation ( 19), we see that in a game of self-protection not all agents

may find it optimal to invest and thus μ̄∗ is some lower threshold strategy. Therefore,

Ws.p.(μ̄∗) =
∑
d<dL

f(d)Us.p.
d (1, μ̄∗) +

∑
d>dL

f(d)Us.p.
d (0, μ̄∗)

+f(dL)μ(dL)Us.p.
d (1, μ̄∗) + f(dL)(1 − μ(dL))Us.p.

d (0, μ̄∗) ( 21)

Since μ∗ 
 μ̄∗, then T(μ∗) � T(μ̄∗). Examining the expressions for the utilities

allows us to conclude that Us.p.
d (1, μ̄∗) < Utot

d (1, μ∗) and that Us.p.
d (0, μ̄∗) < Utot

d (0, μ∗) <

Utot
d (1, μ∗), where the last inequality follows from the fact that ΔUtot

d (μ∗) > 0.

Comparing the expressions for the welfare then allows us to conclude that Ws.p.(μ̄∗) <

Wtot(μ∗).

Now suppose Vpk � C . Then, in a game of total protection, examining Equation

( 18) tells us that not all agents may find it optimal to invest. μ∗ is thus some
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upper-threshold strategy and thus

Wtot(μ∗) =
∑
d>dU

f(d)Utot
d (1, μ∗) +

∑
d<dU

f(d)Utot
d (0, μ∗)

+f(dU)μ(dU)Utot
d (1, μ∗) + f(dU)(1 − μ(dU))Utot

d (0, μ∗) ( 22)

Also, in a game of self-protection, μ̄∗(d) = 0 for all d. Indeed ΔUs.p.
d (μ̄∗) < 0 (see

Equation ( 19)). Thus,

Ws.p.(μ̄∗) =
∑
d

f(d)Us.p.
d (0, μ̄∗) ( 23)

Since μ∗ 
 μ̄∗, then T(μ∗) � T(μ̄∗). Noting that Us.p.
d (0, μ̄∗) < Utot

d (0, μ∗) and that

U
s.p.
d (0, μ̄∗) < Utot

d (0, μ∗) � Utot
d (1, μ∗) for all d such that μ∗(d) > 0, we conclude by

comparing the expressions for the welfare that Ws.p.(μ̄∗) < Wtot(μ∗).

Thus, for all parameter ranges, Ws.p.(μ̄∗) < Wtot(μ∗). This completes the

proof. �

Proposition 5

Let F′(μ, α) and F(μ, α) denote Equation (8) under f̃′ and f̃, respectively. qd(α) is

non-decreasing in d and we know from Theorem 2 that in a game of self-protection,

any equilibrium strategy is a lower threshold strategy. We therefore only need to

consider such strategies. It then follows from Equation (8) that given any lower

threshold strategy μ, F′(μ, α) � F(μ, α) for all α ∈ [0, 1]. Since by Property 2,

Equation (8) has a single fixed point in α and we conclude that T′(μ) � T(μ), where

T′(μ) and T(μ) denote Equation (4) under f̃′ and f̃, respectively.

It then follows that

Φ′(α) = T′(S(α))


 T(S(α))

= Φ(α)

It therefore follows that α′∗ = min{α : α = Φ′(α)} � min{α : α = Φ(α)} = α∗ and

that ᾱ′∗ = max{α : α = Φ′(α)} � max{α : α = Φ(α)} = ᾱ∗.

Thus, the equilibrium strategies are such that μ′∗ = S(ᾱ′∗) � S(ᾱ∗) = μ∗ and

μ̄′∗ = S(α′∗) � S(α∗) = μ̄∗. Likewise, T′(μ̄′∗) = α′∗ � α∗ = T(μ̄∗) and T′(μ′∗) =

ᾱ′∗ � ᾱ∗ = T(μ∗). �

Proposition 6

Part(i):

Let F′(μ, α) and F(μ, α) denote Equation (8) under r′ and r, respectively. In the

case of the contact process described in the examples of Section 3.3, q′
d(α) > qd(α)

for all α ∈ [0, 1], d > 0. It then follows from Equation (8) that given any strategy μ,

F′(μ, α) � F(μ, α) for all α ∈ [0, 1]. Since by Property 2, Equation (8) has a single

fixed point, we conclude that T′(μ) � T(μ), where T′(μ) and T(μ) denote the

correspondence (4) under r′ and r, respectively.

It then follows that

Φ′(α) = T′(S(α))


 T(S(α))

= Φ(α)
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It therefore follows that α′∗ = min{α : α = Φ′(α)} � min{α : α = Φ(α)} = α∗ and

that ᾱ′∗ = max{α : α = Φ′(α)} � max{α : α = Φ(α)} = ᾱ∗.

Thus, the equilibrium strategies are such that μ′∗ = S(ᾱ′∗) � S(ᾱ∗) = μ∗ and

μ̄′∗ = S(α′∗) � S(α∗) = μ̄∗. Likewise, T′(μ̄′∗) = α′∗ � α∗ = T(μ̄∗) and T′(μ′∗) =

ᾱ′∗ � ᾱ∗ = T(μ∗).

Part (ii):

We prove by contradiction. Suppose r′T′(μ′∗) < rT(μ∗). Then, S(T′(μ′∗)) �
S(T(μ∗)) and thus μ′∗ � μ∗. Since F′(μ, α) � F(μ, α) for any μ ∈ M and α ∈ [0, 1]

and since F′ and F are decreasing in μ, we have that F′(μ′∗, α) � F(μ∗, α) for

any α ∈ [0, 1]. Therefore, T′(μ′∗) � T(μ∗) and thus, since r′ > r, we have that

r′T′(μ′∗) > rT(μ∗), a contradiction. We conclude that r′T′(μ′∗) � rT(μ∗).

It then follows that S(T′(μ′∗)) 
 S(T(μ∗)) and thus μ′∗ 
 μ∗.

The result extends to games of networked-risk protection by their structural

equivalence to games of total protection (see Corollary 1). This completes the

proof. �

Proposition 7

Part (i):

Let F′(μ, α) and F(μ, α) denote Equation (8) under k′ and k, respectively. It

follows from Equation (8) that given any strategy μ, F′(μ, α) � F(μ, α) for all

α ∈ [0, 1]. Since under by Property 2, Equation (8) has a single fixed point, we

conclude that T′(μ) � T(μ), where T′(μ) and T(μ) denote the correspondence (4)

under k′ and k, respectively.

It then follows that

Φ′(α) = T′(S(α))

� T(S(α))

= Φ(α)

It therefore follows that α′∗ = min{α : α = Φ′(α)} � min{α : α = Φ(α)} = α∗ and

that ᾱ′∗ = max{α : α = Φ′(α)} � max{α : α = Φ(α)} = ᾱ∗.

Thus, μ′∗ = S(ᾱ′∗) 
 S(ᾱ∗) = μ∗ and μ̄′∗ = S(α′∗) 
 S(α∗) = μ̄∗. Likewise,

T′(μ̄′∗) = α′∗ � α∗ = T(μ̄∗) and T′(μ′∗) = ᾱ′∗ � ᾱ∗ = T(μ∗).

Part (ii):

We prove by contradiction. Suppose T′(μ′∗) > T(μ∗). Then, S(T′(μ′∗)) 

S(T(μ∗)) and thus μ′∗ 
 μ∗. Since F′(μ, α) � F(μ, α) for any μ ∈ M and α ∈ [0, 1]

and since F′ and F are decreasing in μ, we have that F′(μ′∗, α) � F(μ∗, α) for

any α ∈ [0, 1]. Therefore, T′(μ′∗) � T(μ∗), a contradiction. We conclude that

T′(μ′∗) � T(μ∗).

It then follows that S(T′(μ′∗)) � S(T(μ∗)) and thus μ′∗ � μ∗.

The result extends to games of networked-risk protection by their structural

equivalence to games of total protection (see Corollary 1). This completes the

proof. �

Proposition 8

Part (i):

The proof is analogous to that of Proposition 1, with only minor modifications.
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Denote the function T(μ) = (T(μ),G(μ)) and let the correspondence Ψ be such that

Ψ(α, ω) = T(S(α, ω)), with the correspondence S(α, ω) defined as in Definition 16.

First, note that Ψ still has a compact domain [0, 1]×[0, 1] and a non-empty image.

Furthermore, it is also simple to show that Ψ has a closed graph. First, note

that S(α, ω) has a closed graph when we endow the set of strategies with the

product topology on [0, 1]∞. Indeed, choose any (αn, ωn) → (α, ω) and μn → μ

such that μn ∈ S(αn, ωn). Then, μn(d) → μ(d) for any d. Expressing utility as a

function of α and ω, i.e. Ud(a, α, ω) = −V · B(p, qd(α), a) − C · g(ω) · a, we note

that by the continuity of Ud(1, α, ω) and Ud(0, α, ω), it follows that μ(d) ∈ Sd(α, ω).

Thus, S has a closed graph. Note also that with the product topology on the

space of strategies, T is continuous: By the bounded convergence theorem, both

T(μn) → T(μ) and G(μn) → G(μ) and therefore it is also true that T(μn) → T(μ).

We now only need to consider the sequences (αn, ωn) → (α, ω) and (α′
n, ω

′
n) → (α′, ω′)

where (α′
n, ω

′
n) ∈ Ψ(αn, ωn). By choosing μn ∈ S(αn, ωn) such that T(μn) = α′

n and

G(μn) = ω′
n, and by the same argument as in the proof of Proposition 1, we can

conclude that (α′, ω′) ∈ Ψ(α, ω), as desired.

Finally, the image of Ψ is convex. Indeed, T(μ) is continuous in μ. Furthermore,

S(α, ω) is convex (which follows from convexity of Sd(α, ω) for any d). Convexity

of the image of Ψ thus follows from an argument analogous to that presented in

the proof of Proposition 1.

By Kakutani’s fixed point theorem, Ψ has a fixed point (α∗, ω∗). Letting μ∗ ∈
S(α∗, ω∗) be such that T(μ∗) = (α∗, ω∗), we conclude that μ∗ is an MFE.

Part (ii):

Note that the incremental expected utilities for an agent of degree d in games of

total and self-protection are, respectively

ΔUd(μ) = V · (p + (1 − p)qd(T(μ))) k − Cg(G(μ)) ( 24)

and

ΔUd(μ) = V · (pk − pkqd(T(μ))) − Cg(G(μ)) ( 25)

It is obvious that for any given T(μ) and G(μ), these functions preserve the properties

(i.e. monotonicity in d) that were discussed in the proofs of Theorems 1 and 2. The

threshold nature of equilibria is thus maintained. By an argument analogous to that

of the proof of Corollary 1, it also follows that a game of networked-risk protection

is structurally equivalent to a game of total protection and thus the upper-threshold

nature also follows in that case.

Part (iii):

For convenience, since the expected utility Ud(a, μ) depends on μ only through

α = T(μ) and ω = G(μ), we may write it as a function of α and ω as follows:

Ud(a, α, ω) = −V · B(p, qd(α), a) − C · g(ω) · a ( 26)

For a game of total protection, the incremental expected utility for an agent of

degree d is

ΔUd(α, ω) = V · (p + (1 − p)qd(α)) k − C · g(ω) ( 27)

We will consider the case when g(ω) is an increasing function. As in the proof of

Theorem 1, we will conduct the analysis in four steps.
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Step 1: For all d � 1, ΔUd(α, ω) is strictly increasing in α ∈ [0, 1] and strictly

decreasing in ω ∈ [0, 1].

Step 2: Notice that α and ω are moving ΔUd(α, ω) in opposite directions. Hence, if

both α and ω increase, we cannot conclude anything about the change in Sd(α, ω).

However, for α′ > α and ω′ > ω, it holds Sd(α
′, ω) 
 Sd(α, ω

′).

Step 3: For any strategies μ′, μ such that μ′(d) � μ(d), ∀d � 1, then G(μ′) � G(μ)

and T(μ′) � T(μ). As we have noted before, the global externality does not have a

direct impact on F(μ, α) and thus the behavior of T(μ) remains as in step 3 of the

proof of Theorem 1.

Step 4: Suppose that there are two mean-field equilibria (μ∗, α∗, ω∗) and (μ′∗, α′∗, ω′∗).

Without loss of generality, assume that α′∗ > α∗. We need to consider two cases.

First, if ω′∗ � ω∗, then it is true that S(α′∗, ω′∗) 
 S(α∗, ω∗). As μ∗ ∈ S(α∗, ω∗)

and μ′∗ ∈ S(α′∗, ω′∗), then it follows that μ′∗ 
 μ∗. However, that leads to the

contradiction: α∗ = T(μ∗) � T(μ′∗) = α′∗. Finally, consider the case of ω′∗ > ω∗. By

Proposition 8(ii), due to the threshold nature of the equilibrium, the equilibrium

strategies can be ordered as either μ′∗ 
 μ∗ or μ′∗ � μ∗. If μ′∗ � μ∗, then

ω∗ = G(μ∗) � G(μ′∗) = ω′∗, which is a contradiction. If μ′∗ 
 μ∗, it follows that

α∗ = T(μ∗) � T(μ′∗) = α′∗ and we arrive at a contradiction.

Thus, we showed that in a game of total protection with both endogenized cost

(with g(·) increasing), any MFE must be unique. Uniqueness in the case of a game

of networked-risk protection follows by its structural equivalence to a game of total

protection (Corollary 1). �
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