
Journal of Glaciology, Vol. 54, No. 187, 2008 631

Application of a continuum-mechanical model for the flow of
anisotropic polar ice to the EDML core, Antarctica

Hakime SEDDIK,1 Ralf GREVE,1 Luca PLACIDI,2 Ilka HAMANN,3

Olivier GAGLIARDINI4

1Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
E-mail: hakime@lowtem.hokudai.ac.jp

2Department of Structural and Geotechnical Engineering, ’Sapienza’, University of Rome,
Via Eudossiana 18, I-00184 Rome, Italy

3Alfred Wegener Institute for Polar and Marine Research, Columbusstraße, D-27568 Bremerhaven, Germany
4Laboratoire de Glaciologie et Geophysique de l’Environment du CNRS (associéà l’Université Joseph Fourier–Grenoble I),

54 rue Molière, BP 96, F-38402 Saint-Martin d’Hères Cedex, France

ABSTRACT. We present an application of the newly developed CAFFE model (Continuum-mechanical,
Anisotropic Flow model based on an anisotropic Flow Enhancement factor) to the EPICA ice core at
Kohnen Station, DronningMaud Land, Antarctica (referred to as the EDML core). A one-dimensional flow
model for the site is devised, which includes the anisotropic flow law and the fabric evolution equation
of the CAFFE model. Three different solution methods are employed: (1) computing the ice flow based
on the flow law of the CAFFE model and the measured fabrics; (2) solving the CAFFE fabric evolution
equation under the simplifying assumption of transverse isotropy; and (3) solving the unrestricted CAFFE
fabric evolution equation. Method (1) demonstrates clearly the importance of the anisotropic fabric in
the ice column for the flow velocity. The anisotropic enhancement factor produced with method (2)
agrees reasonably well with that of method (1), even though the measured fabric shows a girdle structure
(which breaks the transverse isotropy) in large parts of the ice core. For method (3), we find that the
measured fabric is reproduced well by the model down to ∼2100m depth. Systematic deviations at
greater depths are attributed to the disregard of migration recrystallization in the model.

1. INTRODUCTION

Ice in natural land ice masses, such as polar ice sheets, ice
caps and glaciers, consists of a vast number of individual
hexagonal crystals (‘ice Ih’) with a typical diameter of mil-
limetres to centimetres. This length scale contrasts with the
size of the ice masses, which ranges from hundreds of metres
to thousands of kilometres. It has long been known that the
distribution of the crystallographic axes (in particular the op-
tical axes or c axes) at the surface of an ice sheet is essentially
random. However, deeper into the ice, different types of an-
isotropic fabrics with preferred orientations of the c axes tend
to develop (Paterson, 1994, ch. 9).
Many models have been proposed to describe the anisot-

ropy of polar ice. At one end of the range in complexity, a
simple flow-enhancement factor is introduced in an ad hoc
fashion as a multiplier of the isotropic ice fluidity in order
to account for anisotropy and/or impurities. This is done in
most current ice-sheet models, often without explicitly men-
tioning anisotropy (e.g. Saito and Abe-Ouchi, 2004; Greve,
2005; Huybrechts and others, 2007).
In macroscopic, phenomenological models, an anisotrop-

ic macroscopic formulation for the flow law of the polycrys-
tal is postulated. To be usable, the rheological parameters
that enter this law must be evaluated as functions of the an-
isotropic fabric (e.g. Morland and Staroszczyk, 1998, 2003;
Gillet-Chaulet and others, 2005, 2006). The concept of ho-
mogenization models, also called micro–macro models, is to
derive the polycrystalline behaviour at the level of individual
crystals and the fabric (e.g. Lliboutry, 1993; Azuma, 1994;
Castelnau and others, 1996, 1998; Svendsen and Hutter,
1996; Gödert and Hutter, 1998; Ktitarev and others, 2002;

Thorsteinsson, 2002). The most complex full-field models
solve the Stokes equation for ice flow properly by decompos-
ing the polycrystal into many elements, which makes it pos-
sible to infer the stress and strain-rate heterogeneities at the
microscopic scale (e.g. Meyssonnier and Philip, 2000; Man-
suy and others, 2002; Lebensohn and others, 2004a,b). A
comprehensive, up-to-date overview of these different types
of models is given by Gagliardini and others (in press). How-
ever, the most sophisticated models are usually too complex
and computationally time-consuming to be readily included
in a model of macroscopic ice flow.
Here, the CAFFE model (Continuum-mechanical, Aniso-

tropic Flow model based on an anisotropic Flow Enhance-
ment factor), is used (section 2). It belongs to the class of
macroscopic models, and is explained in detail in the stud-
ies by Greve and others (2008) and L. Placidi and others
(unpublished information), based on Placidi (2004, 2005),
Placidi and Hutter (2006a), Faria (2006a,b) and Faria and
others (2006).
The flow-enhancement factor is taken as a function of a

newly introduced scalar quantity referred to as deformabil-
ity. This is essentially a non-dimensional invariant related to
the shear stress acting on the basal plane of a single crys-
tal, weighted by the orientation distribution function (ODF)
which describes the anisotropic fabric of the polycrystal. Fab-
ric evolution is modelled by an orientation mass balance
which accounts for grain rotation and recrystallization pro-
cesses. The CAFFE model fulfils all the fundamental prin-
ciples of classical continuum mechanics (see also Placidi
and Hutter, 2006b), is sufficiently simple to allow numer-
ical implementations in ice-flow models and contains only
a limited number of free parameters.
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Fig. 1. Basal, prismatic and pyramidal glide planes in the hexagonal
ice-Ih crystal, sketched as a right hexagonal prism (Faria, 2003).

In order to demonstrate its performance, the CAFFE model
is applied to the site of the EPICA (European Project for Ice
Coring in Antarctica) ice core at Kohnen Station, Dronning
Maud Land, East Antarctica (referred to as the EDML core),
for which data on the ice flow as well as on the aniso-
tropic fabric are available (section 3.1). A one-dimensional
(1-D) flow model, including the CAFFE model (with neg-
lected recrystallization processes), is devised for the site in
section 3.2. Three different solution methods are employed:
(1) computing the ice flow based on the flow law of the
CAFFE model and the fabrics data; (2) solving the CAFFE
fabric evolution equation under the simplifying assumption
of transverse isotropy; and (3) solving the unrestricted CAFFE
fabric evolution equation (section 4). Section 5 summarizes
the main findings of the study.

2. CAFFE: CONTINUUM-MECHANICAL MODEL
FOR ANISOTROPIC POLAR ICE
2.1. Anisotropic generalization of Glen’s flow law
Glen’s flow law
The flow law of the CAFFE model is a generalization of the
isotropic Glen’s flow law

D = EA(T ′)σn−1 S (1)

(e.g. Paterson, 1994; Van der Veen, 1999; Hooke, 2005;
Greve and Blatter, in press), where D = sym L = (L + LT)/2
is the strain-rate tensor (symmetric part of the gradient L =
grad v of the velocity v), S the deviatoric stress tensor, σ =√
[tr (S2)]/2 the effective stress, n the stress exponent (chosen

as n = 3), A(T ′) the rate factor and E the flow-enhancement
factor. The rate factor A(T ′) depends upon the temperature
relative to pressure melting T ′ = T −Tm+T0, where T is the
absolute temperature, Tm is the pressure-melting point given
by Tm = T0 − βp, T0 is the melting point at zero pressure
(T0 = 273.16K) and β is the Clausius–Clapeyron constant
(β = 9.8× 10−2 KMPa−1). The Arrhenius law is defined as

A(T ′) = A0 e−Q/RT ′
, (2)

where A0 is the pre-exponential constant,Q is the activation
energy and R=8.314 Jmol−1 K−1 is the universal gas con-
stant. Suitable values for the pre-exponential constant and
the activation energy are A0 = 3.985 × 10−13 s−1 Pa−3 for
T ′ ≤ 263.15K and A0 = 1.916 × 103 s−1 Pa−3 for T ′ ≥
263.15K, and Q = 60kJmol−1 for T ′ ≤ 263.15K and Q =
139 kJmol−1 for T ′ ≥ 263.15K. The flow-enhancement fac-
tor E is equal to unity for pure ice, and can be set in an ad
hoc fashion to values deviating from unity in order to ac-
count roughly for the effects of impurities and/or anisotropy
(Paterson, 1991).

Fig. 2. Decomposition of the deviatoric stress vector (S · n) into
components normal ((n·S·n) n) and tangential (Stt) to the basal plane.

Deformation of a single crystal in the polycrystalline
aggregate
In order to motivate the anisotropic generalization of Glen’s
flow law (Equation (1)), let us first consider the deformation
of a single crystal embedded in the polycrystalline aggregate.
Only the dominant deformation along the basal plane is ac-
counted for, according to L. Placidi and others (unpublished
information). Deformations along prismatic and pyramidal
planes, which are at least 60 times more difficult to activate
(Duval and others, 1983; Lliboutry and Duval, 1985), shall
be neglected (Fig. 1).
In the sense of continuum mechanics, the tensor S is in-

terpreted as the macroscopic stress deviator which describes
the stress on a control volume spanning a sufficiently large
number of individual crystals. Therefore, S does not depend
upon the orientation n (normal unit vector of the basal plane
in the direction of the c axis). Note that the CAFFE model
does not deal with microscopic stresses on the level of indi-
vidual crystals and does not attempt to relate microscopic
and macroscopic stresses. The macroscopic deviatoric stress
vector acting on the basal plane is given by the expression
S · n (Fig. 2). It is reasonable to assume that only the stress
component St tangential to the basal plane contributes to its
shear deformation, while the component normal to the basal
plane has no effect. The decomposition of the stress vector
can be written

S · n = (n · S · n) n+ Stt, (3)

where t denotes the tangential unit vector (Fig. 2). As
mentioned above, deformation of the single crystal in the
polycrystalline aggregate is attributed to the tangential
component St only. Since we aim for a theory which de-
scribes the effects of anisotropy by a scalar anisotropic flow-
enhancement factor, we define the scalar invariant from
Equation (3):

S2t = (S · n)2 − (n · S · n)2. (4)

This quantity has the unit of stress squared, and so a natural
way to non-dimensionalize it is by the square of the effective
stress σ, which is also a scalar invariant. We therefore intro-
duce the deformability of a single crystal in the polycrystal-
line aggregate, which is loaded by the deviatoric stress S as

A�(n) =
5
2
S2t (n)
σ2

= 5
(S · n)2 − (n · S · n)2

tr (S2)
. (5)

The factor 5/2 has been introduced for reasons of conveni-
ence, as will become clear.

Flow law for polycrystalline ice
In polycrystalline ice, the crystals within a control volume
(which is assumed to be large compared with the crystal
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Fig. 3. Uniaxial compression on single maximum (UC/SM) and
simple shear on single maximum (SS/SM) for a small sample of poly-
crystalline ice. Stresses are indicated by black arrows, and the single
maximum fabric is represented by the dark grey arrows within the
ice sample.

dimensions, but small compared to the macroscopic scale of
ice flow) show a certain fabric. At one extreme is the single-
maximum fabric for which all c axes are perfectly aligned.
At the opposite extreme lies the isotropic fabric with a com-
pletely random distribution of the c axes. A general fabric
between these cases can be described by the orientation
mass density (OMD) ρ�(n), defined as the mass per volume
and orientation, the latter being specified by the normal unit
vector (direction of the c axis) n ∈ S2 (the unit sphere). Evi-
dently, when integrated over all orientations, the OMD must
yield the normal mass density ρ, which leads to the normal-
ization condition ∫

S2
ρ�(n) d2n = ρ. (6)

Alternatively, an ODF f �(n) can be defined as

f �(n) =
ρ�(n)

ρ
, (7)

which is normalized to unity when integrated over all orient-
ations.
We use the ODF to define the deformability of polycrys-

talline ice by weighting the deformability of the single crystal
(Equation (5)),

A =
∫
S2

A�(n) f �(n) d2n

=
5
2

∫
S2

S2t (n)
σ2

f �(n) d2n

= 5
∫
S2

(S · n)2 − (n · S · n)2
tr (S2)

f �(n) d2n. (8)

Note that for the isotropic case the ODF is f �(n) = 1/(4π),
and from Equation (8) we obtain a deformability of A =
1 (L. Placidi and others, unpublished information) For this
reason, the factor 5/2 has been introduced into Equation (5).
The envisaged flow law for anisotropic polar ice can now

be formulated. Essentially, we keep the form of Glen’s flow
law (Equation (1)), but with a scalar anisotropic enhancement
factor Ê (A) instead of the parameter E :

D = Ê (A)A(T ′) σn−1 S. (9)

The function Ê (A) is supposed to be strictly increasing with
the deformability A, and has the fixed points

Ê (0) = Emin; uniaxial compression on single maximum,

Ê (1) = 1; arbitrary stress on isotropic fabric,

Ê (5/2) = Emax; simple shear on single maximum. (10)

Fig. 4. Anisotropic enhancement factor Ê (A) as a function of the
deformability A according to Equation (11), for Emax = 10 and
Emin = 0.

The ‘hard’ case (Ê (0) in Equation (10)) and the ‘soft’ case
(Ê (5/2) in Equation (10)) are illustrated in Figure 3. Note also
that the deformability cannot take values larger thanA = 5/2
(L. Placidi and others, unpublished information).
For the detailed form Ê (A) of the anisotropic enhance-

ment factor, in addition to Equation (10) we demand that the
function is continuously differentiable, i.e. Ê ∈ C 1[0, 5/2].
Moreover, Azuma (1995) and Miyamoto (1999) have exper-
imentally verified that the enhancement factor depends on
the Schmid factor (shear stress in the basal plane) to the fourth
power, i.e. on the square of the deformability A. This yields

Ê (A) =

⎧⎪⎪⎨
⎪⎪⎩
Emin + (1− Emin)At , t = 8

21
Emax−1
1−Emin , 0 ≤ A ≤ 1,

4A2(Emax−1)+25−4Emax
21 , 1 ≤ A ≤ 5

2

(11)
(L. Placidi and others, unpublished information). Several in-
vestigations (e.g. Russell-Head and Budd, 1979; Pimienta
and others, 1987; Jacka and Budd, 1989) indicate that the
parameter Emax (maximum softening) is ∼10. The param-
eter Emin (maximum hardening) can be realistically chosen
between 0 and 1/10; a non-zero value serves the purpose of
avoiding numerical problems. The function (Equation (11)) is
shown in Figure 4.
Due to the scalar enhancement factor, the anisotropic

flow law (Equation (9)) retains the collinearity between the
strain-rate tensor D and the stress deviator S of Glen’s flow
law (Equation (1)), whereas several other anisotropic flow
laws relate D and S by tensor quantities (Lliboutry, 1993;
Azuma, 1994; Mangeney and others, 1996; Svendsen and
Hutter, 1996; Gödert and Hutter, 1998; Thorsteinsson, 2001;
Morland and Staroszczyk, 2003; Gillet-Chaulet and others,
2005). Nevertheless, the flow law (Equation (9)) is truly aniso-
tropic. For a polycrystalline ice sample with anisotropic ODF
subjected to a certain state of stress (e.g. a simple-shear ex-
periment), the material response (strain rate) changes under
rotations of the sample, which fulfils the definition of an-
isotropy in the context of rheology (e.g. Liu, 2002, p. 86).
The drawback of the formulation with a scalar enhancement
factor is that in complex states of stress, the contribution
of each stress component to the strain rate is the same. In
reality, it depends upon the fabric (e.g. Thorsteinsson, 2001).
This compromise is made in the CAFFE model for the sake
of simplicity, i.e. a limited number of parameters, limited
computational demands and relatively easy implementation
in flow models of ice sheets and glaciers.
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Fig. 5. Selected Schmidt diagrams for the observed fabrics of the
EDML ice core between depths of 54 and 2563m. Centres of dia-
grams coincide with the core axis. All examples displayed here are
from vertically cut thin sections, rotated to the horizontal view. n
denotes the number of grains included. Note that the orientations
of the horizontal planes with respect to the ice-flow direction are
unknown.

Inversion of the flow law
The anisotropic flow law (Equation (9)) can be inverted ana-
lytically. We find

S = [Ê (A)]−1/n [A(T ′)]−1/n d−[1−(1/n)] D, (12)

where d =
√
[tr (D2)]/2 is the effective strain rate. The de-

formability A also needs to be expressed by strain rates in-
stead of stresses (Equation (8)). In analogy to Equation (3), we
consider the macroscopic strain-rate vector D · n in a single
crystal in the polycrystalline aggregate, and decompose it
according to

D · n = (n · D · n)n+ Dtt, (13)

where Dt is the shear rate in the basal plane (see also Fig. 2).
Analogous to Equation (4), we define from Equation (13) the
scalar invariant

D2t = (D · n)2 − (n · D · n)2. (14)

Due to the collinearity of the tensors S and D (Equations (9)
and (12)), the deformability of polycrystalline ice can be
readily expressed by Dt and d , i.e.

A =
5
2

∫
S2

D2t (n)
d2

f �(n) d2n

= 5
∫
S2

(D · n)2 − (n · D · n)2
tr (D2)

f �(n) d2n, (15)

which completes the inversion of the anisotropic flow law.

2.2. Evolution of anisotropy
Orientation mass balance
The anisotropic flow law of the CAFFE model in the form of
Equation (9) or Equation (12) needs to be complemented by
an evolution equation for the anisotropic fabric. This is done

by formulating the orientation mass balance for the OMD
ρ�(n), i.e.

∂ρ�

∂t
+ div (ρ�v) + divS2 (ρ

�u� + q�) = ρ�Γ� (16)

(L. Placidi and others, unpublished information). In this equa-
tion, div is the normal three-dimensional (3-D) divergence
operator, divS2 the divergence operator on the unit sphere,
u�(n) the orientation transition rate, q�(n) the orientation flux
and Γ�(n) the orientation production rate. The orientation
transition rate corresponds to grain rotation, the orientation
flux to rotation recrystallization (polygonization) and the
orientation production rate tomigration recrystallization, and
all other processes in which the transport of mass from one
grain with a certain orientation to another grain with a dif-
ferent orientation cannot be neglected. Mass conservation
requires ∫

S2
ρ�(n) Γ�(n) d2n = 0. (17)

Note also that the velocity v is assumed to be independent
on the orientation n.
In order to solve the orientation mass balance (Equa-

tion (16)), constitutive relations for the orientation transition
rate u�(n), the orientation flux q�(n) and the orientation pro-
duction rate Γ�(n) need to be provided as closure conditions.

Constitutive relations
As mentioned above, the orientation transition rate corres-
ponds physically to grain rotation. Since grain rotation is in-
duced by shear deformation in the basal plane, in the CAFFE
model it is controlled by the shear rate Dtt (Equation (13)).
The relation

u� = −ιDtt +W · n
= ι · [(n · D · n)n− D · n] +W · n (18)

is employed (e.g. Dafalias, 2001), where the parameter ι is
a positive scalar function which can depend on scalar in-
variants of the strain rate and the fabric. The additional term
W · n with the spin tensor W = skw L = (L − LT)/2 (skew-
symmetric part of the velocity gradient L = grad v) describes
the contribution of local rigid-body rotations.
Placidi (2004, 2005) argued that it is a reasonable approxi-

mation to take the parameter ι as a positive constant. In the
special case ι = 1, the basal planes are material area ele-
ments, i.e. they carry out an affine rotation. However, due to
geometric incompatibilities of the deformation of individual
crystals in the polycrystalline aggregate, affine rotations are
not plausible and we expect realistic values of ι to be less
than unity. In fact, Placidi (2004, 2005) showed that the fab-
rics in the upper 2000m of the GRIP ice core in central
Greenland can be best explained by the value ι ≈ 0.4. Here,
we choose ι = 0.6 which yields the best fit between mod-
elled and measured fabrics for the EDML ice core.
Recrystallization processes, which are described by the

orientation flux and the orientation production rate, are neg-
lected in this study.We therefore set q�(n) = 0 and Γ�(n) = 0.
Constitutive relations for these quantities are discussed by
Greve and others (2008) and L. Placidi and others (unpub-
lished information).

3. APPLICATION TO THE EDML ICE CORE
We now apply the CAFFE model to the site of the EPICA
deep ice core at Kohnen Station (75◦00’06” S, 00◦04’04” E;
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2892ma.s.l.; EPICA community members, 2006). For this
core with an overall length of 2774m, preliminary fabric
data are available for depths of 50–2570m. Its location on a
flank (rather than a dome as in most other ice cores) allows
derivation of a 1-D flow model based on the shallow-ice
approximation (Hutter, 1983; Morland, 1984) with which
the performance of the CAFFE model can be tested.

3.1. Fabric data
Preliminary fabric data of the EDML core were measured
in 2005 in a −20◦C ice laboratory at the Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, Ger-
many. Samples were drilled between 2001 and 2004 and
have been stored at −30◦C after transportation at −25◦C
to Bremerhaven. Thin sections were prepared according to
standard procedures using a microtome from horizontally
(∼0.5 × 50 × 50mm) and vertically cut samples (∼0.5 ×
50×100mm). The c-axis orientations were derived using an
automatic fabric analyzer system (Wilson and others, 2003)
which enables complete measurements of these samples in
15–30min.
The data are still preliminary, as some local effects, prob-

ably due to the lack of maturity of the automatic fabric ana-
lyzer, need to be explained. However, the impact of these
local effects on the statistics was checked by repeated meas-
urements with changing sample orientations and was shown
to be negligible. Of the 60–600 grains per thin section, ∼5–
10 grains showed these effects. The complete dataset and
its detailed interpretation are presented in Eisen and others
(2007) and I. Hamann and others (unpublished information).
In Figure 5, the preliminary fabric data of the EDML core

are visualized as Schmidt diagrams for selected depths. The
fabrics show a gradual transition from randomly oriented c
axes in shallower depths (down to 600m) to a broad girdle
fabric (∼600–1000m depth).
A small (but systematic) difference in the largest eigen-

values of the second-order orientation tensor a(2) (defined
as the second moment of the ODF, a(2) =

∫
S2 (n n) f

�(n) d2n
where (nn) denotes the tensorial product) between horizon-
tally and vertically cut sections in the girdle fabric region
(∼450–1350m depth) cannot yet be explained. A narrow-
ing of the girdle fabric follows (∼2000m depth). A sudden
change in the flow regime is indicated by a vertical align-
ment of the c axes over∼10m to a single maximum (2040m
depth). Tendencies of second or multiple maxima can be ob-
served at several depths.

3.2. One-dimensional flow model
We define a local Cartesian coordinate system such that
Kohnen Station is located at the origin, the x axis points
in the 260◦ (west-southwest) direction, the y axis in the
170◦ (south-southeast) direction and z (depth) points vertic-
ally downwards (Fig. 6). According to the topographical data
by Wesche and others (2007), the x axis is approximately
aligned with the downhill direction and the gradient of the
free surface elevation h is

∂h
∂x

= −9× 10−4 ± 10%, ∂h
∂y

= 0. (19)

Thus, in the shallow-ice approximation, the only non-
vanishing bed-parallel shear–stress component is Sxz , given
by

Sxz = ρgz
∂h
∂x
, (20)

Fig. 6. Local coordinate system for the EDML site (the z axis points
downwards). Underlying topographical map by Wesche and others
(2007). The dashed lines indicate approximate flowlines, confining
the likely origin of the EDML ice.

where g is acceleration due to gravity. Combination with the
x-z-component of Glen’s flow law (Equation (1)) yields the
isotropic horizontal velocity:

vx = −2ρg∂h
∂x

∫ H

z
A(T ′) σn−1 z̄ dz̄ (21)

(e.g. Greve, 1997; Greve and Blatter, in press), whereH is the
ice thickness, the rate factor A(T ′) and stress exponent n are
chosen as in section 2.1, and the enhancement factor E has
been set to unity. Consequently, for anisotropic conditions
and the corresponding flow law (Equation (9)), the horizontal
velocity is

vx = −2ρg ∂h
∂x

H∫
z

Ê (A)A(T ′) σn−1 z̄ dz̄, (22)

with the enhancement factor function Ê (A) of Equation (11).
Note that no-slip conditions have been assumed at the ice
base, i.e. vx (z = H) = 0.
The unknowns in Equation (22) are the normal deviatoric

stresses (Sxx , Syy , Szz ) which are required together with the
shallow-ice shear stress (Equation (20)) for computing the
deformability A by Equation (8) and then the enhancement
factor Ê (A) by Equation (11). The normal deviatoric stresses
are computed by application of the inverse anisotropic flow
law (Equation (12)) with the deformability in the form of
Equation (15). The latter is evaluated with the calculated
shallow-ice deformations and an assumed vertical strain rate
Dzz in the form of a Dansgaard–Johnsen distribution (Dans-
gaard and Johnsen, 1969). This consists of a constant value of
Dzz from the free surface down to two-thirds of the ice thick-
ness and a linearly decreasing value of Dzz below (Fig. 7a).
A similar distribution is employed for the temperature pro-
file (Fig. 7b). The vertical velocity vz is determined by inte-
grating the prescribed vertical strain rate Dzz , which gives a
linear/quadratic profile (e.g. Greve and others, 2002).
Since Dzz is negative, we introduce the vertical compres-

sion rate ε = −Dzz = −∂vz/∂z. Horizontal extension is
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Fig. 7. Dansgaard–Johnsen distributions of (a) the vertical strain rate and (b) the temperature at the EDML site. The depth of the kinks is
at two-thirds of the local ice thickness. The strain rate at the surface has been chosen such that the downward vertical velocity equals the
accumulation rate and the surface and basal temperatures match the ice-core data. The bottom is indicated by the horizontal thick lines.

parameterized by

Dxx =
∂vx
∂x

= aε, Dyy =
∂vy
∂y

= (1− a)ε, (23)

where the parameter a is equal to 1/2 for isotropic extension
in the horizontal plane and equal to unity for extension in
the x direction only. The horizontal, bed-parallel shear rate
γ = ∂vx/∂z results from Equation (22), i.e.

γ = 2ρg
∂h
∂x
Ê (A)A(T ′) σn−1 z. (24)

The velocity gradient L = grad v is then

L =

⎛
⎝ aε 0 γ

0 (1− a)ε 0
0 0 −ε

⎞
⎠ . (25)

We therefore obtain for the strain-rate tensor D and the spin
tensor W:

D =

⎛
⎝ aε 0 1

2γ
0 (1− a)ε 0
1
2γ 0 −ε

⎞
⎠ (26)

and

W =

⎛
⎝ 0 0 1

2γ
0 0 0

− 1
2γ 0 0

⎞
⎠ . (27)

Fig. 8. Sketch of the rotation of the girdle fabrics in order to align
them with the x axis (case R13) and the y axis (case R23) in the
Schmidt projection.

For the ODF, we use the preliminary data of the EDML
fabric described above. However, since during the drilling
process the orientation of the core is not fixed, the horizon-
tal orientation of the girdle fabric (∼600–2040m depth) rela-
tive to our coordinate system, i.e. the direction of ice flow,
is unknown. For this reason, we must assign an orientation
for the fabric when computing the enhancement factor. We
consider two limiting cases by rotating the initial data such
that the girdle fabric at all depths is aligned with the x axis
(case R13) and with the y axis (case R23). This is illustrated
in Figure 8.
We assume isotropic conditions at the surface so that

As = 1. For the maximum softening and hardening param-
eters, we use the values Emax = 10 and Emin = 0, respect-
ively.
In a second step, we additionally solve the fabric evolu-

tion (Equation (16)). By allowing only a dependency of the
orientation mass density ρ� on the vertical coordinate z (1-D
steady-state problem) and on the orientation n, the orienta-
tion mass balance (Equation (16)) yields an equation which
governs the fabric evolution along the EDML ice core:

∂ρ�

∂z
vz + ∂i (ρ

�u�
i ) = 0, (28)

where the ith component of the orientational gradient op-
erator ∂i and of the orientation transition rate u

�
i (in index

notation, with summation over repeated indices) are given
as

∂i =
∂

∂ni
− ninj ∂

∂nj
(29)

and

u�
i = ιDhknhnkni − ιDijnj +Wijnj , (30)

respectively. From Equation (29) and by inserting the con-
stitutive relation (Equation (30)) into Equation (28), we
obtain

∂ρ�

∂z
vz + u�

i ∂iρ
� + ρ�∂iu

�
i

=
∂ρ�

∂z
vz + (Wij − ιDij )nj∂iρ

� + 3ιρ�Dhknknh = 0. (31)
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Fig. 9. Variation along the EDML ice core of (a) the enhancement factor; (b) the ice fluidity; and (c) the horizontal velocity. ’Data R13’ and
’Data R23’ represent the solutions obtained with the measured girdle fabrics rotated to align with the x and y direction, respectively.

By using Equations (26) and (27) and introducing spherical
coordinates, Equation (31) reduces to

4
∂ρ�

∂z
vz + 3ιρ

�
{

ε[2(2a − 1) sin2 θ cos 2ϕ − 1− 3 cos 2θ]

+ 2γ sin 2θ cosϕ
}

+ 2
∂ρ�

∂ϕ

{
ει(2a − 1) sin 2ϕ+ γ(−1 + ι)

sinϕ

tan θ

}

+ 2
∂ρ�

∂θ

{
− 1
2

ιε sin 2θ [(2a − 1) cos 2ϕ+ 3]

+ γ(1− ι cos 2θ) cosϕ
}
= 0, (32)

where θ and ϕ are the polar (co-latitude) and azimuth (longi-
tude) angles, respectively. Note that due to Equation (24), the
shear rate γ depends on the fabric via the deformability A.
The shear flow at the EDML station leads to the trans-

port of ice particles over significant horizontal distances.
Based on 3-D flow modelling, Huybrechts and others (2007)
estimate that particles at 89% depth of the core originate
from ∼184 km upstream (approximately eastward). This is
not taken into account in our spatially 1-D model. However,
the variation of the shear upstream of the drill site is prob-
ably small due to the small variation of the surface gradient
(Fig. 6), so that the error resulting from the neglected hori-
zontal inhomogeneity should be limited.
We also consider the simplified case of a transversely iso-

tropic (circularly symmetric) fabric, so that the OMD ρ� is
only a function of the depth z and the polar angle θ. Then
after integration over the azimuth angle ϕ, Equation (32) be-
comes

4
∂ρ�

∂z
vz − ∂ρ�

∂θ
3ιε sin 2θ − 3ιρ�ε(1 + 3 cos 2θ) = 0. (33)

Note that the dependence on the shear rate γ has disap-
peared, so that the evolution of the transversely isotropic
fabric is only driven by the compression rate ε.
Equations (32) and (33) are solved using a finite-volume

discretization in the 3-D (z, θ,ϕ) configuration space and a
finite-difference discretization in the two-dimensional (2-D)
(z, θ) configuration space, respectively. In the z direction,

the resolution is refined with depth via zi+1 = zi + (vz )i Δt ,
where z0 = 0 is the surface, (vz )i is the vertical velocity at
depth zi and Δt = 1day for Equation (32) and Δt = 20years
for Equation (33).
The angular resolution of the unit sphere is Δθ = Δϕ = 5◦

for Equation (32) and Δθ = 0.2◦ for Equation (33). As al-
ready mentioned in section 2.2, the parameter ι is set to the
value 0.6. We refer to the solution of Equation (32) as the un-
restricted fabric evolution (section 4.3), and the solution of
Equation (33) as the fabric evolution with transverse isotropy
(section 4.2).

4. RESULTS AND DISCUSSION
4.1. Anisotropic ice flow with prescribed fabric
Figure 9 shows the variation of the enhancement factor, the
ice fluidity and the horizontal velocity along the ice core,
computed with the ODF based on the fabric data described
in section 3.1. The parameter in Equation (23) has been set to
a = 1 (horizontal extension in x direction only). This choice
is supported by the observed girdle fabric, which cannot form
under an isotropic horizontal extension (a = 1/2).
For both limiting cases R13 and R23, the enhancement

factor is close to unity in the upper 600m which reflects the
approximately isotropic fabrics in that part of the EDML core.
Further down, in the girdle fabric regime, case R13 is char-
acterized by a moderate increase of the enhancement factor
to an average value of about 2, whereas case R23 exhibits a
strong decrease of the enhancement factor to values close to
0. This demonstrates clearly that the girdle fabrics produce
a significantly different mechanical response depending on
the orientation relative to the ice flow. Case R23 is probably
closer to reality, because in the girdle fabric regime above
2000m depth the deformation is essentially vertical com-
pression and horizontal extension in the x direction. For this
situation, a simple ‘deck-of-cards’ model illustrates that the c
axes turn away from the x axis and towards the z axis, so that
in the Schmidt projection a concentration perpendicular to
the x axis (flow direction) results (see Paterson, 1994, p. 198).
This will also be made evident in section 4.3.
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Fig. 10. Variation along the EDML ice core of (a) the enhancement factor and (b) the horizontal velocity. ‘Model’ represents the solutions
based on the fabric evolution (Equation (33)) for transverse isotropy.

Below 2000m depth, where the fabric switches to a single
maximum, the difference between cases R13 and R23 es-
sentially vanishes. The crystal basal planes are favourably
oriented for the now prevailing simple-shear deformation,
which leads to large deformabilities. Consequently, the en-
hancement factor shows a sharp increase to a maximum
value of about 8, which is close to the limit of Emax = 10.
The variabilities in the enhancement factor and the effect-

ive stress, as well as the increase of the temperature with
depth, contribute to the fluidity profiles shown in Figure 9b.
Since the fluidity is very small above 2000m depth and in-
creases only further down, the difference between the R13
and R23 cases in absolute values is surprisingly small. At
2563m depth, the fluidity is about 200 times higher than the
fluidity at 1000m depth for case R23 due to the counteract-
ing contributions of favourably oriented c axes and higher
temperature on the one side, and smaller effective stress on
the other side. The latter is somewhat surprising; it is caused
by the normal deviatoric stresses Sxx and Szz which decrease
strongly below 2000m depth and outweigh the influence of
the increasing shear stress Sxz in the effective stress.
Due to the large enhancement factors close to the bot-

tom, the anisotropic flow law predicts significantly larger
horizontal velocities compared to the isotropic flow law for
the entire depth of the ice core (Fig. 9c). At the surface, the
anisotropic horizontal velocities are approximately a factor
of 3.5 larger than their isotropic counterparts. The absolute
value of ∼0.7ma−1 agrees very well with measurements
(personal communication fromH. Oerter, 2005;Wesche and
others, 2007). The difference between the R13 and R23 cases
amounts to ∼10%, the larger values being obtained for case
R23 due to the slightly larger enhancement factors below
2000m depth.

4.2. Fabric evolution with transverse isotropy
Let us now turn to the simulation in which the fabric evolu-
tion is computed by solving Equation (33) for a transversely
isotropic fabric. Although this assumption is not consistent
with the observed girdle fabric between ∼600 and 2000m
depth and is therefore a gross simplification, it is interesting
to study the mechanical response of such a simplified system

and the differences to the ice flow resulting from applying the
measured fabrics.
Figure 10a shows the comparison between the enhance-

ment factors resulting from the computed, transversely iso-
tropic fabric (referred to as ‘modelled enhancement factor’)
and from the fabric data. Evidently, the agreement is good
despite the assumption of transverse isotropy. Down to
1800m depth, the modelled enhancement factor lies be-
tween the cases R13 and R23, which are the limiting cases for
the orientation of the measured girdle fabric with respect to
the ice-flow direction. Between 1800 and 1900m depth, the
modelled enhancement factor is very close to the low values
of case R23, for which the girdle fabric is aligned perpen-
dicular to the flow direction. Below 2000m depth, the sharp
increase is also well reproduced. However, the maximum of
the modelled enhancement factor is more pronounced and
lies closer to the bottom than for cases R13 and R23.
For that reason, the modelled enhancement factor leads

to larger near-basal shear rates than the enhancement factor
based on cases R13 and R23. Consequently, the horizontal
velocity resulting from the modelled enhancement factor is
larger (by about a factor of two) than the velocities for cases
R13 and R23 (Fig. 10b). At the surface, a value of∼1.5ma−1
is reached, which is twice the measured surface velocity.
This highlights the great sensitivity of the ice dynamics to the
processes near the bottom, which are most difficult to model
precisely. As well as the assumption of transverse isotropy, a
weak point in that context is the disregard of recrystallization
processes which are expected to become important for the
fabric evolution in the lower part of the ice core.

4.3. Unrestricted fabric evolution
We now drop the assumption of transverse isotropy and
compute the fabric evolution for the EDML site by solving
Equation (32), which describes the general 1-D steady-state
problem in the coordinates z, θ and ϕ without further ap-
proximations. The parameter in Equation (23) has again been
set to a = 1 (horizontal extension in the x direction only).
The resulting Schmidt diagrams for the ODF are presented

in Figure 11. For the sake of easy comparison with the fabric
data, the depths are the same as in Figure 5. We see a good
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Fig. 11. Schmidt diagram representation of the EDML fabrics (ODF) at depths between 54 and 2563m computed by Equation (32). As in
Figure 5, the centres of the diagrams coincide with the core axis and the projection is on the horizontal (x–y ) plane.

agreement between the data and the model results for the
transition with depth from an isotropic fabric via broad and
narrow girdle fabrics to a single maximum at about 2040m.
The computed girdle fabrics are aligned with the y axis (per-
pendicular to the flow direction), which confirms our above
justification that case R23 for the orientation of the meas-
ured fabrics is more realistic (section 4.1). Compared to the
data, the computed girdle fabrics show a stronger concen-
tration of c axes towards the vertical. According to Paterson
(1994, p. 198), this discrepancy indicates that some amount
of compression occurs in the transverse (y ) direction (which
corresponds to a > 1 in Equation (23)). At depths of 2035m
and 2045m, the obtained single-maximum fabrics have a
noticeable deviation from the vertical (centre of the Schmidt
diagrams). This is also in agreement with the data, and is an
effect of the transition of the deformation regime frommainly
pure shear to mainly bed-parallel simple shear. However, at
2563m depth, the modelled fabric shows a widened and
somewhat decayed structure, which is only reflected in the
data to a limited extent. The spurious spatial oscillations in
this fabric indicate that it is probably influenced by a numer-
ical instability of the finite-volume scheme near the base.
Down to depths of approximately 2100m, the profile of

the enhancement factor obtained from the computed fabrics
(Fig. 12a) agrees well with the results obtained from the R23
data. In the girdle fabric regime between 600m and 2000m
depth, the values are therefore distinctly lower than those
based on transverse isotropy which lie between the R13 and
R23 data (Fig. 10a). The sharp increase of the enhancement
factor between 2000 and 2100m depth emerges in a similar
fashion for both the cases of transverse isotropy and general
anisotropy.
However, below 2100m depth, the enhancement factor

for general anisotropy becomes radically different from that
for transverse isotropy. Starting from the maximum value of
about 5, it drops to almost unity and increases further down

to values slightly larger than 2. The latter corresponds to the
Schmidt diagram for 2563m depth in Figure 11. The trends of
both the R13 and R23 data show a similar behaviour, but the
absolute values of the enhancement factor are clearly under-
predicted by the solution of the fabric evolution Equation (32)
because of the resulting decay of the single maximum. This
becomes more evident by inspection of the second-order
orientation tensor a(2) of the calculated fabric (Fig. 12b).
The development of an ideal vertical single-maximum fab-

ric would result in values of a(2)33 converging to 1 and values
of a(2)11 and a

(2)
22 to 0. While the trend towards this state lasts

down to depths of 2100m, a(2)33 decreases between 2100 and
2300m depth. Further down, a(2)33 increases again and finally
stabilizes at values of ∼0.7 close to the core bottom. The
model therefore predicts the formation of a fabric with a
smaller concentration of c axes around the vertical direction
than themeasured fabric. However, the oscillatory behaviour
of a(2) below ∼2400m depth indicates that the results are
probably affected by a numerical instability, as mentioned
above.
In order to assess the dependence of the results on the nu-

merical technique used in this work for the solution of Equa-
tion (32) (section 3.2, last paragraph), we have also applied
a Lagrangian approach that computes the evolution of the
c-axis orientation for discrete grains, contrary to the finite-
volume method in the Eulerian frame. This model works
down to 2200m depth and provides similar results to the
finite-volume scheme, demonstrating that our results are nu-
merically robust at least to this depth (Seddik, 2008).
If the shear rate γ in Equation (32) is ignored, a strong

single-maximum fabric forms in the near-basal parts of the
core, and the enhancement factor becomes similar to that
obtained under the assumption of transverse isotropy (sec-
tion 4.2). For the latter case, note that the shear rate does not
appear at all in Equation (33), which is a direct consequence
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Fig. 12. Variation along the EDML ice core of (a) the enhancement factor and (b) the three non-zero components of the second-order
orientation tensor a(2). ‘Model’ represents the solutions based on the unrestricted fabric evolution Equation (32).

of averaging over the azimuth angle. The decay of the single-
maximum fabric (decreasing values of a(2)33) is therefore due
to the dominance of bed-parallel simple shear in the lowest
hundreds of metres.
Inspection of the constitutive relation Equation (18) for the

orientation transition rate shows that, under simple shear and
for ι < 1, the local rigid-body rotation always outweighs the
deformational contribution. This implies that u� = 0 is not
possible for any orientation n, and a stable single-maximum
fabric cannot form by grain rotation only. However, as al-
ready stated at the end of section 4.2, neglecting recrystal-
lization processes is critical in this part of the core and it is
therefore not surprising that the model results deviate from
the data. In particular, migration recrystallization will drive
the fabric back towards a vertical single maximum which is
most favourable for bed-parallel simple-shear deformations.
The discrepancy between modelled and observed fabrics
below 2100m depth and the resulting discrepancy of the
enhancement factors therefore becomes qualitatively under-
standable.

5. CONCLUSIONS
The newly developed CAFFE model, which comprises an an-
isotropic flow law as well as a fabric evolution equation, is
presented in this study. It is a good compromise between
physical adequateness and simplicity, and is therefore well
suited to flow models of ice sheets and glaciers.
The CAFFE model was applied to the site of the EDML ice

core. Three different methods were employed: (1) computing
the anisotropic enhancement factor and the horizontal flow
based on fabrics data; (2) solving the fabric evolution equa-
tion under the simplifying assumption of transverse isotropy;
and (3) solving the full fabric evolution equation.
Method (1) demonstrated clearly the importance of the

anisotropic fabric in the ice column for the flow velocity,
and better agreement with the measured surface velocity
was achieved compared to an isotropic computation. The
anisotropic enhancement factor produced with method (2)
agreed reasonably well with that of method (1), despite the
fact that the measured fabric is not transversely isotropic in

large parts of the ice core. For method (3), which is the most
sophisticated from a modelling point of view, we found that
the measured fabric is reproduced well by the model down
to approximately 2100m depth, encompassing the change
with depth from an isotropic fabric via broad and narrow
girdle fabrics to a single-maximum fabric. Only further down,
in the warm near-basal part of the ice core, a systematic
disagreement emerged: the modelled fabric shows a more
pronounced decay than the measured fabric. This is prob-
ably due to the disregard of migration recrystallization in the
model and, in the lowest part, a numerical instability of the
finite-volume solver.
Due to its relative simplicity, the CAFFE model is suitable

for implementation in 3-D ice-flow models. Seddik (2008)
has applied CAFFE for the full Stokes model Elmer/Ice in or-
der to simulate the vicinity within 100 km around the Dome
Fuji drill site (Motoyama, 2007) in central East Antarctica.
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Emile Victor and Programma Nazionale di Ricerche in
Antartide (at Dome C) and the Alfred Wegener Institute (at
Dronning Maud Land). This is EPICA publication No. 197.

REFERENCES

Azuma, N. 1994. A flow law for anisotropic ice and its application
to ice sheets. Earth Planet. Sci. Lett., 128(3–4), 601–614.

Azuma, N. 1995. A flow law for anisotropic polycrystalline ice
under uniaxial compressive deformation. Cold Reg. Sci. Tech-
nol., 23(2), 137–147.

Castelnau, O., T. Thorsteinsson, J. Kipfstuhl, P. Duval and G.R. Can-
ova. 1996. Modelling fabric development along the GRIP ice
core, central Greenland. Ann. Glaciol., 23, 194–201.

Castelnau, O. and 7 others. 1998. Anisotropic behavior of GRIP ices
and flow in central Greenland. Earth Planet. Sci. Lett., 154(1–4),
307–322.

Dafalias, Y.F. 2001. Orientation distribution function in non-affine
rotations. J. Mech. Phys. Solids, 49(11), 2493–2516.

Dansgaard, W. and S.J. Johnsen. 1969. A flow model and a time
scale for the ice core from Camp Century, Greenland. J. Glaciol.,
8(53), 215–223.

Duval, P., M.F. Ashby and I. Anderman. 1983. Rate-controlling pro-
cesses in the creep of polycrystalline ice. J. Phys. Chem., 87(21),
4066–4074.

Eisen, O., I. Hamann, S. Kipfstuhl, D. Steinhage and F. Wilhelms.
2007. Direct evidence for continuous radar reflector originat-
ing from changes in crystal-orientation fabric. Cryosphere, 1(1),
1–10.

EPICA community members. 2006. One-to-one coupling of gla-
cial climate variability in Greenland and Antarctica. Nature,
444(7116), 195–198.

Faria, S.H. 2003. Mechanics and thermodynamics of mixtures
with continuous diversity. (Doctoral thesis, Technical University
Darmstadt.)

Faria, S.H. 2006a. Creep and recrystallization of large polycrystal-
line masses. I. General continuum theory. Proc. R. Soc. London,
Ser. A, 462(2069), 1493–1514.

Faria, S.H. 2006b. Creep and recystallization of large polycrystalline
masses. III. Continuum theory of ice sheets. Proc. R. Soc. London,
Ser. A, 462(2073), 2797–2816.

Faria, S.H., G.M. Kremer and K. Hutter. 2006. Creep and recrystal-
lization of large polycrystalline masses. II. Constitutive theory for
crystalline media with transversely isotropic grains. Proc. R. Soc.
London, Ser. A, 462(2070), 1699–1720.

Gagliardini, O., F. Gillet-Chaulet and M. Montagnat. In press. A
review of anisotropic polar ice models: from crystal to ice-sheet
flow models. In Hondoh, T., ed. Proceedings of the 2nd Inter-
national Workshop on Physics of Ice Core Records (PICR-2). Sap-
poro, Hokkaido University, Institute of Low Temperature Science.

Gillet-Chaulet, F., O. Gagliardini, J. Meyssonnier, M. Montagnat and
O. Castelnau. 2005. A user-friendly anisotropic flow law for ice-
sheet modelling. J. Glaciol., 51(172), 3–14.

Gillet-Chaulet, F., O. Gagliardini, J. Meyssonnier, T. Zwinger and
J. Ruokolainen. 2006. Flow-induced anisotropy in polar ice and
related ice-sheet flowmodelling. J. Non-Newtonian Fluid Mech.,
134(1–3), 33–43.
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accuracy of the self-consistent approximation for polycrystals:
comparison with full-field numerical simulations. Acta Mater.,
52(18), 5347–5361.

Liu, I.S. 2002. Continuum mechanics. New York, Springer.
Lliboutry, L. 1993. Anisotropic, transversely isotropic nonlinear vis-
cosity of rock ice and rheological parameters inferred from ho-
mogenization. Int. J. Plasticity, 9(5), 619–632.

Lliboutry, L. and P. Duval. 1985. Various isotropic and anisotropic
ices found in glaciers and polar ice caps and their corresponding
rheologies. Ann. Geophys., 3(2), 207–224.

Mangeney, A., F. Califano and O. Castelnau. 1996. Isothermal flow
of an anisotropic ice sheet in the vicinity of an ice divide. J. Geo-
phys. Res., 101(B12), 28,189–28,204.

Mansuy, P., J. Meyssonnier and A. Philip. 2002. Localization of de-
formation in polycrystalline ice: experiments and numerical sim-
ulations with a simple grain model. Comput. Mat. Sci., 25(1–2),
142–150.

Meyssonnier, J. and A. Philip. 2000. Comparison of finite-element
and homogenization methods for modelling the viscoplastic be-
haviour of a S2-columnar-ice polycrystal. Ann. Glaciol., 30,
115–120.

Miyamoto, A. 1999. Mechanical properties and crystal textures
of Greenland deep ice cores. (Doctoral thesis, Hokkaido
University.)

Morland, L.W. 1984. Thermomechanical balances of ice sheet
flows. Geophys. Astrophys. Fluid Dyn., 29(1–4), 237–266.

Morland, L.W. and R. Staroszczyk. 1998. Viscous response of
polar ice with evolving fabric. Contin. Mech. Thermodyn., 10,
135–152.

Morland, L.W. and R. Staroszczyk. 2003. Stress and strain-rate for-
mulations for fabric evolution in polar ice. Contin. Mech. Ther-
modyn., 15(1), 55–71.

Motoyama, H. 2007. The second deep ice coring project at Dome
Fuji, Antarctica. Sci. Drilling 5, 41–43.

Paterson, W.S.B. 1991. Why ice-age ice is sometimes “soft”. Cold
Reg. Sci. Technol., 20(1), 75–98.

Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Ox-
ford, etc., Elsevier.

https://doi.org/10.3189/002214308786570755 Published online by Cambridge University Press

https://doi.org/10.3189/002214308786570755


642 Seddik and others: EDML simulation with the CAFFE model

Pimienta, P., P. Duval, and V.Y. Lipenkov. 1987. Mechanical be-
havior of anisotropic polar ice. IAHS Publ. 170 (Symposium at
Vancouver 1987 – The Physical Basis of Ice Sheet Modelling ),
57–66.

Placidi, L. 2004. Thermodynamically consistent formulation of in-
duced anisotropy in polar ice accounting for grain-rotation,
grain-size evolution and recrystallization. (Doctoral thesis,
Darmstadt University of Technology.)

Placidi, L. 2005. Microstructured continua treated by the the-
ory of mixtures. (Doctoral thesis, University of Rome La
Sapienza.)

Placidi, L. and K. Hutter. 2006a. An anisotropic flow law for incom-
pressible polycrystalline materials. Z. Angew. Math. Phys., 57(1),
160–181.

Placidi, L. and K. Hutter. 2006b. Thermodynamics of polycrystal-
line materials treated by the theory of mixtures with continuous
diversity. Contin. Mech. Thermodyn., 17(6), 409–451.

Russell-Head, D.S. and W.F. Budd, 1979. Ice sheet flow properties
derived from borehole shear measurements combined with ice
core studies. J. Glaciol., 24(90), 117–130.

Saito, F. and A. Abe-Ouchi. 2004. Thermal structure of Dome Fuji

and east Dronning Maud Land, Antarctica, simulated by a three-
dimensional ice-sheet model. Ann. Glaciol., 39, 433–438.

Seddik, H. 2008. A full-Stokes finite-element model for the vicinity
of Dome Fuji with flow-induced ice-anisotropy and fabric evol-
ution. (Doctoral thesis, Hokkaido University.)

Svendsen, B. and K. Hutter. 1996. A continuum approach for model-
ling induced anisotropy in glaciers and ice sheets. Ann. Glaciol.,
23, 262–269.

Thorsteinsson, T. 2001. An analytical approach to deformation of
anisotropic ice-crystal aggregates. J. Glaciol., 47(158), 507–516.

Thorsteinsson, T. 2002. Fabric development with nearest-neighbour
interaction and dynamic recrystallization. J. Geophys. Res.,
107(B1), 2014. (10.1019/2001JB000244.)

Van der Veen, C.J. 1999. Fundamentals of glacier dynamics. Rotter-
dam, A.A. Balkema.

Wesche, C., O. Eisen, H. Oerter, D. Schulte and D. Steinhage. 2007.
Surface topography and ice flow in the vicinity of the EDML
deep-drilling site, Antarctica. J. Glaciol., 53(182), 442–448.

Wilson, C.J.L., D.S. Russell-Head and H.M. Sim. 2003. The applica-
tion of an automated fabric analyzer system to the textural evolu-
tion of folded ice layers in shear zones. Ann. Glaciol., 37, 7–17.

MS received 14 November 2007 and accepted in revised form 28 March 2008

https://doi.org/10.3189/002214308786570755 Published online by Cambridge University Press

https://doi.org/10.3189/002214308786570755

